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ON THE RELATION BETWEEN THE UPWIND-DIFFERENCING
SCHEMES OF GODUNOV, ENGQUIST-OSHER AND ROE*

BRAM VAN LEER

Abstract. The upwind-differencing first-order schemes of Godunov, Engquist-Osher and Roe are
discussed on the basis of the inviscid Burgers equations. The differences between the schemes are interpreted
as differences between the approximate Riemann solutions on which their numerical flux-functions are
based. Special attention is given to the proper formulation of these schemes when a source term is present.
Second-order two-step schemes, based on the numerical flux-functions of the first-order schemes are also
described. The schemes are compared in a numerical experiment and recommendations on their use are
included.
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1. Introduction. Upwind differencing, while trivial for a diagonalized hyperbolic
system, is difficult to achieve when the difference scheme has to be written in conserva-
tion form. The oldest and most complicated version is due to Godunov [1], [2]; the
increasing popularity of upwind differencing recently has led to a variety of simpler
implementation techniques. A review of these is given by Harten, Lax and van Leer
[33.

Among the recent additions to the family of upwind conservative schemes the
method of Engquist and Osher [4], [5] is closest to the original Godunov scheme,
while the method of Roe [6], [7] offers the greatest simplification. In the present paper
the differences between these schemes are discussed on the basis of the inviscid Burgers
equation. Part of the discussion covers known, but not well-known, aspects of the
schemes, thus rendering the paper to some extent a review paper. For maximum
clarity the presentation leans heavily on geometrical insights.

The first-order accurate schemes are explained in 2, 3 and 4 for the
homogeneous equation; 6 describes how to include a source term and 7 how to
achieve second-order accuracy in a two-step format. Their rendition of a stationary
shock and a transonic expansion is discussed in 5 and illustrated in the numerical
experiments of 8. Section 9 rounds off with recommendations regarding the applica-
tion of these schemes to single conservation laws and systems of conservation laws.

2. Godunov’s method. Godunov’s [1], [2] method for integrating a hyperbolic
system of conservation laws

()

is a scheme in conservation form’

(2) (u+X-u)/At+{F(u" u" )-F(u", + -, uT)}/ax =0;

here u’ represents the average value at time t"= nat in the computational zone
centered on xi lax. The numerical flux-function F(u’, ui+l in the Godunov scheme
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is taken to be the flux value arising at Xi+l/2 in the exact solution of the initial-value
problem with a piecewise uniform initial distribution

(3.1) u"(x) u’, xi-Ax/2 <x <xi + Ax/2.

That is, if

(3.2) u(x, t)= v(x/t; UL, UR)

is the (weak) similarity solution of the Riemann problem with initial values

X < 0,
(3.3) u

UR, X > O,

then

(4) F(u"i, Ui+I)’-f[/)(0; Ui, Ui+I)].
For Burgers’ equation in the inviscid limit,

(5) u, + (1/2U)x o,
the similarity solution to the initial-value problem (3.2) is

v u., x/t<= ut,

(6.1) uL <= UR V X t, Ut. < X/t < UR,

(expansion)[. v UR, X/ >--_ UR,

x/ < US 1/2(UL + UR),UL > UR l--- uL’
(6.2)

(shock) UR, X > Us.

For numerical reasons it is useful to distinguish in the formula for F(UL, UR)
three cases"

(i) [ully supersonic
2u L, lgL, UR > O,

(7.1) F(u, UR)= 2u R, Ut, UR < 0;

(ii) transonic expansion

(7.2) Fa(UL, UR) O, UL <---- 0 <-- UR

(iii) transonic shock
2u t, ut > Us >---- 0 >= UR,(7.3) F(uL, UR) 2

U R, UL : 0 > US > UR,

These cases are illustrated in Figs. 1, 2 and 3. The reference to a sonic speed (= 0)
arises from the use of (5) in transonic aerodynamics.

In order to combine the formulas (7) in one compact algorithm, we follow Engquist
and Osher by introducing

(8.1) u+ max (u, 0),
(8.2) u---- min (u, 0),
(8.3) u=u++u -,
(8.4) lul u +

--U

we then have

(9) FG (ut_, uR) max [(u )2, 1/2(u )2].
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v-uL

o

(a)

V= UR

(b)
FIG. 1. Riemann solution" (x, t) diagrams ]:or case (i), with ut. > UR >0 (a); ur <UR <0 (b).

UL<,O R> 0

X

FIG. 2. (x, t) diagram ]’or case (ii).

v= UL-

(a

>0u S

UR<O

i,I (a)

Us<

UL> 0

(b)

,---V U

FIG. 3. (x, t) diagram for case (iii), with Us >0 (a)’ Us <0 (b).

3. The Engquist-Osher scheme. The Engquist-Osher [4], [5] scheme for
integrating (1) also has the conservation form (2) and tacitly assumes the initial-value
distribution to be (3.1); its numerical flux-function is

(lO)

where the matrices A +(u), A-(u) and [A (u)l are related to

(11) A(u)=df/du

by an extension of (8). For precise definitions and a description of the integration
path used for the integrals in (10), see [5] or the review [3].
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For Burgers’ equation (5) the above recipe boils down to

(12)

The integrals over u in (12) are defined in phase space, without reference to any
mapping onto the (x, t)-plane. We may, however, introduce a mapping in the style of
(3.2), namely,

(13) u(x, t)= w(x/t; uL, UR), min (uL, UR)<=U --<max (u, UR)

and consider w(x/t; uL, UR) an approximation to the exact solution v(x/t; uL, UR) Of
the Riemann problem (3.3). It follows that w is the following function of x/t"

(14)
u, x/t <= u,

w x/t, min (u, UR)< x/t < max (u, UR),
UR,

In relating FEo(uL, UR) to W(0; U, UR) after the example of (4), caution is required,
since, for uz: > UR, W becomes multivalued in the domain u >=x/t >=UR. Specifically,
we have three branches

(15) w u, w: x/t, w UR, U >--_X/t >-- UR.

The picture associated with this case is that of an overturned centered compression
wave or folded characteristic field (see Figs. 4 and 5); in the exact Rieman solution
(6) such a wave would be replaced by a shock discontinuity.

The proper formula for FEo(U, UR) in terms of w(x/t; ut, UR), equivalent to (12),
is

(16) Fo(UL, u)= Y. (-1)k- 1 (k(0;,,
where the sum is taken over all branches present at x/t O.

> 0 uR
<’ 0uL

X
FIG." 4. Approximate Riemann solution in the Engquist-Osher scheme" (x, t) diagram for case (iii). The

multivalued solution at z is displayed in Fig. 5.
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w w(1)= UL

(3)
W=W =UR

FIG. 5. Approximate Riernann solution at r.

In the cases (i), (ii) and (iii), distinguished earlier in (7) for F(uL, UR), (12) or
(16) yields

(i)

(17) (ii)

(iii)

fo(U, u,)= F(u,, u,)= u,
Fo(Uc, un) Fa(uc, un) O,

Fo(UL, u) 1/2u2 + 1/2UR F(uc, uu),

Uc, UR 3> O,
UL, lR < O,

uc <= 0 <-- UR,

Ut>=O>--UR.

As indicated in [4], these formulas combine into

(18) 1/2(u +): ).Fo(U, u) +(u;

The difference between the Godunov and Engquist-Osher schemes lies entirely
in the treatment of a transonic compression (iii). The latter scheme is the simpler one,
since it does away with one test, namely, a test for the sign of Us or for the maximum
of +):5(u and (U)2o

4. Roe’s method. Roe’s [6], [7] method for integrating (1) again has the conserva-
tion form (2) and employs the initial-value distribution (3.1). Its numerical flux-function
is defined as

(19) FR(uni, Ui+I)’-f[w(O; Ui, Ui+I)],

where w(x/t; uL, UR) is the exact solution of the Riemann problem (3.3) for the locally
linearized system

(20.1) w,+A(u,UR)Wx=O.

The approximate Jacobian A(u, UR) is constructed such as to satisfy the discrete
version of (11)

(20.2) f(u) f(u) A(u., UR)(UR U).
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For a scalar equation like (5), (20.2) uniquely determines A(uL, UR):

(21) A(uc, UR) =1/2(Uc + UR)= US;

thus, the Riemann problem for the linear equation (20.1) with (21) has the similarity
solution

(22) w(x/t, ut_, UR)= ! UL X/l blS

UR x/t > ls.

In all cases (i), (ii) and (iii) this yields

2
-U , Us > O,

(23) FR(UL, UR)= 2
"U R, US < O.

The difference with Godunov’s method lies in the treatment of an expansion:
where the exact Riemann solution, used in Godunov’s method, would include an
expansion fan, Roe’s method puts in a so-called expansion shock (see Fig. 6).

The numerical flux-function (23) deviates from the Godunov flux (7) only in case
(ii), when the expansion is transonic. The computational simplification is, again, the
elimination of one test.

V=U U >0
L S

UL<0 > 0

X

FIG. 6. Approximate Riemann solution in Roe’s scheme: (x,t) diagram lor case (iii), with us>O,
showing the expansion shock.

Rewriting (23) as an approximation to the Engquist-Osher flux (12),

(24)

we see that, for Burgers’ equation, Roe’s scheme is identical to the scheme of Murman
and Cole [8], used in transonic aerodynamics. The latter is known to occasionally
yield numerical results that include a (physically inadmissible) expansion shock. This
is a direct consequence of the admission of an expansion shock in the underlying
approximate Riemann solution.

Roe [14] has proposed a modification in the numerical flux-function for a transonic
expansion that not only does away with expansion shocks, but may be an improvement
over the flux-function in the Godunov and Engquist-Osher schemes. This is discussed
at the end of the next section.

The problem of preventing inadmissible discontinuities in the use of upwind
schemes has been addressed in general by Harten and Lax [15] and for gas dynamics
by Colella [16].
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5. Steady-shock and sonic-point representation. The fluxes in the schemes of
Godunov and Engquist-Osher differ only on meshes where the data constitute a
transonic compression; therefore, numerical results from these schemes differ only if
a transonic shock, in particular, a stationary shock, is present. Likewise, the results
of Roe’s scheme will differ from those of Godunov’s scheme only if a transonic
expansion is present.

For Burgers’ equation (5), Godunov’s scheme admits the following stationary
discrete representation of a stationary shock connecting the states u > 0 and u
-u < 0:

(25)

Ui UL, <--1,

I,0 UM UL I,M UR

ui -u, i>-1.

This is the only stationary distribution admitted by the scheme.
The interior value u indicates the subgrid position Xs of the shock; by conserva-

tion we have (see Fig. 7a),
(26.1) u(xs +Ax + UR (1/2Ax Xs) uAx
or

(26.2) Xs 1/2Ax UM/UL.
A shock standing exactly on the boundary of a zone will be represented without any
interior value.

The Engquist-Osher scheme admits discrete steady shock-profiles with, in general,
two interior states"

Ui UL, <=-1,

Uo uM, UL >= UM >= O,
(27.1)

Ui UN, 0 UN --UL,

i>-2,Ui --UL,

where ut and ur are constrained by

(27.2) 1/2u+1/2u=1/2uZ.
Again, this is the only stationary distribution admitted by the scheme.

The pair of interior states indicates the subgrid position of the shock; by conserva-
tion we have (see Fig. 7b)’

(28.1) uL(xs + 1/2Ax)+ Ug (Ax Xs (ut + ur)Ax
or

(28.2) Xs AX(Ulvt + uN + UL)/U..

A shock standing exactly in the middle of a zone will be represented with only one
interior value.

The representation of a stationary shock by Roe’s scheme is the same as by
Godunov’s scheme, at least for Burgers’ equation. However, Roe’s scheme also admits
as a stationary solution the expansion shock

Ui UL < O, i<--l,
(29.1)

u -ut > O, => O.
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U

1/2Ax
xS

(a)

U

Xs

UR
(b)

FIG. 7. Fitting a shock discontinuity to stationary discrete shocks yielded by the schemes of Godunov or
Roe (a) and Engquist-Osher (b). The numerical values uM and uN represent the average value of u in the
intervals (-1/2Ax, Ax) and (1/2Ax, Ax). A subgrid distribution representing a shock transition from ur to UR
at Xs must have the same integral as the numerical solution. In case (a) the integrals from -1/2Ax to 1/2Ax are
compared, in case (b) from -1/2Ax to Ax.

A transonic shock profile, steady or not, obtained with any of the upwind schemes,
has the property that the interior zones cannot influence the exterior solution (see
Fig. 8a). Inversely, in a transonic expansion computed with the Roe-Murman-Cole
scheme, the zone with the value closest to the sonic value cannot be influenced by
the rest of the grid (see Fig. 8b). Once established by transient waves, the value in
this zone changes no more, and it fixes the amplitude of the steady expansion shock
that will remain.

Colella [16] has pointed out that, in the approximate solution to the Riemann
problem, two steps can be distinguished. The first step is to determine the speeds and
amplitudes of the finite-amplitude waves; the second step is to compute the full
solution as a function of x/t. It is only in the second step that the method of Roe errs.
A rarefaction wave must always be given a finite spread; for Burgers’ equation this
boils down to replacing Roe’s scheme by Godunov’s.

The remedy that Roe [14] proposes cannot be formulated as a change in the
approximate Riemann solution. It is based on regarding the initial values as nodal
values of a smooth distribution, rather than zone averages of a piecewise uniform
distribution. For neighboring zones L and R enclosing a sonic point we may write
down the following upwind formulas’

(ou) -u,.(u u)/Ax,

(29.2) UL <= O <= UR,
-u(u -u)/Ax,

from which follows

(29.3) (Ou/Ot)L/(Ou/Ot)l u/u.
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(a)

-U UM-
/

L
FIG. 8. Two (x, t) diagrams showing the influence, through Godunov’s scheme, of the adjacent zones

on a zone inside a shock (a) and the influence, through Roe’s scheme, of an almost sonic zone on the adjacent
zones (b). In (a), the fluxes at the boundaries of zone Mdo not depend on ut" in (b) they depend only on ut.

The latter relation can be forced onto the numerical flux Ft,,(uL, UR) for a transonic
expansion"

(29.4) u,,)

leading to

(29.5) Ftx(uL, uR)= Ut.UR, U <--_ 0 <--_ UR.

This unphysical flux (it is negative!) breaks down an expansion shock faster than the
zero flux dictated by the exact Riemann solution. This is a direct consequence of the
underlying assumption of smooth initial values.

While not fitting into the general framework of approximate Riemann solutions,
the above approach has its appeal. The piecewise uniform values associated with a
Riemann problem are not necessarily a good representation of the solution near a
sonic point. In particular, the errors in the signal speed df(u)/du (-u) locally are of
the order of the speed itself. The sonic point is always moved to a zone boundary
and, in consequence, the flux gradient computed for each bordering zone becomes
independent of the true gradient of the solution. In numerical solutions obtained with
first-order schemes this shows up as a transonic expansion shock with amplitude
O(Ax). For a second-order scheme the effect disappears or reduces to O[(Ax)3].

In contrast, first-order accurate solutions obtained with the transonic flux (29.5)
do not show these weak expansion shocks.
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6. Inclusion of a source term. When approximating the equation

(30) u, + [f(u)] =s(x)

with any upwind scheme, it is not sufficient to add the source term to the right-hand
side of (2); we must also change the initial-value distribution implied in our numerical
model. Instead of assuming that it is piecewise uniform, as in (3.1), we rather take
it to be piecewise stationary, that is,

(31.1) [f(u"(x))]x s(x),

with

x Ax/2 < x <x + Ax/2,

1 xi +Ax/2

| u"(x)dx =uT.(31.2)
Ax ,x,-ax/2

This was first proposed by Liu [17] in constructing a random-choice method for the
inhomogeneous conservation law (30).

The extension preserves a fundamental property of the homogeneous scheme,
namely, that a zone-average can change only through the finite-amplitude waves
entering from the zone boundaries. Moreover, if the numerical solution globally tends
to a steady state, it will be the zone-averaged exact steady state almost everywhere
(that is, provided that the scheme, like the three considered here, can render a shock
transition in a finite number of zones). We shall come back to this further below.

As before, the initial values on either side of a zone boundary become the
arguments of the numerical flux-function. Transient effects caused by a shock wave
returning to the zone boundary under the influence of the source term, or by a curved
transonic rarefaction fan, are ignored in order to keep the flux-function independent
of At. The full scheme reads

(32.1) (u7+ -u )/At+{F(u"i+1/2)-, ui+a/z)+ )-F(ui-/2)-, Ui-/z)+ )}/Ax S i,

with

1 I x+/=- s(x) dx.(32.2) si --x
For the inhomogeneous Burgers equation

(33) u, + (-u2) s(x)

the initial-value representation must satisfy

(34) "[Un(X)]2"-’"[Un(X(i--1/2)+)]2+ S(Xt) dx’, xi-A/2<x<xi+A/2,
i-1/2

under the constraint (31.2). This constraint, however, is not strong enough to define
a unique distribution in each zone, since the distribution may (and, in some zones,
must) contain a discontinuity. Uniqueness can be achieved by selecting the distribution
with, say, the weakest possible shock.

If we take Ax small enough to ensure that s(x) does not change sign more than
once in any zone, the following algorithm for the piecewise construction of u" (x) is
adequate. First, determine for the zone under consideration the smallest continuous
solution (see Fig. 9). Let ro’ be the average value on the positive branch of this
solution; then the stationary distribution inside zone will be continuous if

 35)
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s>oh

FIG. 9. Stationary solutions of (30) for some source term s(x). In each zone the heavy line traces the
positive and the negative branch of the smallest continuous steady solution. The average value on these
branches is indicated by the upper and lower boundary of the shaded areas. If the average value in a zone
falls in the range of the shaded area, a continuous stationary solution cannot be realized.

If this condition is satisfied, we search, iteratively, for the continuous distribution with
the proper zone average. If it is violated, the stationary distribution will include parts
of the upper and lower branch of the smallest continuous distribution, connected by
a shock positioned so as to achieve the proper average value (see Fig. 10).

When using the upwind scheme to approach a globally stationary solution of (33),
any zone containing a sonic point must be treated with special care, since the chance
of numerically realizing the exact transonic structure without a shock is zero.

u

j+l j+2

FIG. 10. Examples of steady structure with a discontinuity, in the zones shown in Fig. 9. A (steady)
shock connects the upper and lower branch of the smallest continuous steady solution for the zone considered.
In zone j two different possibilities are shown.
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Specifically, in order to prevent the zone-boundary values from flipping sign, making
global convergence impossible, smoothing may be introduced (see Fig. 11).

In a zone containing a stationary shock, no particular interior structure is needed
to ensure global convergence, since the zone cannot influence its neighbors (see earlier
Fig. 8a). After convergence one may insert the proper structure by enforcing continuity
across the zone boundaries (see Fig. 12).

(a)

(b)

u IV VI VII

X

FIG. 11. (a) A sequence of stationary structures close to the transonic expansion (graph IV), ordered by
decreasing zone-average. Going from III to IV, and from IV to V, the slight change in zone-average causes
one boundary value to flip its sign. (b) The solutions have been smoothed on the side where the shock occurs,
so that the boundary values now vary continuously with the zone-average. The structures are not stationary
but will allow convergence to the smooth transonic solution IV.

k+l

FIG. 12. Shock structure in a globally stationary solution. Global convergence of the zone averages to

a steady solution containing a shock has been obtained, say, with Godunov’s scheme. For zone k containing
the shock the scheme had adopted the structure (a), based on the smallest continuous steady solution ]:or that
zone. This may now be replaced by the stationary solution (b) that smoothly connects to the solution in zones
k-1 and k +1.
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The scheme described above must be considered a research tool from which more
practical schemes may be derived. In the numerical experiment of 8 we simplified
the procedure by allowing only si to enter the zone-boundary values. Away from sonic
points or shocks the boundary values u(i+l/2)q: can be approximated by

(36.1) u(i+/-1/2) =ui +1/2siAx/ui +O{(Ax)2}
or

(36.2) U (r+1/2):t: 4(U)2 +siAx "+" O{(Ax)2}.
We used (36.2), extending it, for use in sonic and shock zones, to

(36.3) u" (x+1/2)) sgn (u’)x/(u’)2 + min (ls, lAx, (uT)=} sgn (s).

Note that (34), with x- x+1/2, is satisfied everywhere, but transonic structure in a
zone is avoided. For zones that should include a sonic point the error in the boundary
values is O(Ax).

The technique of computing the boundary values in a zone from a locally stationary
solution can easily be extended to systems of conservation laws of the form

(37) ut + If(u, x)]x s(x).

7. Second-order upwind schemes. Any numerical flux-function used in a first-
order upwind scheme for (30) can be used in a second-order upwind scheme. For
second-order accuracy in space we must introduce structure inside the zones by
interpolation, while second-order accuracy in time may be achieved by advancing the
cell-boundary values, to be used in the flux-function, to the intermediate time level
n+l/2= + 1/2At. In predicting these time-centered values, the interaction between cells
can be fully ignored. This observation, due to Hancock [9], has led to a drastic
simplification of second-order upwind schemes since these first were formulated for
systems of conservation laws by van Leer [10]. As in [10] we assume that the initial
values form a piecewise linear distribution

(38) u"(x)=ui +(x-xi), xi-1/2<x <xi+1/2,Ax

with

(39) (t//)i ave (u" u u u ),i+1 i i-1

ave (a, b) is an averaging procedure to be specified later. We particularly need the
initial boundary values inside cell

(40.1) U (i+1/2)w U + U

These boundary values are now advanced to "+1/2 by

(40.2) n+1/2 At At
U(i-+1/2):t= /’/(i+1/2):t:: x {f(tt (i+ l/2)- f(u (i-1/2)+ )} -Jc- TSi

The full scheme becomes

(41) (u7 +1 uT)/At +{F(u "+1/2 ,,+1/2 .+1/2 .+1/2
(i+1/2)--, tl(i+l/2)+)--F(u U )}lAx si.(i-1/2)- (i-1/2)+
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The function ave (a, b) is chosen such that it tends to (a + b) if a and b are
subsequent finite differences of a smooth solution, but tends to the smallest value
where the solution is not smooth. Examples can be found in [11], [10]; we chose a
refined formula due to Van Albada [12]

(b + c2)a + (a + c)b
(42.1) ave(a,b)= ag.+b2+2c

where c 2 is a small bias of the order O((Ax)).
The weighted averaging prevents central differencing across a discontinuity in

the solution or in its first derivative which would lead to numerical oscillations. It is
an effective way of administering artificial dissipation wherever needed and nowhere
else. By rewriting (42.1) as

{ (__a :_ 1(42.2) ave(a’b)=a+b2 1-
a 2 + b2 + 2c2J

we see that, wherever the solution is smooth, the artificial-viscosity coefficient generally
is of the order O((Zx)2). In a smooth extremum the coefficient grows to O(Ax); the
bias 2c a in the denominator prevents a further increase of the viscosity that could
lead to an undesirable clipping phenomenon (see [13, 3(e)]).

With regard to Burgers’ equation, an acceptable expression for the bias is

(43) c a (Umax-- Umin)2(AX )3/(Xmax-- Xmin)3,

where Umax and Umin are certain upper and lower bounds of the numerical solution,
fixed a priori or determined at each time level and Xmax--Xmin is the length-scale of
the problem.

ft. Numerical comparison. The performance of the three schemes was tested on
the basis of the periodic intial-value problem

(44.1) u,+(u2)x=(Tr/2)sin[2r(x-tj)], 0-<x-<l, 0-<:<< 1,

(44.2) u (x, 0) 0,

(44.3) u(O,t)=u(1, t).

The solution tends to the steady state

[ +sin zr(x :), O-<x < " +-,
(45) U(X 00)--

sin zr(x -), :+1/2<x _-< 1,

including a sonic point at x : and a shock at x Xs : +. We tested the ability of
the schemes to approximate this steady state, and the accuracy of the approximation.

aAFor Ax we chose a value of ; the zones were centered on xi (i-) x, 1,. ., 16.
For : we chose 0, 4X-Ax and Ax, in order to achieve different subgrid shock positions.
The Courant-Friedrichs-Lewy condition on the timestep, based on the maximum
characteristic speed (= 1) in the steady solution is

At
(46)

Ax

accordingly we used At Ax or At Ax.
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Table 1 shows the number of steps N it took the schemes to converge according
to the L1-criterion

16

(47) Y. luT-uT- l< ,
i=1

with e 1 10-3 or 1 10-6 and At Ax or (for Godunov’s scheme only) At Ax.
When the time-step is doubled,N appears to be halved. TheL1-errorE was evaluated
with respect to the zone-averaged exact solution, for the smallest value of e. The
subgrid shock positions in Table 1 were calculated with aid of (26.1) and (28.1),
approximately valid because the source term is small in the shock region.

TABLE
Number of steps N till convergence, L 1-error E and steady-shock position Xs,

for the initial-value problem (44), solved with the first-order schemes of Godunov
(G), Engquist-Osher (E0) and Roe (R). Mesh" Ax 6, At 1/2Ax or Ax (G only,

numbers between brackets).

-3/&x = Ixl0

G, R EO

0 62 61

1/4 68 66

1/2 52 52

N

-6
e= ixlO

G, R

112 [55

138 [70

88 [42]

EO

Iii

136

88

E

-6e= ix i0

G, R

-3!8.8 i0

-3
9.6 x 10

-3
4.6 10

E0

-2
4.6x i0

-2
1.8x i0

-3
4.6xi0

(xs 1/2)/Ax

-6= ix i0

G, R EO

0 0

The converged solutions for f 1/4Ax, with e 1 10-6, are listed in Table 5; these
are independent of At. The zone-averaged exact solution is given for comparison. The
error in the zone with the sonic point is comparable to the value in the zone, as
anticipated with the use of (36.3).

The results of Roe’s scheme happen to be identical to those of Godunov’s scheme;
in particular, no expansion shock shows up. The reason is that, with the use of the
boundary values (36.3), a sonic point in a zone is always moved to a boundary; in
this case Roe’s flux function (23) yields the same value (=0) as Godunov’s (7.2).
Furthermore, the initial average value in the zone ultimately containing the sonic
point was close to the steady value to begin with.

The results of the Engquist-Osher scheme are identical to the Godunov-Roe
results except for the expected spread in the shock profile for f 0 and 1/4Ax. The
subgrid shock positions are slightly, but not significantly, more accurate than for the
other schemes. Likewise, convergence with the Engquist-Osher scheme is faster, but
not significantly so.

Better results were obtained with the second-order versions of the schemes.
Convergence was achieved in 10-35% fewer steps than with the first-order schemes
(Table 2) and the local error near the sonic point is now of the same order as elsewhere
outside the shock (Table 5).
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TABLE 2
The quantities N, E and Xs (e x 10-6) for the initial-value problem (44), solved

with the second-order two-step schemes based on the numerical flux-functions of Godunov
(G2, G2a), Engquist-Osher (EO2) and Roe (R2). In G2a the algebraic average (48) is

N

G2,R2 G2a E02

75 76

89 92

79 79

used instead of (42.1). Mesh: Ax At 1/2Ax.

75

89

G2, R2

-3
1.4 I0

-3
1.3x i0

-3
1.3x I079

G2a

3.1 10
-2

-3
2.2 i0

-3
1.7 i0

E02

-22.9 x I0

4.7 10
-3

1.3 10
-3

(x 2)

G2, R2 G2a E02

0 0

.19 .26

The Engquist-Osher scheme still yields a shock structure with two interior zones.
For the second-order Godunov scheme we checked that the use of algebraic averaging
of differences,

(48) ave (a, b) 1/2(a + b),

causes the numerical shock to overshoot and undershoot (Table 5). The accuracy of
the shock position also suffers (Table 2).

The results of Roe’s scheme are practically, but not exactly, identical to the
Godunov results, indicating a slightly different transient behavior. Again, the internal
structure (36.3) in the zones, in combination with the particular choice of initial values,
provides a safeguard against the occurrence of an expansion shock.

In order to make the problem more challenging, we changed the initial values
(44.2), for f 0, into

1, i=1,...,8,
(49) u= -1, i=9,...,16,

including an expansion shock at x 0. The results are listed in Tables 3 and 6. Among
the second-order schemes Roe’s scheme now requires 30% more steps than the other
schemes" apparently, the expansion shock is not so easily dissipated by Roe’s scheme.
Among the first-order schemes the discrepancy gets worse: the results of Roe’s scheme
quickly converge to the wrong solution, including the full initial expansion shock. This

TABLE 3
The quantities N and E (e 10-6) for the initial-value problem

(44.1), (49), (44.3), solved with both first- and second-order upwind
schemes. Scheme R converges to the wrong weak solution. The schemes
R* and R2* incorporate the flux-function (29.5) for a transonic expansion.

G R EO G2

].70 30 169 77

Mesh: Ax , At 1/2 Ax.

N

R2 EO2

99 76 103 71

R2

E

R R2

5.7 x 10
-1 1.4 10

-3
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is because the zones on either side of the expansion shock cannot be influenced by
their neighbors (see Fig. 8b), and they cannot change by themselves because of (36c).

We then replaced the transonic value of the flux-function in Roe’s scheme by
Roe’s new formula (29.5), with dramatic results. Not only was the proper solution
obtained, but in considerably fewer steps than required by the other schemes (Table 3).
Even for the second-order scheme convergence was significantly faster.

Finally, Table 4 shows the same quantities as Table 1 for experiments in which,
in the first-order schemes, the source-term dependence of zone-boundary values was
dropped. It took the schemes of Engquist-Osher and Godunov 15-25% more steps
than previously to converge to a much less accurate solution (Table 5). Roe’s scheme
is now unstable" it yields an expansion shock where a smooth transonic transition
should be; the amplitude of this shock grows linearly with time. The reason is that

TABLE 4
The quantities N, E and Xs (e x 10-6) for the initial-value problem (44), solved with

the first-order upwind schemes under the assumption of piecewise uniform initial values (3.1).
(The label "u" in Gu, Ru, EOu stands for "uniform".) Mesh" Ax , At 1/2Ax.

Gu Ru EOu

0 135 135

174

I03

172

i03 i03

GB

6.0 x 10
-2

6.1 x 10
-2

-2
4.7 x i0

E

RH

unstable

unstable

4.7 i0
-2

EOu

9.5xi0
-2

6.7xi0
-2

4.7xi0
-2

(xs 1/2)/Ax

Gu Ru

.22

EOu

0

.24

TABLE 5
Converged numerical solutions and zone-averaged asymptotic solutions ]’or the experiments of Tables

1, 2 and 4, with f 1/4Ax, e 10-6, At 1/2Ax.

2

5

10
11

14
15
16

G, R

.89770

.25516
431EI5

.79

.8567

.91

.98329

-.96441-.--.
-.51616

-.1

.097

.L-516

.43104

.59602
T3B69
.85367
.93631
.88033

-.42699
-.96441

-.’
67047

-.51616

16827

G2, R2

.04916

.24249

.42635

.59379

.73871

.85462

.94080

.98172
49587

-.96449
-.90232..
66948

-.51252--.
-.14650

G2a

.04917

.24244

.42610
59344
.73726
.85711
.91445

1.15231
-.60164

-1.01358
-.89318
-8006?
-.66861
-.51223
3389
14649

E02

.04916
24248
4269
.59364
T3933
.85231
.9510
2

-.
512

-.1

GB

.13828

.33330

.51176

.66976

.80171

.96879

.99759
54359-.--.--.
"39-.
42473--.

EOu

.138c
33330
.51175
66976
.80171
90266
9679
89488

7
6

59

exact

.04899

.24259

.42687

.59474

.73976

.85635

.94003
cJ879
49739

-.96847

-.80192
-.67048
-.51328
-o

14649



18 BRAM VAN LEER

TABLE 6
Converged numerical solutions and zone-

averaged asymptotic solution for the experiments of
Table 3 with schemes R and R2. Note the
expansion shock in the results of R. Parameters:

=0,e=110-6 At=2iAx.

R

1.0(
2 1. 03596
3 1. :333

1.17699

6 1.417
7 1. 37431
8 1.49
9 -1.
1 -1. 37431
11 -1. 417
12 -1.4
13 -1.176
14 -1.33
15 -1.
16 -1.

E
ii

R2 exact

976
Z3
476

9959
9959

6337

--.

the zone containing the sonic point (say, zone/), not influenced by its neighbors, no
longer has a steady internal structure, so that the scheme locally reduces to

(50) u u + n Atsj.

9. Reeomlnendations. For a scalar conservation law like Burgers’ equation there
seems to be little reason to abandon Godunov’s first-order scheme in favor of the
first-order Engquist-Osher scheme. The slight simplification in the flux calculation is
accompanied by a degradation of steady-shock representation and no significant
acceleration of the convergence to a steady state. The simplification achieved in Roe’s
first-order scheme is too drastic: the scheme cannot be used "as is" near a sonic
point. With the modification (29.5), however, the scheme surpasses Godunov’s scheme.

Both Godunov and Engquist-Osher schemes become appreciably more elaborate
when applied to a nonlinear hyperbolic system like the one-dimensional Euler
equations. The interpretation of the Engquist-Osher scheme as a Godunov-type
scheme in which any shock in the solution of a local Riemann problem is replaced
by an overturned centered compression wave remains valid. This modification makes
it possible to compute FEO(UL, UR) explicitly, while Fo(uL, UR) must be determined
iteratively.

The Engquist-Osher scheme, on the other hand, requires two interior points in
a discrete stationary shock [5], while Godunov’s scheme probably requires only one
(this has not yet been proven in general).

For the Euler equations, however, Roe’s more drastic simplification of Godunov’s
method will pay off, even though the scheme must be somewhat modified in order to
reject (almost) stationary expansion shocks. This can be achieved by spreading of
rarefaction waves, as in [16], or by generalizing (29.3). Numerical experience with
the latter technique is still lacking.
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The first-order schemes, when formulated as in 6, have the potential of achieving
any desired order of spatial accuracy in a steady numerical solution. To what degree
this potential can be realized for the one-dimensional Euler equations is at present
not clear. Meanwhile, the second-order two-step schemes, intended primarily for
solving transient problems, seem to outperform the first-order schemes based on (36.3)
in obtaining a steady solution for Burgers’ equation. Experiments for the Euler
equations with both kinds of schemes, conducted for [13], but not fully reported
therein, indicate a similar performance.

All schemes discussed in this paper are explicit. When using their numerical
flux-functions in an implicit configuration, which may be desirable in approaching a
steady state, the above recommendations do not automatically carry over. As noted
by Engquist and Osher [4], the nonsmooth dependence of F(uL, UR) on its arguments
in the case (iii) of a transonic shock, that is: F(uL, UR) C), invalidates the linear-
ization needed to invert the implicit difference equations. In contrast, FEo(U, UR) C1)

in all cases (i), (ii) and (iii). Whether this makes a difference in practice remains to
be shown.
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MULTIPLE STEADY STATES FOR 1-D TRANSONIC FLOW

PEDRO EMBID," JONATHAN GOODMAN AND ANDREW MAJDA

Abstract. The existence of multiple steady states with the same farfield behavior is discussed for simple
1-D transonic model problems. These multiple solutions all have only entropy satisfying compressive steady
shock waves. Only some of these solutions are stable in the time-dependent system and are accessible
through physical time-dependent perturbations. This is demonstrated by some elementary explicit solutions
in a scalar model problem. However, for a large class of initial data and large C.F.L. numbers, numerical
experiments show that implicit schemes can converge to the physically unstable steady states and this
phenomenon is analysed. The scalar model is also discussed as a very simple numerical test problem for
implicit schemes with rich structure in both the steady state and time-dependent regimes.

Key words, transonic flow, multiple steady state, false stability

Introduction. One of the main objectives in 2-D transonic flow calculations is to
compute the steady flow past a given airfoil at a fixed angle of attack, cz, and with a
prescribed subsonic free stream Mach number, Moo. At the present time, most calcula-
tions of this type are performed within the framework of the potential flow or Euler
equations with highly nonuniform stretched grids to concentrate many grid points
near the airfoil. Most methods developed thus far for these steady state calculations
are implicit so that no C.F.L. restrictions on the time steps are imposed for stability
(see [1]). Implicit methods are used for two reasons: (1) large time steps can be used
when the solution is near steady state and therefore slowly varying in time; (2) with
the radically stretched grids, explicit schemes would require extremely small time
steps to maintain stability.

We digress for the moment and consider the simplest nonlinear time-dependent
mathematical model, the scalar autonomous O.D.E.

(1.1) dy
,/-7 =/(y )’ y (o) yo,

where f(y) is a given smooth function and y0 is some prescribed constant initial value.
The steady state solutions of (1.1) are the zeros of f(y), i.e., the points yj,/" 1, , N,
where

(1.2) f(yj) O.

Regarding (1.1) as a simple model for a physical process, from a practical viewpoint,
one is interested not only in finding the steady state solutions but also the "physically
realizable" stable steady states. For simplicity, we assume that all the zeros of/(y)
are simple, i.e., f’(yi)# 0. By linearizing (1.1) about y, we see that these physically
accessible stable steady states are the zeros, yi, where

(1.3) f’(yi) < 0
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and for yo close to yj, the solution of (1.1) adjusts rapidly to yj and satisfies the estimate,

(1.4) ly (t)- y;I < c ee’(")’ly0- y;I

for some constant c >0. For those zeros y with f’(y) >0, the solution to (1.1) with
y0 close to y. diverges from y at an exponential rate and these steady states for (1.1)
are physically inaccessible and unstable.

Next, analogous to the computational transonic program sketched in the first
paragraph, we consider the numerical problem of finding a steady state solution of
(1.1). Typically, one would use Newton’s method,

(1.5) yN+I yN- (f,(yn))-lf(yn), y0 y0,

and we are guaranteed that if y0 is close to yi then

(1.6) The algorithm in (1.5) always converges rapidly to y. whether y is a physically
stable or unstable steady state.

The use of Newton’s method for computing the steady states of the model in (1.1) is
analogous to the use of large time step implicit methods for computing transonic
steady states--physical time accuracy is completely ignored. In fact, implicit methods
often approach Newton’s method as At (see [16]). With the behavior in (1.6) in
a trivial model problem, the following two questions arise"

(1.7)

(1) Given a fixed airfoil, angle of attack, a, and free stream Mach number,
M, can multiple steady states occur for the potential flow or Euler
equations?

(2) If there are multiple steady states, can numerical methods converge to the
physically unstable steady solutions?

Given the fact that both (1) and (2) occur in a context, it is important either to check
the stability of the computed steady state by a posteriori methods or to develop a
convergence criterion guaranteeing convergence to a physically stable steady state.

Recently, Jameson and Steinhoff [9], [10] have given very convincing numerical
evidence that the phenomenon of (1.7)(1) occurs for the potential flow equations by
producing three distinct solutions for symmetric Joukowski profiles with zero angle
of attack for a range of free stream Mach numbers. To our knowledge, no calculations
addressing the issue of (1.7)(2) have been performed, but we strongly suspect, by
analogy with much simpler bifurcation problems, that all three solutions are not
simultaneously stablenin fact, the symmetric solution is likely to lose its stability in
a range of M. However, all three have been numerically computed through a variety
of implicit and multigrid methods ([9]) so there is a real possibility that the phenomenon
in (2) of (1.7) also occurs in these calculations.

Our main objective here is a detailed investigation of the two questions raised
in (1.7) in simpler 1-D transonic model problems. Computing solutions of the averaged
1-D duct equations (see (2.1)-(2.3)) has become a popular 1-D test problem [8], [11]
for multidimensional numerical shock algorithms because one can construct explicit
steady shock wave solutions with considerable smooth structure (and often resembling
the pressure profiles near airfoils). In 2, we study steady solutions of the 1-D duct
equations where the area variation is confined to 0 -<_ x =< 1. We fix a constant supersonic
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state, (po, mo, Eo), for x _-< 0 and a subsonic state, (pl, ml, El), for x > 0. (This is the
analogue in the duct case of prescribing Mo and a in the 2-D transonic case.) We
ask the general question which is the analogue of (1.7)(1).

Are there multiple steady states with entropy satisfying steady shock waves
(1.8) with the prescribed values (po, mo, Eo) and (pl, m,E1) for x_-<0 and x_->l

respectively?

In 2, we give a complete answer to this. question and give a simple recipe for
constructing all the multiple steady states with a single standing shock wave in a given
duct geometry with the above prescribed exit and entry values. In particular, for the
example of a converging-diverging nozzle, there are often two distinct steady states
with fixed transonic exit and entry conditions. One of these solutions has an "entropy
satisfying" compressive steady shock in the expanding portion of the duct while the
second solution has an "entropy satisfying" compressive steady shock in the contracting
portion of the duct (see Fig. 2.1) for the isentropic case). The first of these solutions
is well known and is expected to be stable. Since steady compressive shocks are never
observed in the contracting portion of a duct, this second solution is expected to be
unstable as regards perturbations with time-dependent solutions of the duct equations
even though it is a bonafide steady state weak solution with a compressive, "entropy
satisfying" shock. In fact, it is possible to construct general duct geometries with
arbitrarily many multiple steady states of this type. Our analysis in 2 is motivated
by earlier work of Liu ([6]) on a related problem although our approach has the
advantages of being simpler, explicit and "in the large" for the problems we study
here. In [6], Liu considers "noninteracting" time-dependent solutions of the duct
equations and finds, for example, three time-dependent "noninteracting" wave pat-
terns in a contracting duct with the same asymptotic values at -0.

In 3a, we describe an explicit scalar equation model and demonstrate very
similar multiple steady state structure as we have described above for the 1-D duct
equationssee Fig. 3a). (In fact, the reader interested in the ideas of our construction
in 2 without the algebraic details should first look at the analogous and much simpler
construction in 3.) This model problem has the form

(1.9) Ut-["(1/2UE)x =a(x)u, u(x, 0) u0(x),
where a(x) is nonzero only for 0-<x-< 1. In 3b, we determine some interesting
explicit time-dependent solutions of (1.9) with structure and moving shock waves and
use these exact solutions to develop a rigorous but elementary nonlinear stability
analysis of the multiple steady state solutions of (1.9)rain fact, only the stability
analysis for the nonlinear O.D.E. already discussed in (1.1)-(1.4) needs to be applied
in our construction. Recently, Liu ([7]) has succeeded in rigorously proving the
instability of a steady shock in a contracting duct for the much more difficult full
system of 1-D duct equations by utilizing his modification of the Glimm scheme and
wave interaction estimates. In 4, we discuss a variety of numerical experiments with
the model equation in (1.9). We have used two implicit upwind schemes, implicit
modifications with a (p) 0 of the two explicit upwind schemes of Engquist and Osher
[3], [4] and the explicit MacCormack method in these calculations. Through numerical
experiments, we demonstrate that there is a large range of C.F.L. numbers and a
large set of initial data where the implicit schemes converge to an unstable multiple
steady state. We call these "falsely stable" steady states since they are stable for the
numerical method but not for the time-dependent physical model problem. Thus, the
difficulty addressed in question (1.7)(2) already occurs for this very simple transonic
model problem in (1.9).
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We also advocate (1.9) as a simple model problem with rich spatial structure in
shock solutions besides possessing multiple steady states. For "transonic" exit and
entry conditions, the advantage of the model in (1.9) is that all variables have prescribed
physical boundary conditions and the effects of additional numerical boundary condi-
tions on the stability and the quality of computed solutions with the tested numerical
methods at large C.F.L. numbers is relatively unimportant. We also recommend the
use of the explicit solutions constructed in 3b for time-dependent test calculations
(see 4). Yee, Beam and Warming ([11]) have demonstrated the striking effect of
numerical boundary conditions on the stability and quality of calculations for implicit
methods at large C.F.L. numbers for the 1-D duct equations where additional purely
numerical boundary conditions are needed at the subsonic wall. Although we have
not pursued this here, it also seems interesting to test the variety of 2-D multigrid
methods for transonic flow and also the steady shock tracking method of [8] on
solutions of the simple model problem in (1.9). Also, we have intentionally avoided
any intrinsically 1-D or scalar methods for computing (1.9) such as via singular
perturbation. Many additional details and results of computations are presented in
our report [15].

2. Multiple steady transonic patterns for the duct flow. The equations that model
the isentropic flow of a gas through a duct of variable area are

A’(x)
(2.1) p,+mx=-m,

A(x)

(- ) A’(x) m2
(2.2) m,+ +P x= A(x) p

(The full gas dynamic equations are discussed in [15].)
Where p is the density, m is the mass flux density, p is the pressure and A(x) is

the area of the cross section of the duct at the point x. Also Po > O, Poo > 0 and p and
pip tend to 0 with p. As a consequence the speed of sound c / is a well-defined
quantity. Finally we assume A(x) is constant for x <= 0 and 1 >-x and we consider only
solutions of (2.1)-(2.2) for which m > 0.

We are interested in finding time-independent solutions of (2.1)-(2.2) that take
a certain fixed value upstream (x =<0) and another fixed value downstream (x => 1),
the value upstream being supersonic (u > c) and the one downstream subsonic (u < c).
These "steady transonic patterns" will exhibit in general a finite number of standing
shocks, and there the Rankine-Hugoniot jump condition

(2.3) m. mR,

2
mR(2.4) m___= + PL --+PR

and the entropy condition

(2.5) mL mR

OL PR

must be satisfied. Here the subscripts L and R indicate that the limiting values of the
parameter from the left and the right along the shock are considered.

We are especially interested in steady transonic patterns exhibiting only one
standing shock. In general these patterns are not uniquely determined by the values
upstream and downstream and the idea behind the construction of these patterns is
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the following. Let Wo= (Oo, mo) and wl =(01, ml) be the values fixed upstream and
downstream respectively. Suppressing the time dependence in (2.1)-(2.3) we get a
system of ordinary differential equations. Solve that system for x _->0 with initial
condition w0 at x 0 and call the solution wt.(x) "the branch emerging from the left".
Similarly, solve the system for x-< 1 with initial condition w at x 1 and call the
solution WR (X) "the branch emerging from the right". In 2a we will give sufficient
conditions under which wt.(x) can be defined for all x->0 and WR(X) for all x _-< 1.
Finally, let xl be any point in (0, 1) for which wL(xl), WR(Xl) satisfy (2.3)-(2.5); then

w(x)={w(x), x<x,
w,(x), x >x,

defines a steady transonic pattern with values w0 for x <_-0 and wl for x => 1 and with
only one standing shock. Moreover, it is clear that all such patterns can be obtained
in this way. Thus, everything reduces to the problem build the left and right branches
and to find all the possible points for which a jump from the left branch to the right
one can be accomplished.

2a. Construction of steady smooth solutions. If we look for time-independent
solutions of the system (2.1)-(2.2), it reduces to the system

A’(x)(2.1’) mx=-m,A(x)

(- ) A’(x) mZ
(2.2’) +P x= a(x) p

After some straightforward algebraic manipulations we get the system

mA constant moA0,

2

(2.2") 20 + h (0) constant,

where (po, m0)= Wo is given at x =0 and h(p) is an antiderivative of Po(P)/P.
Equation (2.1") says that the flux of mass is the same across any cross section of

the duct. Equation (2.2") is Bernoulli’s law, it says that the total enthalpy is constant
along the duct.

The quantity m (x) can be computed from (2.1"). However, in order to compute
p (x) we must study in the phase plane (p, m) the curve

2

(2.6)
2p 2 + h (p) B constant.

We call this curve the "Bernoulli curve" and the constant B the "Bernoulli constant".
From (2.6) we get m =x/2p2(B-h(p)). It is easy to see that m is a concave

function of p and attains its maximum value m* at a unique point p*. Moreover
(p*, m.) is the unique point of intersection (besides (0, 0)) of the Bernoulli curve and
the "sonic line" m pc(p). The Bernoulli curve is divided into two branches, one
contained in the ’supersonic region m >pc (p) and the other contained in the subsonic
region m < pc (p).
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Being a concave function of p, the Bernoulli curve intersects the line m m (x)
at the most at two points, one of them in the supersonic region and the other in the
subsonic region. This provides two possible choices for p (x) and the choice will depend
upon the region where the initial data is; for example, for the left branch we will
choose the supersonic point and for the right branch the subsonic one.

So far we have seen how to construct a smooth solution.
As a final remark, this construction of smooth solutions is possible as long as the

Bernoulli curve intersects the line rn re(x), that is, if re(x)<-m*, or equivalently,
moAo <- m,A(x) for all x. Moreover, if re(x)<m* then the solution always remains
either in the supersonic region or in the subsonic one.

In the construction of the transonic patterns the next step is the determination
of all the possible locations for the standing shock. We will do this in 2b for the
isentropic approximation of two reasons" first, because the two-dimensional graphical
interpretation for the isentropic case is revealing; and second, because as long as
the solution is smooth the entropy remains constant and when there is a jump the
increase of entropy is only of the third order in the shock strength. All our constructions
will generalize for the nonisentropic case but the graphical interpretation is lost (see

2b. Steady transonic patterns for the isentropic model. We recall that the
Rankine-Hugoniot jump conditions for (2.1), (2.2) are given in (2.3), (2.4) and the
entropy condition is given in (2.5).

The solutions we are looking for must take the value (po, too) for x-<_0 and
(p, m 1) for x _-> 1, (po, too) lies in the supersonic region and (p, m) lies in the subsonic
one. Consider the Bernoulli curves going through (po, too) and (p, m) with corres-
ponding Bernoulli constants Bo m/2po +h(po) and B= mZ/2p2 +h(p), and let
(mo). and (m)* be their respective maximum values when they are regarded as
functions of p. If the left branch and the right branch are such that m.(x)< (mo). and
mn (x)< (m). for all x, then as we have already seen in 2a the left branch will take
its values in the supersonic region and the right branch will take them in the subsonic
one, i.e. m(x)/p(x)-ct.(x) > mn(x)/pn(x)-cn(x) for all x and the entropy condition
(2.5) will be automatically satisfied.

Next we are going to study the jump conditions (2.3), (2.4). We want to show
that for any given supersonic state (p, m) there is a unique subsonic state (taR, mR)
such that (2.3), (2.4) hold.

Consider the curve m2/o +p(p)=P, where P mZ/p +P(O). This defines m as
a function of O and it can be easily shown that this function is concave and that its
unique maximum is in the sonic line m pc(p). Since (me, pc) belongs to the curve
and it is not the maximum (because it is in the supersonic region) then by concavity
of the curve m2/o +p(p)=P it will intersect the line m m at two points: one is
(O, me) and the other, (O, ran) is in the subsonic region (Fig. 2.1). Clearly these
two points satisfy (2.3), (2.4) and (2.5).

As we saw in 2a, (pc(x), mc(x)) belongs to the branch of Bernoulli curve
m2/2Oz+ h(o)=B0 that lies in the supersonic region and since this curve is concave
this branch can be parametrized by m. If we associate to each point of this branch its
unique shock state we get a "curve of shocks" (p, m) that is also parametrized by
m. This curve contains all the shock states associated with the left branch (Pc(x), m(x)),
i.e., all the points where the jump can occur. The main property of this curve of
shocks is given in the following proposition which provides the key to the multiple
steady state construction.
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PROPOSITION 2.1. The Bernoulli constantB (p, m) m2/2p 2 + h (p increases with
m along the curve of shocks.

The proof, via straightforward calculation, is given in [15].
Now we are able to carry out the construction of the steady transonic patterns.

For m (x) the construction is straightforward: for smooth flows we know that mA is
constant and at any standing shock mL mR, but since A (x) is smooth it follows that
mA is constant also across a standing shock. Therefore m(x)=mL(x)=mR(x)
moA(O)/A(x) and m(x) does not exhibit jumps along the duct. Finally let us remark
that mo and m cannot be arbitrarily prescribed since m0A (0) rn 1A (1).

The construction of p (x) is as follows: assume for the moment that Bo >B1. Since
the Bernoulli constant increases from 0 to Bo with m along the curve of shocks there
is a unique point (p, mJ) of intersection of the curve of shocks with the Bernoulli
curve B1. The associated supersonic state (p, mJ) lies on the Bernoulli curve Bo by
construction. Therefore the only way to jump from the Bernoulli curve Bo to B1 in
the (p, m) phase space is through these points. On the other hand we know that values
(pL(x),mL(x)) belong to the branch of the Bernoulli curve Bo contained in the
supersonic region and (PR (X), mR (X)) belong to the branch of the Bernoulli curve
contained in the subsonic region. Therefore if we want to jump in the x-physical space
from pt(x) to pR(X) we must find all the points xi for which m(xi) m and define

x <
0 (x)

to (z), x > x.
Finally let us remark that for Bo<B1 no construction is possible because the

maximum value attained by the Bernoulli constant on the curve of shocks associated
with Bo is Bo, but B0 </a and the curve of shocks never intersects

Summarizing:
(a) If Bo < B1, no steady transonic pattern with fixed values at x <_-0 and x _-> 1

exists.
(b) If Bo>B1, all the possible patterns are obtained by jumping from the left

branch to the right at any point xj for which m(xi)= m. Therefore the geometry of
the duct is incorporated in the last step of solving the equation rn (x.)= m.

We finish this section by showing the possible patterns appearing in the contract-
ing-expanding nozzle (de Laval nozzle) (Fig. 2.1), where two different steady solutions
of the duct equations with the same entry and exit conditions and each one exhibiting
a single standing shock are displayed (in this case the equation m(xi)= m has only
two roots).

3. A scalar model with multiple steady states. Here we consider the simple scalar
model problem,

(3.1) ut+(u) =a(x)u, u(x, 0) Uo(X),

where a (x) varies for 0 < x < 1 and vanishes for x < 0 or x > 1. Given a shock curve
(x(t), t), the Rankine-Hugoniot jump conditions for (3.1) are given by

(3.2) dx= u(x(t), t)+ u R (x(t), t)
dt 2

while the entropy condition (see [5]) requires

(3.3) uI(x(t), t) > uR(x(t), t),
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SONIC LINE

FIG. 2.1. Converging-diverging nozzle showing the two possible solutions: one with a single standing
shock at x x and the other with a single standing shock at x Xz.

where u L, L/R are the limiting values from the left and right along the shock. We have
two objectives in this section. First, we show that the simple equation in (3.1) already
exhibits analogous multiple steady state transonic profiles with fixed exit and entry
conditions. Then, we give a simple, explicit and rigorous nonlinear stability analysis
for the multiple steady states in the model problem with suitably perturbed time-
dependent solutions of (3.1).

3a. Multiple steady states for the model. We are interested in finding the steady
state solutions of (3.1) with prescribed constant valus Uo, for x -< 0, and u 1, for x => 1.
In the model, it is a simple matter to compute the left and right branches of the
smooth steady solutions of (3.1) emanating from u0 and ul since they satisfy the
O.D.E., ux a (x). In fact, we have

(3.4)
uL(x)=uo+A(x),
R

U (X)- Ul+A(x)-A1,

where A (x o a (s ds and A a (s ds. We remark that the condition

(3.5) u(x) > uR (x)

is valid for all x provided that the three constants, Uo, u 1, A satisfy

(3.6) Uo>ul-A1.
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For the remainder of this section, we assume that the condition in (3.6) is satisfied
for these constants. To find the steady state solutions in the model, we introduce the
function

(3.7) f(x)
uL(x) + uR (x) --’--Uo + Ul --A +A

2 2

If X is a root of f(x)= 0, i.e., A(x)=-(Uo / u1)/2 /A 1/2, it follows from the jump
conditions in (3.2) with dx/dt =-0 that

[ u (x), x < x,(3.8) (xu Ru (x), x>x,
is a steady solution of (3.1) and furthermore, by using (3.5) and (3.6), we see that
u (x) automatically stisfies the entropy condition in (3.3). Thus, we have the following:

Criterion [or multiple steady states. Given Uo, u 1, A 1, satisfying (3.6) the transonic
steady state solutions of (3.1) with fixed exit and entry values, Uo, u l, and a single
standing shock wave are in one to one correspondence with the distinct roots of the
function, f(x.)= 0, from (3.7) via the formula in (3.8). Thus, several distinct roots of
(3.7) imply that there are multiple steady states. In fact, we can choose a(x) to
guarantee an arbitrarily large number of multiple steady states satisfying the entropy
conditions for fixed exit and entry conditions, Uo, u 1.

We illustrate this criterion with an example which is the analogue for the model
in (3.1) of the converging-diverging nozzle discussed in 2. In the model, A(x)=

a (s) ds has the same role as the cross sectional area in the duct case. Thus, for the
analogue of the converging-diverging nozzle, A(x) has a graph as depicted in Fig.
3.1. Of course, in this case, A a<Amax and the equation, f(x)--0, has two distinct
roots in [0, 1] provided that the constants, u0, u x, A satisfy (see Fig. 3.1)

(3.9) AI<-(Uo+Ul) <Amax A1
2 2 2

To guarantee the entropy condition in (3.3), we also need to require (from (3.6))

(3.10) Uo>ul-A1.
We claim that given the constant, A 1, determined from the geometry, there are many
choices of u0, Ul satisfying (3.9) and (3.10). (For example, we set

A()_--O

FIG. 3.1. Plot of typical A(x) Io a(s) ds with analogous behavior as in contracting expanding nozzle.
xi, 1, 2 are the roots of 0 =f(x)= A(x)+(Uo+ ux-A x)/2.
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(3.11) Uo=Ul-Al+d with d> 0

so that (3.10) is automatically satisfied. For details, see [15].) See the graphs drawn
in Fig. 3.2. This is the analogous behavior to that occurring in the converging-diverging
nozzle discussed in 2.

FIG. 3.2. A typical case with two distinct steady states with the same exit conditions Uo, u with a single
entropy satisfying standing shock wave at either xl or x2, respectively, for the model with A(x) as in Fig. 3.1.

3b. Explicit nonlinear stability analysis. For the case of a converging-diverging
nozzle, it is well known that shocks in the diverging part of the duct are the only ones
experimentally observed. This implies that the duct geometry is a determining factor
in the stability of such transonic patterns. In the model problem, the analogous stability
phenomena are expressed by the:

Conjecture. Standing shock waves at locations x with a(xi)<0 (a(x)>O) are
stable (unstable) against small time-dependent perturbations of (3.1).

Our purpose here is to give an elementary rigorous nonlinear stability analysis
strongly supporting this conjecture and to build some interesting explicit time-depen-
dent solutions of (3.1) with structure. For a fixed Uo, u l, we assume that we have a
finite number of multiple steady state solutions of (3.1) determined by the formula
in (3.8), where xi are the roots,/(xi) 0, from (3.7). We observe that [’(x) a (x), thus

(3.12) f’(xi)<0(>0) if and only if a(xi)<0(>0).

We will not study general perturbations for (3.1) but instead explicitly analyse
the time-dependent behavior of solutions of (3.1) defined by initial data with the form,

L

(3.13) uO(x, a)= { UR(X), X <a,
U (X), X>c,
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where a is a parameter. These are initial data with a moving shock wave located
initially at x c--of course, for a xj, we have the steady state solutions from (3.8).
With the above initial data, we can construct the exact solution of the time-dependent
equation in (3.1) by using only a single quadrature. The idea is that uL(x), uR(x) are
both exact smooth solutions of the model equation in (3.1) so that we only need to
determine the location of the shock at later times to build the explicit solution to
(3.1). Thus, we claim that a time-dependent solution of (3.1) with the initial data from
(3.13) exists with the form,

x <x(t, ),
(3.14) u(x,t,a)= uR(x), X>X(t,a).

The shock location is determined by requiring that the Rankine-Hugoniot jump
conditions from (3.3) are satisfied across x(t,a). Thus, x(t,a) should satisfy the
autonomous nonlinear O.D.E.,

dx(t,c) UL(x(t,a))+uR(x(t,))
dt 2

=-l(x(t,)),

where f(x) was defined in (3.7). We recall that the solution of (3.15) for a xj is
determined by the quadrature formula,

(3.16) t(x, a)= [(x)"
By reversing the above steps, we see that provided (3.15) is satisfied, the function in
(3.14) defines an explicit solution of (3.1) with the initial data in (3.13). Furthermore,
since (3.6) guarantees (3.5), the entropy condition in (3.3) is automatically satisfied
for this moving shock wave. The stationary points of the autonomous O.D.E. in (3.15)
are the points, x# with f(x.)= 0 and these are precisely the locations of the steady
shocks in (3.8). Thus, we have reduced the nonlinear stability analysis for the special
data in (3.13) to that for the scalar autonomous O.D.E. discussed in the introduction.

Let’s illustrate this explicit nonlinear stability analysis for the two distinct steady
state solutions discussed at the end of 3a and depicted in Fig. 3.2 (the analogue of
the converging-diverging nozzle). Recall that at x 1, f(x 1) 0 but f’(x 1) a (x 1) > 0 and
intuitively, the corresponding steady solution from (3.8) is unstable. We have f(x)< 0
for x <xl so from (3.15) and our remarks in the introduction, if we choose the initial
shock location, a <xl, the explicit shock wave solution in (3.14) moves to the left
becoming after a finite time, T, the time-dependent steady shock with constant velocity
given by

(u+ul-a)(t_T)Uo, x <
2

u(x,t)=

(u+ul-al.)(t_T)uI-A, O>=x> 2-
for > T. On the other hand, if we choose a with x < a < x2, f(x) > 0 for x < x < x2
and from (3.15) the explicit solution from (3.14) approaches the steady state of (3.8)
with f(x2)= 0 (where f’(x2)0 a(x2)< 0) asymptotically as c. The rate of adjust-
ment of the shock location, x(a, r), to x2 can be estimated for large by

IX (Og, t)- X2l CO e a(x2)t.
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Thus, we have rapid adjustment of these perturbed shock profiles to the steady state
with shock location at x2. The same remark applies if a > x2 since f(x)< 0 for a > x2
and we have rapid adjustment to this same steady profile with shock located at x2.
Therefore, for these special initial data, we have explicitly demonstrated the conclusion
of the conjecture.

In fact, the reader can see that by appealing to the elementary stability properties
of scalar O.D.E.’s ((1.2)-(1.4)), the above arguments supporting the conjecture are
valid for general duct geometries with many multiple steady states for the model
problem. By using the quadrature formula in (3.16), one can even discuss nonlinear
stability for multiple roots xj with f(x.) 0, f’(x.) 0. We omit this additional straight-
forward analysis here.

Finally, we remark that our analysis does not rigorously prove the stability of the
shock wave located at x to all small perturbations. However, this analysis does
support the conjecture and we have rigorously demonstrated the instability of the
steady shock at xl.

4. Numerical results on the scalar model problem. In this section we describe
our numerical experiments on the scalar model problem"

(4.1)
u, + (U)x a (x )u,

Uo=u(O,t)>O,

0<x < 1,

Ul=U(1, t)<O.

We exhibit the falsely stable, but entropy satisfying, steady solutions to the difference
schemes and show that these nonphysical solutions have a sizeable domain of attrac-
tion under the numerical relaxation process. We illustrate the use of (4.1) as a model
problem for numerical computations by solving (4.1) in cases both steady and unsteady,
where explicit solutions are known (see 3).

The problem (4.1) differs from (3.1) only by the imposition of boundary conditions
at x 0 and x 1. However, all solutions in 2 were constant for x > 1 or x < 0 so
they are also solutions of (4.1). Our numerical test problem (4.10) does not have a’(x)
going smoothly to zero at x 0 or x 1. This could be a source of numerical problems
if the numerical boundary treatment involved extrapolating u or a outside the
computational domain 0-<x -< 1, where u and a are smooth. We have not used such
boundary schemes.

A difference approximation to the time-dependent problem (4.1) can be used
either to compute the time evolution of the system or as a relaxation method for
solving the steady state difference equations. In the second case we take for efficiency
the largest time steps for which the method is stable. However, if the time steps are
too large to resolve the time evolution of (4.1) (see Fig. 4.5), then the stability
properties of a steady state solution may change. A steady solution to (4.1) which
satisfies the entropy condition but is unstable to small perturbations in physical time
may be a stable steady solution to the numerical time step iteration. We call this
phenonemon false stability and demonstrate that it can occur for large time step
implicit methods with Courant number as small as 23. As mentioned in the introduc-
tion, we believe that analogous numerical phenomena are occurring in the multiple
steady state solutions to the steady two-dimensional transonic potential equations in
various regimes of free stream Mach number, air foil shape and angle of attack as
reported in [9] and [10]. By contrast [13] reports spurious multiple solutions to the
nonlinear difference equations which are not related to multiple solutions of a differen-
tial equation.
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We believe that (4.1) is a useful model problem because it is simple and yet has
solutions with enough interesting structure to be a genuine test of a numerical scheme
(see in particular our remarks on the first order upwind scheme). Like the inviscid
Burgers equations, (4.1) has many explicit analytical solutions both steady and
unsteady. With boundary conditions satisfying the inequalities in (4.1) there are only
inflow boundaries so no special boundary conditions are needed. On the other hand,
steady solutions to (4.1) are not piecewise constant and may even have smooth sonic
point transitions, depending on the choice of a (x), u0 and u 1.

In the rest of this section we first describe three numerical methods we have used,
a first and second order accurate upwind scheme and the explicit MacCormack scheme.
We present steady solutions of the difference schemes and compare them with the
exact solution computed from (3.16) using higher order Gauss quadrature; then we
present the falsely stable steady states and show how the domain of attraction of a
falsely stable solution depends on the Courant number. Next we examine the time
accuracy of the schemes for the full time-dependent problem (4.1) in cases where
exact solutions are given in 3. Finally we analyze the large boundary errors of the
upwind schemes and show that they are not due to improper boundary treatment but
to the exceptional low accuracy of the first order scheme near a sonic point. This
leads to a simple modification ot the first order scheme, analogous to the box scheme,
which eliminates the sonic point problem and gives second order accurate steady
profiles.

I. The methods.
a) The first order upwind scheme. We use the form of upwind differencing

proposed by Engquist and Osher ([3]) together with backward implicit Euler time
differencing to get

(4.2) u(x, + k) u(x, t)--DU[u2(x, + k)]+ ka(x)u(x, + k),

where D is their upwind scheme with switching through zero. Since this is a three
point scheme it could be used at every interior grid point. With all inflow boundaries
we simply gave the specified boundary values at the boundary grid points.

The implicit equations (4.2) are a coupled system of nonlinear equations with a
tridiagonal Jacobian matrix J(u (., + k), A, k). Rather than solving the system exactly
at each time step we took only one Newton iteration per time step using u(., t) as
the initial guess. This linearized implicit scheme takes the form

(4.3) J(u(. t)A k).(u(, t+k)-u(, t))= A u 2--D (.,t)+kau(.,t).

In our experience the linear system Ju 0 can always be solved without pivoting using
a bidiagonal LU factorization of J. This makes (4.3) an efficient method. As was
pointed out by Engquist and Osher, one advantage of (4.2) is that the resulting
Jacobian J is a continuous function of u so that Newton’s method will converge
quadratically. Godunov’s version of the upwind scheme does not have this property.

b) The second order upwind scheme. The second order three point one-sided
difference formula is

(4.4) -x= f(x +2h)+2f(x +h)- f(x)

1 ).-O++/(x)+O(h

+O(h 2)
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As in the first order method we retain conservation form by using (D-- is the backward
analogue of D++)

1 2) 1
D,(4.5) (u2) --[D++((ulu +D--(ch(ulu2)]=- (u21,

(with O(u)= 1/2(sgn u + 1), b(u)= 10(u). Since this is a five point scheme it could not
be used at the interior grid points adjacent to boundary points. At these points we
used the first order upwind difference. Other second order one-sided schemes with
more complex switches are developed in [4].

To achieve large Courant numbers we want a linearized implicit method like
(4.3) but we want to avoid factoring the pentadiagonal J’ resulting from (4.5). Following
a suggestion of R. Warming we tried using the matrix J from (4.3),

A-DUUu2(" t)+kau(, t)J(u(’,t),,,k)" (u(’,t+k)-u(’,t))=-
2

This gave an improved but still limited stability bound on A. We finally achieved a
very large , bound by using an ad.hoc tridiagonal matrix M(c). If J" is the tridiagonal
restriction of J’ gotten from J’ by simply setting the off-diagonal elements to zero, then

(4.6) M(c J"(u) + (1 a)J(u),

I
UUbl 2(4.7) M()(u (., t + k) u (., t)) --D ., t) + kau (. t)

was stable with , 600, c 0.45. As with the first order scheme, pivoting was never
needed.

Both (4.3) and (4.7) are in "A form" (see Beam and Warming [12]) so that the
steady solution, if it exists, is independent of A.

c) The explicit MacCormack scheme. With v (x, + k) defined by

(4.8) v (x, + k u (x, t) --O 2(x, t) + ka (x )u (x, t)

we maintain second order accuracy and get a completely explicit method

(4.9)

u (x, + k) u (x, t) -[D+vZ(x, + k) +D-uZ(x, t)]

,a(x)+---[u (x, t) + v (x, + k)].

This is MacCormack’s explicit method modified slightly to take into account the
additional term a(x)u in (4.1). For linear constant coefficient problems (4.8), (4.9) is
stable when k is small enough and we had no problems computing with , 0.5. At
the right boundary we used (4.8) to predict v(1, +k) rather than using the known
boundary value u 1. The local third order truncation error is preserved in this way.

In the above we gave A values which were the ratio ot the time step size k to
the space step h. The Courant number is this ratio nondimensionalized by multiplying
by the fastest wave speed in the problem. In our test problem (4.10) this is since
the largest u value is u 1 at x 0. Thus, we ran the explicit MacCormack scheme
at Courant number 1/4 and scheme (4.7) at Courant number 300.
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II. Numerical results and discussion. For a specific test problem we used (4.1) with

(4.10) a(x)=6x-3, uo=l, ul=-0.1.

Using the analysis from 3 we see that there are two entropy satisfying steady solutions.
One is stable in time with a standing shock at xl= 0.18 and one has an unstable
standing shock at x2 0.82. Here, unlike the example discussed in 3, x is stable
and x2 is unstable since the sign of a is reversed. In all our runs we took initial data
to follow the solution branches u (x) ut(x) for x <= Xo u (x) Ur(X) for x > Xo (see (3.4)).
This guarantees that the exact solution to the time-dependent problem always follows
these solution branches with a time-dependent jump location x(t). The right boundary
value u =-0.1 is close to the sonic point u 0 and this causes problems for the
upwind schemes.

a) Accuracy of numerical approximations to the time stable steady solution. We
computed the steady profiles by taking the initial jump x0 x and marching in time
until the convergence criterion,

sup [u (x, + k)- u (x, t)l Cconv,

was satisfied. We found little difference in the solution when Cconv ranged between
10-5 and 10-1 or when the Courant number ranged from 0.1 to 0.75 to 500 for the
explicit and implicit schemes, respectively.

For the first order upwind scheme (4.3) the accuracy is low (see Fig. 4.1). This
should be contrasted with the high accuracy of the scheme for steady solutions of
Burgers’ equation (Engquist and Osher [9]) which we regard as somewhat accidental.
However, the scheme being monotone, there are no numerical oscillations around
the shock.

IMPLICIT ENGQUIST-OSHER UPWIND SCHEME

1.0

0.5

+ Corn

++,++++
-1,.0

0 0.2 0.4 0.t5 0.8
X

FIG. 4.1. Computer stable steady profile, implicit Engquist-Osher scheme, 40 points.
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The second order upwind scheme (4.7) is not monotone so we should not be
surprised that the shock profile is not monotone. One point of overshoot on either
side of the shock is characteristic of the method (see Fig. 4.2). The accuracy is much
better than the first order scheme except for the large error at the right boundary
caused by the proximity of the boundary value u =-0.1 to the sonic point u 0. We
give a discussion and remedy at the end of the section.

SECOND ORDER UPWIND SCHEME

1.0

0.5

+ Computed solution

I

0 0.2 0.4 0.6 0.8
x

FIG. 4.2. Computed stable steady profile, second order upwind scheme 40 points.

The explicit MacCormack scheme is also accurate with more than 10 points (see
Fig. 4.3), but there may be oscillations around the shock. We note that this is a
particularly severe test of the scheme since we used no extra artificial damping.

b) Convergence to falsely stable steady solutions. We took initial data with a jump
at

xo dxl + (1-d)x2.

We report Courant numbers, c, with c ,/2, since the fastest wave speed is 1/2 which
occurs at the right boundary where u 1. We found, for example, that using the
second order upwind scheme (4.7) with a 0.45, c 300 and 0 =< d =< 0.3 the numerical
solution would converge to the unstable steady solution (see Fig. 4.4) with a shock
at x2. These falsely stable solutions are accurate approximations to exact entropy
satisfying but physically unstable solutions of (4.1).

For the first order scheme (4.3) we did systematic experiments with false stability.
When the initial data was not far from the unstable solution we found three ranges
of Courant number. For c < ci the numerical solution would converge to the physically
stable solution. For ci < c < cf the time integration became unstable. See Fig. 4.5 for
signs of the onset of this instability. For c > cf we got convergence to the physically
unstable steady state. Table 1 gives experimental values for c and cf as functions of d.
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EXPLICIT MAC CORMACK SCHEME

1.0

0.5

0.0

-1.0

0 0.2 0.4 0.6 0.8
X

FIG. 4.3. Computed stable steady profile, MacCormack scheme, 40 points.

TABLE

d 0 0.1 0.2 0.3 0.35 0.4

ci 3.1 3.1 3.7 4.4 6.1 12

22.5 23 33 60 143 *

* Could not get convergence to the unstable steady state.

c) Accuracy of time-dependent solutions. With an initial shock at Xo 0.7 (close
to the unstable standing shock location) we computed solutions of (4.1) with time
steps small enough to resolve the time evolution. First we report some results of
time-dependent calculations given in detail in [15]. With 20 points and Courant
number c =z we observed that the upwind scheme (4.3) had roughly the correct
time-dependent shock position but, as for the steady profiles, low overall accuracy.
Engquist and Osher report [4] that for Burgers’ equation moving shocks are more
smeared than standing shocks. Here we did not observe any extra smearing in the
moving shocks. The smearing is less than that of a typical monotone first order scheme.
In the same situation (20 points, c 1/4) the explicit MacCormack scheme did rather
poorly with large oscillations on one side of the shock. These oscillations disappeared
as the solution approached the steady state. We repeat that this is a particularly severe
test of MacCormack’s scheme since we added no extra artificial dissipation.

In Figs 4.5, 4.6, 4.7 we show the upwind scheme with c 3 and 40 points. This
value of c is near to the onset of the instability reported in Table 1. The instability
is localized around the shock front since the scheme is stable for smooth solutions.

d) Upwind differencing at a sonic point. As a demonstration that the error at the
right endpoint is due to proximity to a sonic point, and not due to the numerical
boundary for upwind schemes, we computed the profiles for 0-<x <-0.9 so that the
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SECOND ORDER UPWIND SCHEME

1.0

0.5

0.0

-1.0
_l

0 0.2 0,4 0.6 0,8
X

FG. 4.4. Computed falsely stable steady profile, second order upwind scheme, 40 points.

IMPLICIT ENGQUIST-OSHER UPWIND SCHEME

;.o
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’"
t.O0

+ Compu;ed solu;;on
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-0.5 //

0 0.2 0.4 0.6 0.8
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FIG. 4.5. Time-dependentcomputations, implicitEngquist-Osherscheme, Courantnumber 3.0, 40 points.
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IMPLICIT ENGQUIST-OSHER UPWIND SCHEME
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0 0.2 0.4 0.6 0.8
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FIG. 4.6. Time-dependentcomputations, implicitEngquist-Osher scheme, Courant number 3.0, 40 points.

IMPLICIT ENGQUIST-OSHER UPWIND SCHEME
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0 0.2 0.4 0.6 0.8
X

FIG. 4.7. Time-dependentcomputations, implicitEngquist-Osher scheme, Courantnumber 3.0, 40 points.
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right boundary value would be far from the sonic point. Figs. 4.8, 4.9 show that the
large boundary errors disappeared in this calculation. In [15], we give a more elaborate
discussion of this error, another remedy and also many other computational results.

IMPLICIT ENGQUIST-OSHER UPWIND SCHEME

1.0

0.5

0.0

-1.0

+ Compu;ed sotut;on

1,1,1
0.2 0.4 0.6 0.8

X
FIG. 4.8. Computed steady profile with nonsonic boundary conditions, implicit Engquist-Osher scheme,

40 points.
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D 0.0

-1.0

SECOND ORDER UPWIND SCHEME

+ Computed solution

+

0 0.2 0.4 0.6 0.8
X

points.
FIG. 4.9. Computed steady profile with nonsonic boundary condition, second order upwind scheme, 40
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ADDITION OF POINTS TO GAUSS-LAGUERRE
QUADRATURE FORMULAS*

D. K. KAHANER,+ J. WALDVOGEL: AND L. W. FULLERTON

Abstract. The Gauss-Laguerre quadrature formula is defined by

" >’>If= e-Xf(x) dx ai ,,.i ),
i=1

(") and I’)where the numbers a are weights and nodes. A common method of estimating the error o
this rule is to evaluate the quadrature rule or two dierent values of n and to then compare the difference
in the answers. Unfortunately, none o the nodes are in common for the two different quadrature rules,
and so the function must be evaluated at each separate node.

We investigate in this paper the addition o points to the Gauss-Laguerre rule such that the new points
are real, lie in the interval of integration, and the associated weights are positive. Such rules enable one
to estimate economically the error of quadrature, because the unction values at the Gauss-Laguerre
abscissae are reused. The weights and nodes for some suitable low-order formulae are given in Table 2.

Key words, automatic quadrature, adaptive quadrature, extrapolation

1. Introduction. Many practical applications require the evaluation of integrals
of the form

(1.1) If= e-Xf(x)dx.

When f(x) is a well-behaved function, the best known method for estimating this
integral is by the use of Laguerre-Gauss quadrature [1]: we approximate If by the sum

(n f(l!n(1.2) Q,,f= a, ,,, )=If.
i=1

") sl") called weights and nodes, are determined by the requirementsThe numbers a
that Q,f If whenever f is a polynomial of degree 2n 1. These nodes and weights
have been extensively tabulated [2], or may be computed directly [7]. For many
functions, Q,f provides a good estimate of If, but for practical purposes this number
by itself is not sufficient because it is not accompanied by an error estimate. A common
approach is to compute Q,f for two different values of n and utilize the difference
or something derived therefrom to estimate the error. Unfortunately, the set of nodes
{")} is different for each n; there are no points in common. In this paper we provide
new formulas of the type

(1.3) K,.kf ("’) (")ai f(i )+ 2 Bn’k)" (n,k)
Ztxi )=If.

i=1 i=1

We call K,.f an extended Gauss-Kronrod quadrature rule. These formulas make
maximum use of old function values [(")) but augment them with k new evaluations

(n,k)
txi ). When no confusion can result we drop the superscripts. In analogy with (1.2)

the new weights and nodes Ai, Bi, xi in (1.3) are determined by the requirement that
K,.f If whenever f is a polynomial of degree 2k + n 1.
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In 2 and 3 we describe the technique which has been used to compute the
nodes and weights. (As will be seen, this technique is perfectly general although we
have only applied it in detail to the Laguerre case.) Henceforth when explicit integrals
are required we use the inner product notation (f, g) to denote

(1.4) Ifg (f, g)= I w(x)f(x)g(x) dx

for nonnegative, integrable w(x). Section 4 illustrates the new Laguerre weights and
nodes for various n and k, and provides some examples. A more complete tabulation
is given in [8]. Section 5 gives, informally, more details about the numerical accuracy
and stability of the techniques we utilized to obtain the new formulas.

Formula (1.3) was first considered in [3] for integration on a finite interval and
with k =n +1. If k_<-n it is shown in [6, Lemma 1] for [-1, 1], w(x)= 1 that the
formulas do not exist. This result generalizes easily for any w(x)> 0. For later work
and more theoretical background see 1-4] and [5]. In the case of Gaussian formulas it
is very well known that the nodes ’i are on the integration interval and the weights
ci are always positive. To be practical the new formulas (1.3) must have similar
properties, e.g., A > 0, Bi > 0, xj 0 (in the Laguerre case). Unfortunately for certain
values of n and k one or more of these inequalities fails (see Table 1), and there is
yet no successful theory to predict this failure in advance with any generality. Thus,
there are several combinations of n and k (but not all combinations) from which it
is possible to select a formula. For estimating errors in the Gauss formulas, the
k n + 1 formula is most natural. In those cases where the latter does not exist the
smallest k > n + 1 takes its place. We include for consideration some larger values of
k because such formulas may be of independent interest.

2. Computing quadrature nodes. Let Lj(x) denote the orthogonal polynomial of
degree/" with respect to the inner product (1.4)

(2.1) Li(x)= I-I (x-’)).
i=1

We are considering a formula of type (1.3) with k additional nodes, and so we define

k

(2.2) Ek (X) 1-I (x xi), k > n
/=1

and

(2.3) P,,,k(X) =L,,(X)Ek(X).

A characterization of the numbers xi, which is necessary for (1.3) to be exact for
polynomials of degree 2k + n 1 is [6]

(P,,k, Xi) O, O <=j < k.

Ek (X) is thus orthogonal, with respect to the modified weight function w (x)L, (x), to
lower degree polynomials. Our approach to finding the points x is to construct P,,,k
and find its zeros explicitly. Since the zeros of L,, (x) are well known, it is easy to check
the accuracy of the zero finding by seeing how well it reproduces the known zeros
As we will see, in those cases when (2.3) has nicely spaced zeros, the numbers x tend
to interlace with s. Since the zero finding procedure does not play favorites, both sets
are computed to comparable accuracy.
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Expanding P,.k (x) in terms of {Li} we have

n+k

(2.4) P,,,k (x Y a(x ),
1=0

By the orthogonality of Ek (x)

(2.5) (Ek Lj, L,) 0 ai,

SO

Ogn +k 1.

n+k

(2.6) Pn.k(X) , ot’-.i(X), Otn+k =-- 1.
]=k

By the definition (2.3) of P.k, the right-hand side of (2.6) has L(x) as a factor, or

t-0,1,...,n-1, /_-->0,

mod L,.

mod L..

L.*_ L,,_, L.* O.

Li/ (x ai)Li +bi_1,

L+I (x ai)L + b.LL1 mod L,.

Ln+l bnLn-1.

equivalently

k+n

(2.7) E a. 0

This result suggests the following definition

(2.8) L’ := Li
Obviously

(2.9) Lo*=Lo, L*=L, ...,
As the Li’s satisfy a 3-term recursion

(2.10)

so do the Lf
(2.11)

For example,

(2.12)

Similarly

L,,+I (x -a,)L, +b,,L,,-x,

Ln+2 Ln-lbn (an-1 a,,+ 1) b,,b,-aL,,-2.

In general we write

n--1

(2.13) L
The numbers ai, can be computed by a recursion"

ai. 6i., j, < n,

(2.14) O/+l,t

Oti,- Oti, O.

(In fact in the Laguerre case, as the a,’s and b,’s are rational, these numbers can be
Ln+l n+2computed in exact rational form.) We also note that each of * L* L*,

contains one additional term. Because (2.7) is equivalent to

(2.15) E aL’ 0, a,+k 1,
i=k
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(2.16)

substituting (2.13) into (2.15) leads to the system of equations

".

Olk,n-2 0lk + l,n-2 Olk +n,n-2 k -+1.[..O/,n-1 Ok+l,n-1 O/+n n-1..]

By using the reduced matrix composed of the first n columns, we see that (2.16)
becomes a system of n equations for c,..., cry/,_1. From the remark above (2.15)
this matrix is lower cross triangular (c,,s 0, s < n -t- 1, 0-< s, < n) if k n + 1 (the
"traditional" Kronrod case) and each successive k fills in one further upper cross
diagonal. This result has also been noted by Monegato [6] in the case k n + 1, and
he used this result to prove that the matrix is nonsingular. We have not utilized this
triangular structure in our algorithm, although for some special situations, e.g., Cheby-
shev polynomials of the first or second kind, it is easy to show that some of the higher
degree T’-only involve two of the first n Ti. We also have not been able to prove that
the matrix is in general nonsingular, although for all the cases we have studied it has
been.

3. Computing quadrature weights. The quadrature weights Ai, B are well defined
by the requirement that K,,f be exact for polynomials of highest possible degree.
Once the : and xi are given, though, the weights can in principle be determined by
several methods. We use the following.

For convenience we merge the "s and x’s, calling both t’s and then rewrite (1.3)
as

+l

(3.1) K,,kf= E w,f(ti).
i=1

Define

(3.2) O(x) := wiL(t)/(x-t,)
i=1

r(x)
(3.3) =P,,(x)’
where r(x) is a polynomial of degree n + k 1. In fact,

rt+k

(3.4) r(x)= E P,.(x)wiL(ti)/(x-ti).
i=1

By evaluating r at x t, we get

(3.5) r(ti) P’,,.k(ti)wiL(ti)

(3.6) E(t)L ’,(t)wL (t),

(3.7) r(ti) Y’. c.rL(t wiL(ti), c+,, 1,

where (3.6) follows from (2.3) and (3.7) follows from (2.6).
The calculation of L in (3.7) as well as Lk(t) can be done quite stably via the

recursion for the L.’s. Thus wi can be calculated if the left-hand side, r(ti), is known.
Interestingly enough, although r(x) is nominally a polynomial of degree n + k- 1, in
fact it is a much lower degree polynomial, n- 1. This fact simplifies the calculation
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considerably. For example, to compute weights for the case of one Gauss point and
k new points, r(x) is a constant.

By expanding the denominator in (3.2) we have

O(x) 2 WiLk(ti)t
,=0x i=1

(3.8)
+ , WiLk(ti)t

v=o +k X i=1

(3.9)
"+k-1 1

) (X 1 )Y. ---r(Lk, x +O /k;i
v=0 X

(3.10) Y. --T(Lk, X +0 +k+
v=k X X

Here (3.9) follows from the exactness of (3.1) for polynomials of degree n + 2k- 1
and (3.10) from the orthogonality of Lk. Thus we have

(3.11)

where

(3.12)

So from (3.3)

O(x) =cx -(k+) -t- -t- CnX
-./+ O(x-"//),

Ci (Lk, xk+i-1), i-l,2,...,n.

r(x)=Q(x)P,k(X) , Cix-k-ip,,k(X),
i=1

and we see that r(x) is a polynomial of degree n- 1. The contributions of Q to r(x)
are only from the first n terms in (3.11), that is,

(3.13 c x -k ... __
CnX

-k -n.
The c’s in (3.12) can be computed via the recursion (2.10), so

(3.14) r(x)=poly[P,,k(x)Q(x)], degr =n-1.

4. Formulas and examples. This section contains two sets of tables for use with
the extended Gauss-Laguerre quadrature formulas (1.3).

Table 1 lists those values of n and k for which formulas have been computed.

TABLE 1
Summary information of extended Gauss-Laguerre-Kronrod quadrature

4
5
6
7
8
9
10

k
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

z 6
c

8 10 12 14 Z Z Z Z 24
N 11 13 15 ZN 19 21 23
C C 14 16 18 Z 22 C

C C C 19 21 ZN 25 C
C C C 22 24 Z 28

C C C C 27 29
C C C C 30

C C C C
C C C

C C

c
N N
32 C
33 ZN
C C
C C

36
N 39
C C
C C

42
C 45
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Associated with a pair (n, k) the reader will find in the table a number, one or more
of the symbols C, Z, N, or blank. The meanings are:

number This formula is suitable for computation. The nodes xj are all in [0,
and all the weights Ai, Bj are positive. The number in this position is
the highest degree polynomial f(x) that formula (1.3) will integrate
exactly. For this formula the weights Ai, B., the Gauss nodes i and the
new nodes xj are given in Table 2 [8, Table II]. To illustrate the formulas
we reproduce a few of these entries later. Entries in this table are accurate
to all the digits printed. As a convenience the Gaussian weights an) (see
(1.2)) are also given.

C One pair or more of the nodes xi is complex.
Z All the nodes xi are real, but at least one is negative.
N This formula may be suitable for computation. The nodes xi are all real

and nonnegative, but at least two are close together. Accompanying
this, one or more weights Ai, Bi is negative. These rules will also be
found in Table 2 [8].

blank No computations were done to derive this formula. Note that for k -< n
the formula does not exist.

In Figs. 1, 2, 3 we illustrate the application of the formulas from Table 2 to three
sample integrals

Io Io J0 edxe-’x lnx dx, e-X4 dx,
(1 +x----

In each we plot the error in estimating the integral using Gauss-Laguerre and extended
Gauss-Kronrod quadrature rules for various total numbers of points. We note the
very smooth decrease of the error with Gauss-Laguerre and the rather erratic behavior
of the extended formulas. On the other hand, most of these errors are substantially
less than the Gauss errors with the same number of points.

Figure 4 represents graphically the nodes of these new formulas and illustrates
the interlacing of the new extended Kronrod nodes with the Gauss-Laguerre nodes.

5. Some numerical considerations. Here we provide a few brief details about
some of the numerical issues faced in obtaining Tables 1 and 2.

The nodes were computed as the zeros of (2.4). The coefficients ai were obtained
quite accurately by first using rational arithmetic to compute the matrix elements
(2.14) and then solving (2.16) in multiple precision. The Zeros of (2.3) were obtained
via a Newton-Raphson iteration in CDC double precision. During this phase of the
calculation, we experienced a considerable loss of accuracy. For small x the function
P,.k(X) has very small values (e.g. O(10-6) in our largest cases) which are produced
by subtraction. This evidences itself as

n+k

Pn,k(O) E Cei << m.ax I1.
i=k

Hence the small zeros can be inaccurate even with exact ai’s.
The confirmation of the 15-digit accuracy in all the zeros we publish comes from

verifying that the Laguerre zeros, a subset of those of P,,,, where correct to at least
20 digits, via CDC double precision. An independent check on the accuracy of the
zeros was obtained by carefully forming E in powers of x and finding its zeros by an
eigenvalue calculation with 80 digit arithmetic. This latter was done on a VAX 11/750
(Comet) using Brent’s multiprecision subroutine package. This also served to check
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FIG. 4a). 1-Gauss-Laguerre node, (C), extended Kronrod nodes, .
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FIG. 4b). 2-Gauss-Laguerre nodes, (C), extended Kronrod nodes, .
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FIG. 4c). 3- and 4-Gauss-Laguerre nodes, (3, extended Kronrod nodes, .
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FIG. 4d). 5- and 6-Gauss-Laguerre nodes, (3, extended Kronrod nodes, x.
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x
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FIG. 4e). 7-, 8-, 9- and O-Gauss-Laguerre nodes, (C), extended Kronrod nodes, x.

on those cases for which there are complex zeros. As mentioned above, the (n, k)
values leading to real zeros cannot be predicted in advance.

The weight calculations were done as decribed in 3 in CDC single and double
precision, and then by using a more direct technique in 80 digit multiple precision.
The last two agreed to at least every figure in Table 2.

In addition to comparing the results at the three different precisions, we also
tested the quadrature sum (1.3) on the monomials f(x)= x i, 0-< -< 2k + n 1. These
functions ought to be integrated exactly. Using the double precision versions of the
nodes and weights we found no relative error more than 10-is. For all n + k <= 20 the
maximum relative error was less than 10-2.
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Abstract. This paper presents a new finite difference scheme for the Stokes equations and incompress-
ible Navier-Stokes equations for low Reynolds number. The scheme uses the primitive variable formulation
of the equations and is applicable with nonuniform grids and nonrectangular geometries. Several other
methods of solving the Navier-Stokes equations are also examined in this paper and some of their strengths
and weaknesses are described. Computational results using the new scheme are presented for the Stokes
equations for a region with curved boundaries and for a disk with polar coordinates. The results show the
method to be second-order accurate.
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1. Introduction. In this paper we examine several common methods for solving
the incompressible Navier-Stokes equations by finite differences and we present a
new second-order accurate finite difference scheme for these equations. This new
scheme is designed to be applied with nonuniform grids and nonorthogonal coordinate
systems. Numerical experiments with the Stokes equations illustrate the versatility
and accuracy of the scheme.

The steady-state Stokes equations on a domain II in R are given by

(1.1) -V2u+Vp f(x), V. u= g(x)

and the steady-state Navier-Stokes equations are

(1.2) -R-1V2u + (u" V)u +Vp f(x), v. u g(x)

where R is the Reynolds number. We will consider the systems (1.1) and (1.2) with
Dirichlet boundary conditions

(1.3) u(x) b(x) on 012.

A necessary condition for (1.1) or (1.2) to have a solution is that the data g(x)
and b(x) satisfy the integrability condition

(1.4) Iag=Ioa b.n,

where n is the outer unit normal to 0fl. For the mathematical theory of the systems
(1.1) and (1.2) we refer to Ladyzhenskaya (1963) and Temam (1979).

We will be concerned only with methods that solve the systems (1.1) and (1.2)
in the primitive variables u and p and not with methods such as the vorticity and
stream-function reformulation. Also our methods are applicable in two or three
dimensions although our examples will be only in two dimensions.

We emphasize that the scheme presented here is designed to be easily applicable
with nonrectangular geometries and nonuniform grids. The vast majority of papers
on the numerical solution of the incompressible Navier-Stokes equations limit
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ICASE, NASA Langley Research Center, Hampton, VA 23665.

Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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themselves to examples using rectangular geometry and uniform grids. By way of
contrast, computations with the compressible Navier-Stokes equations routinely use
nonrectangular geometries and nonuniform grids.

The scheme proposed in this paper uses central finite differences with a regulariz-
ing term. Chorin (1967), (1968), (1969) proposed schemes with standard central finite
differences for the time-dependent Navier-Stokes equations. There are several difficul-
ties with central differencing schemes and the scheme presented here avoids them.
The first difficulty is that with central differences the grid decomposes into two
staggered grids which are coupled only at the boundaries and this can cause the
pressure field to be oscillatory (see for example Patterson and Imberger (1980) and
Ghia et al. (1977) reporting on the method of Chorin (1968) and the paper by Zoby
in Rubin and Harris (1975) reporting on the method of Chorin (1967)). Since the
pressure is of significant importance in engineering applications this oscillatory
behavior of the pressure is undesirable. Another difficulty is with the possible non-
existence of a solution to the finite difference equations. We discuss this point in 4.
The regularized central difference scheme proposed here removes the grid decoupling
and thus the pressure oscillations and, furthermore, the incompressibility constraint
is modified to guarantee the existence of a solution.

The most common finite difference methods for the Navier-Stokes equations are
the staggered mesh schemes. They avoid the grid decoupling of the standard central
differencing schemes but require more care when used with nonrectangular geometry.
These schemes are discussed in more detail in 3.

In 5 results are given of the regularized central scheme being used to solve the
Stokes equations on a nonrectangular region and the results are shown to be second-
order accurate in both the velocities and the pressure. To our knowledge no other
finite difference scheme for the Stokes or Navier-Stokes equations in the primitive
variables has been shown to be second-order accurate for nonrectangular geometry.
For rectangular geometry with uniform grid one can give proofs of the convergence
of schemes, e.g. Chorin (1969), Temam (1979), Kzivickii and Ladyzhenskaya (1966),
but these proofs fail for nonrectangular geometry (see 4). Chorin (1967), (1968)
gives results of using central differences for rectangular regions but the results are for
only one grid spacing.

Peskin (1977) has used Chorin’s method with moving boundaries which are
superimposed on a rectangular grid and Viecelli (1971) has a similar method for
staggered grid schemes. Liu and Krause (1979) have developed a staggered grid
scheme for general geometry. However, the order of accuracy of these schemes has
not been demonstrated. Thompson (1980) used central differencing with nonrec-
tangular geometry but also used the elliptic equation for the pressure (see 2), which
makes the accuracy uncertain.

The outline of the remaining sections of the paper is as follows. In 2 we discuss
the strengths and weaknesses of some common approaches to solving the systems
(1.1) and (1.2) and in 3 we discuss finite difference schemes for these systems. The
finite difference integrability condition is discussed in 4, and computational results
are given in 5. The numerical examples of 5 demonstrate that the new scheme
given here can be used to give second-order accurate solutions to the Stokes equations
for nonrectangular geometries. To our knowledge no other finite difference schemes
for the Stokes or incompressible Navier-Stokes equations in the primitive variables
have been shown to be second-order accurate for nonrectangular geometries. Compu-
tations using the new scheme for the incompressible Navier-Stokes equations are
currently being made and will be reported when complete.
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2. Solution techniques. In this section we review some approaches to solving the
Navier-Stokes and Stokes equations numerically. Few researchers have treated the
system (1.2) in the given form, most have altered it in some way. Before examining
the altered forms of (1.2) we look at the system in the given form.

The Stokes equations (1.1) and the Navier-Stokes equations (1.2) are elliptic
systems of n + 1 equations in n + 1 dependent variables. The definition of an elliptic
system, as given by Douglis and Nirenberg (1957), requires that the determinant of
the principal symbol of the system not vanish for nonzero values of dual variables.
For the Navier-Stokes equations the determinant of the principal symbol is

(2.1) det ( (1/R)]’l:zI’i 7" ) R -(,-1) I’12,

which is nonzero for I:l o. Moreover, since the determinant is a polynomial of degree
2n in the variables " (q,. ., :n) the system requires n boundary conditions at each
point of the boundary (Agmon, Douglis and Nirenberg (1964)). These boundary
conditions will usually be Dirichlet or Neumann conditions on the velocity u.

One of the most common ways of modifying the Navier-Stokes equations (1.2)
is to replace it by the system

-R -172u + (u. 17)u + ’p f(x),

i,j

The last equation of (2.2) is obtained by taking the divergence of the first equation
of (1.2) and then using the last equation of (1.2) to eliminate the divergence of velocity.
The system (2.2) has the advantage over (1.2) in that, when discretized, it can be
solved using standard methods for inverting the discrete Laplacian. However, the
system (2.2) has a grave disadvantage in that it requires n + 1 boundary conditions,
one for each elliptic equation, as opposed to (1.2) which requires only n boundary
conditions. Thus any attempt to solve (1.2) via (2.2) would require some means of
determining the correct additional boundary condition. Without the correct boundary
condition solutions of (2.2) will not be solutions of (1.2).

Roache (1972, p. 194) suggests that the additional boundary condition be given
by the normal derivative of pressure as determined by the first equation of (1.2) or
(2.2) evaluated on the boundary. This, however, is not satisfactory as a boundary
condition since it is not independent of the system of differential equations. Roache’s
suggestion leaves the system (2.2) underdetermined.

Another boundary condition which is commonly used along boundaries corre-
sponding to physical surfaces is to set the normal derivative of the pressure to zero,
which is valid in the limit for high Reynolds number flow. With this boundary condition
and (1.3) the system (2.2) has the proper number of boundary conditions, however,
its solutions are not solutions of (1.2).

As one would expect, the methods using (2.2) or similar systems have difficulty
with the accuracy of the pressure field and with satisfying the incompressiblity condition
on the velocities (see for example the work by Boney, Hefner, Hirsh and Zoby reported
in Rubin and Harris (1975)).

The above mentioned difficulties are seen in computations with the time-depen-
dent Navier-Stokes equations as well. Roache (1972) has a discussion of the difficulties
of obtaining a zero divergence for the velocity field when using the above approach
for time-dependent flows (see also Harlow and Welch (1964)).
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Because of these difficulties, it seems best not to use the derived system (2.2) but
to use the original system (1.2). This is also the approach used by Chorin (1968).

Another approach to solving the Navier-Stokes equations (1.2) is the artificial
compressiblity method. The basic idea of this method is to solve a time-dependent
system of equations, whose steady-state solutions solve (1.2), until a steady state is
reached. Methods have been proposed by Chorin (1967) and Yanenko (1967). The
convergence rate of these methods is dependent on the choice of finite difference
method used to solve the system. Moreover, as will be discussed in 4, it may happen
that the finite difference equations do not have a steady-state solution, so the method
cannot converge. Taylor and Ndefo (1970) reported difficulty in getting Yanenko’s
method to converge, most likely because there was no solution.

Another common method is to use the "parabolized" Navier-Stokes equations
which the second-derivatives in the stream-wise direction are removed. Because of
its limited applicability and uncertain justification we will not discuss this method here
except to note that often an analogue of (2.2) is derived and thus some of our
observations on (2.2) also apply to the parabolized equations. Raithby and Schneider
(1979) discuss these difficulties for three-dimensional flow problems.

3. Finite difference schemes. In this section we discuss the staggered mesh and
central finite difference schemes for (1.1) and (1.2) and introduce a new scheme. The
second-order accurate staggered mesh scheme for a uniform Cartesian grid assigns
the values of each of the velocity components and the pressure to different interlaced
grids. In two dimensions with velocity components u and v, one may assign values of
u to grid locations ((i + 1/2)h, jh), values of v to [ih, (j + 1/2)h), and values of p to (ih, jh)
(see e.g. Harlow and Welch (1965), Patankar and Spalding (1972), Raithby and
Schneider (1979), Brandt and Dinar (1979)). This method works very well as long as
the geometry is rectangular and the grid is uniform. Nonuniform grids and grid mapping
techniques cannot be conveniently handled, although Liu and Krause (1979) have
developed a staggered mesh scheme for use with general geometries.

The staggered mesh schemes also have some difficulty at boundaries. For example,
when both velocity components are specified at a boundary then that velocity com-
ponent whose mesh lines do not lie on the boundary requires some special treatment.

The central difference scheme on a uniform rectangular mesh assigns values of
all the variables to each grid point. The divergence and gradient operators are
approximated using central differences and the Laplacian is approximated by the
standard five-point discrete Laplacian. Central difference schemes have been used by
Chorin (1967), (1968) in time-dependent calculations.

An important concept for finite difference schemes for elliptic systems such as
(1.1) and (1.2) is that of regularity (see Bube and Strikwerda (1983), and also Frank
(1968), Brandt and Dinar (1979)). Regular schemes give rise to regularity estimates
analogous to those in the theory of elliptic systems of differential equations. Solutions
to regular difference schemes will in general be smoother than solutions to non-
regular schemes and also will be more accurate approximations to the solutions of
the differential equations.

The central difference scheme is nonregular (Bube and Strikwerda (1983)), which
results in nonsmooth solutions. The lack of smoothness is most noticeable in the
pressure. The staggered mesh scheme is regular. The advantage of the central difference
scheme is that it is easily implemented with nonuniform grids as introduced by
coordinate changes.

It should be emphasized that none of the difficulties mentioned above are insur-
mountable. Both the staggered mesh and central differencing schemes have been used
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and often quite successfully. However we will consider a new scheme which incorpor-
ates both regularity and ease of implementation with coordinate grid mapping tech-
niques.

Before introducing the new scheme we will discuss the concept of regularity for
difference schemes as given in Bube and Strikwerda (1983). A difference operator A
may be written as

Af(x) a, (h, x) Tf(x),

where T" is the translation operator given by

T"f(x.) f(x+.)
for multi-indices and

The symbol of A is given by

a(h. x.

For example, the first-order central difference operator in the kth coordinate direction
has symbol

e irk
ih--1 sin rk,

2hk
and the standard second-order accurate Laplacian in n variables has the symbol

4h-2 sin2’k.
k=l

A finite difference scheme for the Stokes equations is regular elliptic if the determinant
of the matrix of symbols of the scheme vanishes only for sr equal to zero modulo 2r.
For the Stokes equations with central differencing, and Ax Ay h, this determinant
is

4h-2(sin2 1/2’1 +sin2 1/2st2) 0 ih -1 sin (1\
(3 1)

det 0 4h-2(sin2 1/2’1 +sin2
ih -1 sin ’1 ih -1 sin ’2 0

4h-4(sin2 1/2sr +sin2 1/2(2)(sin2 r +sin2 (2).

This determinant vanishes for the dual variables ’1 and ’2 equal to 7r, and thus the
scheme is not regular. One sees that the nonregularity comes from the form of the
differencing used for the gradient and divergence terms. Our new scheme is a
modification of the central differencing scheme so as to make the scheme regular.

The new scheme we consider will be called the regularized central difference
scheme. In this scheme the derivatives of pressure are approximated as

(3.2) O__p_p 6kOP ah Sk-62k+p

and the first derivatives of the velocity in the divergence equation are approximated
as

(3.3)
Ou’

8koU k ah 2k&,+6_U k,
c3xt
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where a is a nonzero constant and 6k0, t+ and 6k- are the centered, forward, and
backward divided differences, respectively. The Laplacian is approximated with the
usual five-point scheme. For a Cartesian grid in two dimensions the determinant of
the symbol is

det
4h-Z(sin

2 ’1 + sin2

0

-d(’l)

0 d(’l)t
4h-2(sin2 21-1 +sin2 21%r2) d(’2)|

o!

where

=4h-2(sin2 1/2’1 +sin2 2*d’.)(Id (d’)l2 + Id(&)12),

d(() ih -1 sin (-oh-lel/2ic(2i sin 1/2r) 3

2ih - sin 1/2r(cos 1/2" + 4a e 1/’c sin2 1/2’).
since d(sr) is not zero for any nonzero value of (, when a is nonzero, the scheme is
regular. Note that for a equal to one-sixth the approximations (3.2) and (3.3) are
third-order accurate.

Since the regularized central difference scheme is a variant of the central difference
scheme it is easy to implement with coordinate maps. At those boundary points where
the correction term would require points beyond the boundary we use the correction
term which interchanges the forward and backward operators. This scheme also
requires the use of extrapolation to compute the pressure values on the boundary. It
has been found that third order extrapolation gave quite good results, e.g.

(3.4) Poi 3plj 3p2j + P3j

at the boundary x 0 in two dimensions.
The use of the extrapolation boundary condition (3.4) should not be confused

with the discussion in 2 about the extra boundary condition for the system of
differential equations (2.2). The boundary condition (3.4) is required only by the finite
difference scheme and is not required by the system of differential equations (1.1) or
(1.2). Therefore the solution of the system (1.1) or (1.2) will not satisfy any extra
nontrivial condition analogous to (3.4), even though the difference approximations
will satisfy (3.4). Other extrapolations may be used in place of (3.4); however, if the
order of extrapolation is too low the accuracy may be degraded at the boundary.

A number of first-order accurate schemes for the Stokes and Navier-Stokes
equations have been presented e.g. Kzivickii and Ladyzhenskaya (1966) and Temam
(1979, p. 48). In this paper we are concerned only with second-order accurate schemes.

4. The integrability condition. Each of the schemes for the Stokes equations
which have been discussed in the previous section can be written as

(a) Lh Ilh + GhPh
(4.1) on Oh,

(b) Dh Ilh gh,

with Dirichlet boundary conditions

lib bh on Oflh.
The difference operators Lh, Gh, and Dh are approximations to the differential
operators in (1.1). The discrete functions fh, gh, and bh are approximations to f, g and
b on the mesh fib, where h is some measure of the fineness of the mesh flh.
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Now let us compare the system (4.1) with the system (1.1). First note that if
is a consistent approximation to the gradient then the discrete pressure Ph is determined
only up to a constant. This means that the system of linear equations (4.1) does not
have full column rank. If there are as many equations in (4.1) as there are unknowns,
and this is the case for each scheme we have considered, then the system (4.1) does
not have full row rank either. This implies that there is a constraint which the data
must satisfy to guarantee a solution; in particular, the discrete integrability condition
analogous to (1.4) must be satisfied.

There are at least two ways to satisfy the discrete integrability condition. The
first method would be to analyze the matrix corresponding to (4.1) and determine the
null space of the adjoint matrix. If the data is constrained to be orthogonal to this
null space then a solution will exist. This approach is impractical for many situations,
especially if coordinate changes have been employed, since then the matrices are not
easy to analyze.

A second approach, which will be adopted here, is to replace (4.1b) by

(4. lb’) Oh Uh gh + 6h
where 6h is a constant chosen to guarantee a solution. The value of 6h must be
determined as part of the solution. As shown in the examples in 5 h is at least
O(h 2) for the regularized central scheme. We will refer to the equations (4.1a, b’, c)
as (4.2’).

Another way of looking at the condition (4. lb’) is as follows. As shown by Temam
(1979) and others, any discrete divergence operator Dh, defined only on the interior
of the grid, has a corresponding gradient operator G’h defined by

(4.2) (Dhll, b)+ (u, G,&) 0

for all grid vector functions u and scalar functions b which vanish on the boundary.
If one wishes to satisfy (4.1b) at each point of the interior then (4.2) with & taken to
be one at each interior point gives the requirement that

(4.3) (g, 1)+ (u, G,I) 0

must be satisfied. This formula is the analogue of the integrability condition (1.4),
and the second term in (4.3) will usually involve only the values of u on and near
the boundary. If the constraint (4.3) is not satisfied then the data must be modified so
that (4.3) is satisfied. The use of (4.1b’) in place of (4.1b) is one way by which (4.3)
can be satisfied. An advantage of using (4.1b’) over approaches which would modify
the boundary data of u is that (4.1b’) requires no explicit knowledge of G,. Note that
it is not necessary for G to be the same as Gh.

It is interesting to note that for the staggered mesh scheme on a uniform grid
one can easily satisfy the discrete integrability condition since the calculus of finite
differences mimics the differential calculus very closely, see e.g. Kzivickii and
Ladyzhenskaya (1966). Similarly, Chorin (1969) proves the convergence of a central
difference scheme for the time-dependent Navier-Stokes equations on a periodic
rectangular mesh. An essential element of these proofs is that one has a convenient
form of the finite difference analogue of the divergence theorem of the differential
calculus. Liu and Krause (1979) develop a staggered grid scheme for nonrectangular
grids and the success of their scheme is due to their careful treatment of the integrability
constraint. Also, Ghia, Hankey and Hodge (1977) mention being unable to obtain a
solution to the discrete Navier-Stokes equations for certain situations. We conjecture
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that this difficulty was caused by the discrete integrability condition not being
satisfied.

There is the possibility that the null space of the discrete operator (4.1) has
dimension greater than one. The regularized central scheme with the third-order
extrapolation (3.4) appears to have only a one-dimensional null space. However, for
a equal to zero numerical experiments indicate that there are solutions which are
effectively null vectors in that they solve (4.1) with fh and gh smaller than the norm
of the solution by a factor proportional to h or h2. The dimension of the space of
nearly null vectors and null vectors appears to be four for the central differencing
scheme. These vectors correspond to the four zeros of the determinant of the symbol
of the difference operator.

These nearly null vectors and null vectors, other than the usual constant pressure
null solution, make solving the discrete system very difficult. On the other hand the
regular discrete systems can be solved easily by the iterative procedure given in
Strikwerda (1983).

5. Computational results. In this section we present the results of testing the
new scheme described in 3. In the examples discussed here the discrete Stokes
equations were solved using test problems which illustrate various features of the
schemes. For each example an exact analytical solution is known and the approximate
solutions were compared to the exact solutions to study the accuracy of the method.
The value of a, the regularity parameter, was one-sixth in all cases. We restrict
ourselves here to the Stokes equations for reasons of simplicity. For low Reynolds
numbers the nonlinearity of the Navier-Stokes equations usually does not present
difficulties as great as those addressed in this paper. For higher Reynolds numbers
the nonlinear effects cause additional computational problems which we do not wish
to address here. The schemes presented here are being used in computations for
the incompressible Navier-Stokes equations and the results will be reported when
complete.

The iterative procedure which was used to solve the system of finite difference
equations is described at length in Strikwerda (1983). The method consists of alterna-
tively updating the velocity components by successive over-relaxation and updating
the pressure by subtracting from the pressure at each grid point a multiple of the
discrete divergence of the velocity field. This update of the pressure is of the same
form as that used by Chorin (1968). The iterative method was stopped when the
changes to the velocity field were sufficiently small and when the changes of the
pressure were sufficiently close to being constant. The quantity 8 was computed as
the average value of the discrete divergence of the velocity minus the average value
of g. The magnitude of 8 is one measure of the truncation error of the scheme.

For the first test problem the Stokes equations were solved on the unit square
with a uniform grid. The exact solution is

u (2r)-1 sin 7rx cos Try,

v (27r)-1 cos 7rx sin ry,

p --cos 7rx cos Try

with f 0 and g cos 7rx cos y. For this example both the accuracy and symmetry
of the solution were checked. The symmetry was checked to study the effect of the
nonsymmetric regularizing term on the symmetry of the solution. The symmetry was
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measured by computing the quantities sym (u) and sym (p) given by

E’ + -,,-;))/:/sym (u) (, (uii u Ilull2,
i.i=o\

sym (p)= Z (Pi-Plv-i,r-)2 P-II=
i,j =0

for an (N + 1)x (N + 1) grid. The quantity/5 is the average value of the Pit and the
norm is the 12-norm, e.g.

1/2

The second test problem demonstrates the ability of the scheme to produce
second-order accurate solutions on a nonrectangular region. The exact solution is

2(5.3) U---2-1- V=--2r/+2, p=4:+2r/

on the region Il which is the image of the unit square under the mapping
2: x cosh (y), r/= y -x

for (x, y) in the unit square, i.e. 0 < x, y < 1. Thus the equations being solved on the
unit square were

x(XeUx)x + x(yeuy)x + ye(xux)y + y(yuy)y

+ x,, (x,,Ux), + xn (ynuy)x + y, (x,,u,)y + yn (YnUy)y xpx ytp, 0

for the first equation, with the second being similar, and

XtiUx + yUy if- XnVx q- yn/3y 0

for the third equation. The regularizing terms were added only to the terms correspond-
ing to px in the first equation, py in the second, and u and vr in the third. The
regularizing terms were added to only these terms since that was sufficient to guarantee
the regularity of the scheme.

In the third test problem the Stokes equations were solved on a disk using polar
coordinates with uneven grid spacing in both the radial and angular direction. The
exact solution is

(5.4) u r3 sin 20, v 2r3 cos 20, p 6r2 sin 20

with f and g being zero. The uneven grid was given by

ri .75pi + .250 Or qi- .25 sin

where pi and q were evenly spaced in the interval [0, 1] and [0, 27r] respectively. This
uneven spacing was chosen merely to show the versatility of the scheme and is not
intended to give a better resolution of the solution.

For completeness we give the Stokes equations in polar coordinates,

-1 -2 -2 -2r (ru)+r Uoo-r u-2r vo-p=O,

(5.5) r-l(rv) + r-2voo r-212 + 2r-2uo r-lpo O,
-1r (ru) +r-vo O.
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The difference formulas used in the numerical experiments were all second-order
accurate. As an example of the formulas, the term r-l(rur)r was differenced as

((ri+l +rl) (ui+,, -ui.,)- (ri +ri-) (Ui,, ui_.,))/1/2(r2i+ -r_ ).
\ri+l r ri ri-1

The results of the numerical experiments are shown in the following tables. Each
table lists the errors incurred for grids with N + 1 points on a side for values of N of
20, 0, 40 and 60. Tables 1, 2 and list the relative errors for test problems 1, and

TABLE
Errors for test problem for grids with N + points on a side for four values of N. The numbers

in parentheses are the decimal exponents, i.e., .35(-3)= .35 10-3.

N err (u) err (p) th sym (u) sym (p)

20 .35 (-3) .17 (-2) -.44 (-5) .68 (-3) .13 (-2)
30 .11 (-3) .86 (-3) -.89 (-6) .22 (-3) .37 (-3)
40 .41 (-4) .51 (-3) -.53 (-6) .82 (-4) .15 (-3)
60 .19 (-4) .23 (-3) -.50 (-7) .37 (-4) .52 (-4)

TABLE 2
Errors for test problem 2

N err (u) err (p) 8h

20 .10 (-3) .21 (-2) -.24 (-3)
30 .45 (-4) .92 (-3) -.12 (-3)
40 .25 (-4) .48 (-3) -.74 (-4)
60 .11 (-4) .22 (-3) -.35 (+4)

TABLE 3
Errors for test problem 3

N err (u) err (p) ;h

20 .75 (-1) .93 (-1) -.33 (-2)
30 .33 (-1) .34 (-1) -.53 (-3)
40 .19 (-1) .18 (-1) -.15 (-3)
60 .83 (-2) .75 (-2) -.27 (-4)

3, respectively, and Table 1 also shows the symmetry errors for problem 1. The relative
errors are measured in the/2-norm, i.e.,

err (u)= ( (Ui]--U(Xi, yi))2)1/2/llull=.
The error in pressure is computed similarly except that the norms are taken modulo
additive constants, i.e.

err (p) IlPh -Pe -(Ph --Pe)I[2/IIPe --ffe[[2
where Ph and Pe are the approximate and exact solutions, respectively. Also shown is
the value of th which is described in 4. Table 4 displays the behavior of the error
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TABLE 4
Computed order of accuracy for u, p, and 8h for the test

problems

N1/N2 2 3

u 2.8 2.0 2.0
30/20 p 1.7 2.0 2.5

8h 4.0 1.7 4.5

U 3.4 2.0 1.9
40/30 p 1.8 2.3 2.2

h 1.9 1.7 4.4

U 3.1 2.0 2.0
40/20 p 1.7 2.1 2.4

h 3.1 1.7 4.5

U 2.5 2.0 2.0
60/30 p 1.9 2.1 2.2

h 4.2 1.8 4.3

U 1.9 2.0 2.0
60/40 p 2.0 1.9 2.2

h 5.8 1.8 4.2

as the grid resolution is increased. The numbers shown are values of

log (errl/err2)
log (NI/N2)

where err1 and err2 are the errors for grids of N + 1 and N2 + 1 points on a side,
respectively. This value should be approximately 2.0 for a second-order scheme. The
error reductions are shown for u, p and 8h. The other velocity component had a similar
error behavior in all the examples. All of the solutions were computed by the iterative
method given in Strikwerda (1983).

That some of the errors were better than second-order accurate for test problems
1 and 3 can be attributed to the third-order accurate difference formulas used for the
gradient and divergence terms. One might expect that some of the errors would behave
as third-order errors for some value of N and N2. However, since the discrete
Laplacian is second-order accurate, for N large enough the total scheme should be
second-order accurate. It is not clear why th should behave as a fourth-order error
as seen in test problem 3 and for some values of N1 and N2 in test problem 1. Test
problem 2 was no better than second-order accurate since the gradient and divergence
were only second-order accurate. The third-order differences were only used on those
terms which were necessary to achieve regularity of the scheme. The results show
conclusively that the scheme has overall second-order accuracy.

Test problem 1 for N =40 is similar to the test problem of Chorin (1968) for
the time-dependent Navier-Stokes equations with Reynolds number of 1.0. While
the accuracy of the velocity components is of the same order of magnitude for both
problems, the results for pressure are more accurate for the regularized central
scheme than are Chorin’s results by at least an order of magnitude. We attribute this
increase in accuracy to both the regularized differencing and the use of the integrability
variable gh-
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In engineering computations it is very important to know the accuracy of one’s
results. For the incompressible Navier-Stokes calculations the pressure is important
since it is used to compute drag and lift forces, however, the pressure is often computed
with only indifferent accuracy, e.g. Rubin and Harris (1975). The second-order
accuracy obtained for pressure by the regularized central scheme demonstrates the
advantage of this scheme over other existing schemes.

6. Conclusion. In this paper we have examined several finite difference methods
for the steady Stokes and incompressible Navier-Stokes equations in primitive vari-
ables. We have shown that the regularized centered difference scheme is second-order
accurate and useful with nonrectangular regions. Although the numerical experiments
were done using the Stokes equations, for which exact solutions were available, we
believe the regularized central scheme is equally useful with the incompressible
Navier-Stokes equations at moderate Reynolds number.

Acknowledgment. The author wishes to thank the referees for their very helpful
suggestions and comments.

REFERENCES

S. AGMON, A. DOUGLIS AND L. NIRENBERG (1964), Estimates near the boundary ]:or solutions of elliptic
partial differential equations satisfying general boundary conditions, II, Comm. Pure Appl. Math.,
17, pp. 35-92.

A. BRANDT AND N. DINAR (1979), Multi-grid solutions to elliptic flow problems, Proc. Conference on
Numerical Solutions of Partial Differential Equations, Mathematical Research Center, Madison,
WI, October 1978.

K. BUBE AND J. STRIKWERDA (1983), Interior regularity estimates for elliptic systems ofdifference equations,
SIAM J. Numer. Anal., 20, pp. 639-656.

A. J. CHORIN (1967), A numerical method for solving incompressible viscous ]tow problems, J. Comp. Phys.,
2, pp. 12-26.

(1968), Numerical solution of the Navier-Stokes equations, Math. Comp., 22, pp. 745-762.
(1969), On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comp.,
23, pp. 341-353.

A. DOUGLIS AND L. NIRENBERG (1955), Interior estimates for elliptic systems of partial differential
equations, Comm. Pure Appl. Math., 8, pp. 503-538.

L. FRANK (1968), Difference operators in convolutions, Soviet Math. Dokl., 9, pp. 831-834.
K. N. GHIA, W. L. HANKE AND J. K. HODGE (1977), Study of incompressible Navier-Stokes equations

in primitive variables using implicit numerical technique, AIAA paper 77-648.
F. H. HARLOW AND J. E. WELCH (1964), Numerical calculation of time-dependent viscous incompressible

flow offluid with free surface, Phys. Fluids, 8, pp. 2181-2189.
A. KzIVICKII AND O. A. LADYZHENSKAYA (1966), The method of nets for the non-stationary Navier-

Stokes equations, Proc. Steklov Inst., 92, pp. 105-112. (In Russian.)
O. A. LADYZHENSKAYA (1963), The Mathematical Theory of Viscous Incompressible Flows, translated

by R. A. Silverman, Gordon and Breach, New York.
N. S. LIu AND E. KRAUSE (1979), Calculation of incompressible viscous flows in vessels with moving

boundaries, Acta Mech., 33, pp. 21-32.
S. V. PATANKAR AND D. I. SPALDING (19.72), A calculation procedure for heat, mass, and momentum

in three dimensional parabolic flows, Internat. J. Heat Mass Trans., 15, pp. 1787-1806.
J. PATTERSON AND J. IMBERGER (1980), Unsteady natural convection in a rectangular cavity, J. Fluid

Mech., 100, pp. 65-86.
C. S. PESKIN (1977), Numerical analysis of blood flow in the heart, J. Comp. Phys., 25, pp. 220-252.
G. E. RAITHBY AND G. O. SCHNEIDER (1979), Numerical solution of problems in incompressible fluid

flow: Treatment of the velocity-pressure coupling, Num. Heat Trans., 2, pp. 417-440.
P. ROACHE (1972), Computational Fluid Dynamics, Hermosa, Albuquerque, NM.
S. RUBIN AND J. HARRIS, eds. (1975), Numerical studies of incompressible viscous flow in a driven cavity,

NASA SP-378.



68 JOHN C. STRIKWERDA

J. S. STRIKWERDA (1983), An iterative method for solving the Stokes equations, Tech. Summ. Rep.
Mathematics Research Center, Univ. Wisconsin, Madison, 2490.

T. O. TAYLOR AND E. NDEFO (1970), Computation of viscous flow in a channel by the method of splitting,
Proc. Second International Conference Numerical Methods in Fluid Dynamics, pp. 356-364.

R. TEMAM (1979), Napier-Stokes Equations, North-Holland, Amsterdam.
J. F. THOMPSON (1980), Numerical solution offlow problems using body-fitted coordinate systems, Computa-

tional Fluid Dynamics, W. Kollman, ed., Hemisphere Publ. Corp., Washington, DC.
J. A. VIECELLI (1971), A computing method for incompressible flows bounded by moving walls, J. Comp.

Phys., 8, pp. 119-143.
N. N. YANENKO (1971), The Method ofFractional Steps; The Solution o"Problems o]’Mathematical Physics

in Several Variables, translated by M. Holt, Springer-Verlag, Berlin.



SIAM J. SCI. STAT. COMPUT.
Vol. 5, No. 1, March 1984

1984 Society for Industrial and Applied Mathematics

0196-5204/84/0501-0005 $01.25/0

HIGH ORDER DIFFERENCE SCHEMES FOR
LINEAR PARTIAL DIFFERENTIAL EQUATIONS*

R. MANOHAR’$ AND J. W. STEPHENSONr

Abstract. A procedure for deriving high order difference formulas using the local solutions of the
differential equation is described. The same procedure can be used to incorporate the boundary conditions
in the derivation of the difference formulas for the boundary mesh points. A simple example of a Poisson
equation over a rectangle is chosen to demonstrate the method, although the same procedure can be
applied to equations with variable coefficients over arbitrary regions.

Key words, finite difference schemes, partial differential equations, Poisson equation

Introduction. A procedure for deriving high order difference formulas for solving
linear partial differential equations is described. This procedure is based upon express-
ing the solution locally about a given mesh point as a linear combination of the analytic
solutions of the differential equation. The finite difference formulas are obtained by
collocation over a set of mesh points surrounding the given mesh point for which the
difference formula is derived. For a mesh point on the boundary additional constraints
are provided by the boundary conditions, otherwise the procedure remains the same.
In any case, the difference formula takes into account the local solution of the
differential equation. Initially we considered the solutions obtained by the method of
separation [1 ], however, it was found that the same difference formula can be obtained
more efficiently by using a truncated power series solution of the differential equation.
Once this choice is made, then our procedure has strong connections with the
"Mehrstellenverfahren" of Collatz [2], and the works of Young and Dauwalder [3],
and that of Lynch and Rice [4].

The results of Young and Dauwalder [3] for elliptic equations are more general
in certain details than those derived here. However, we have intentionally chosen a
very special and a simple example of the Poisson equation in two dimensions to
demonstrate the procedural details. We feel that our procedure is simpler and more
direct and the resulting algorithm can be used with ease on a computer to generate
the difference formulas automatically in the case of more complex differential equations
over arbitrary regions. The treatment of the boundary conditions is easily incorporated
in the procedure.

Lynch and Rice [4] call their method by the acronym HODIE (High Order
Differences with Identity Expansion). Their procedure is a generalization of "Mehrstel-
lenverfahren" and the work of Young and Dauwalder. They have studied in great
detail the computational effort required in generating the difference formulas and also
solving the resulting system of linear equations. They have clearly demonstrated the
usefulness of high order methods and have shown that such methods are computa-
tionally efficient. In the algorithm for the derivation of difference formulas, Lynch and
Rice use the nodal values of the forcing function f, which is computationally more
convenient but requires the "identity expansion" in their procedure. This often creates
problems in the automatic generation of formulas due to the fact that one of the
matrices appearing in the derivation becomes singular or nearly singular particularly
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when a uniform mesh is used. Our procedure avoids this difficulty by separating the
determination of the coefficients of the nodal values of the solution u and the coefficients
of the nodal values of f. We first of all determine the coefficients of the nodal values
of u using the Taylor coefficients of f This gives us the "Mehrstellenverfahren" type
formulas which can be used provided the Taylor coefficients of f are available. However,
if it is necessary to replace the Taylor coefficients of f with nodal values of f, then the
Taylor coefficients which appear in our formulas indicate an appropriate choice of the
nodal points to be used for such an interpolation of f This produces HODIE type
formulas and avoids the difficulties inherent in the a priori selection of nodes in the
HODIE method. In the final analysis the two procedures are equivalent in the sense
that both procedures use local polynomial expansions. In the case of the Poisson
equation, the two methods produce identical formulas.

It is implicitly assumed in all these procedures aimed at deriving high order
difference formulas that the coefficients in the differential equation and also the
solutions are sufficiently smooth. If the smoothness condition is satisfied then these
procedures, give difference formulas with the highest order of truncation error for a
given set of mesh points. In this sense the difference formulas obtained are "optimal."

Although some of the difference formulas derived here to demonstrate our
procedure are well known, the same procedure can be applied to more general linear
elliptic equations with variable coefficients as in [3], [4] and [5] and also to other
equations such as the parabolic equation given in [1]. A further generalization of our
procedure has been applied to the biharmonic equation in which not only the nodal
values of the solutions but also the values of the derivatives at the nodal points are
used for collocation [7]. This generalization allows the handling of the boundary
conditions with much greater ease.

Derivation of the difference formulas. All the important features of the method
can be described by using a simple example of the Poisson equation

(1) Au=uee+u..=f(.n). 0-<_. n-<_l

over a square. It is assumed that the values of u are prescribed on three sides of the
square and the normal derivative of u is given by a function g(r/) on the right boundary
: 1. Assume that the region is subdivided into square subregions and that the mesh
size h is uniform. Let (c0, r/0) be a typical mesh point for which a difference formula
is to be derived. It is convenient to shift the origin to this point and use local coordinates
(x, y). Two different types of difference formulas are needed to solve the problem,
one for the interior mesh points and the other for the boundary mesh points.

Let us assume the following expansions for the solution u (x, y), f(x, y) and the
boundary function g(y),

g(y)= X(2) u(x, y) Z a,,ix y, f(x, y)= Z Ci,jxiy j,

The coefficients ai,. are unknown, while ci,j and b. are either known or they can be
calculated. The differential equation (1) imposes the following constraints

(3) (i+l)(i+2)ai+2,i+(j+l)(j+2)a,i+:=cg,i, i,/’=0, 1,2,. .
The additional constraints

(4) b. a 1,j, j 0, 1, 2,.

are imposed if the normal derivative boundary condition is applied at x 0.
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In order to derive a difference formula let us first approximate u by neglecting
terms of degree greater than N say, by setting the corresponding coefficients ai,. to
zero. This immediately determines the number of unknowns ai,i in the expansion of
u say n, and the number of constraints (equations) that are retained in (3) or (4) say
rn and m2 respectively. In order to derive a difference formula for an interior mesh
point choose m n-ml mesh points around the origin. Let the coordinates of these
m mesh points be (xk, yk), k 1, 2, , m. Collocation of u at these mesh points gives
the following m linear equations

ut, U(Xk., Yt,)= ai,ixikYik, k=l, 2,...,m.

These m equations along with the m constraints in (3) determine the n unknowns

aid in terms of the m nodal values Ul, u2," , u, and the m coefficients ci,., provided
that the coefficient matrix is nonsingular. Once this is done, the difference formula is
obtained from u0 u (0, 0) a0,0, where ao.o is expressed in terms of u 1, u2, , u,,.
For a difference formula for a boundary mesh point it is necessary to consider m2
constraints given by (4) in addition to the ml constraints given by (3). Therefore, only
n-(ml+m2) mesh points lying in the region and on the boundary are chosen for
collocation. The expressions for the other coefficients such as a 1,o, ao.1 etc. provide
difference formulas for the derivatives of u.

There are three important points that may be mentioned in connection with the
method of derivation proposed here. Firstly, it is not necessary to include all the terms
of the highest degree N in the expansion of u, though, if any one term is chosen all
those terms which are connected to it through any one of the constraints in (3) must
be included. Secondly, if all the terms of degree N and lower are retained in the
expansion of u, then the minimum order of the truncation can immediately be predicted
to be h-1 because of the fact that the difference formula is accurate for all polynomials
of degree iV or less. If the collocation points are chosen to take advantage of the
symmetry of the operator, the difference formula can achieve a higher order of
truncation error. This can be tested by substituting higher degree terms in the difference
formula. Another way of asserting the higher order is to choose additional terms in
the expansion and additional mesh points in such a way that the difference formula
still remains the same i.e. the additional nodal values have the weight zero in the
formula. Finally, for a certain distribution of the mesh points, the coefficient matrix
may be singular. This indicates that additional mesh points and terms in the expansion
are needed to get a high order formula. Although it is not necessary, we generally
prefer to use mesh points which form a single cell around the origin. For equations
with constant coefficients on a domain which can be partitioned into squares, this
eliminates the necessity of special formulas for mesh points near the boundary.

These features can be demonstrated in the development of the classical 5-point
formula for the Poisson equation. Higher order formulas can be derived in an analogous
manner. Let a typical mesh point 0 be an interior mesh point as shown in Fig. 1. Let
u in (2) be approximated by

(5) u (x, y ao,0 + a x,0x + ao.xy + a2,oX
2 + a0,2y 2.

From (3) we get only one constraint given by

(6) 2(a2.0 + a0,2) c0,0.
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19

FIG.
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The four points needed for collocation are chosen to be 1, 2, 3, and 4 in Fig. 1. The
system of equations that follows is given by

(7)

1 1 0 10ao,oq u
0 1 0 [al,oh/ u2

-1 0 1 | ao,lh| u3

10 0 -1 0 12 ]a2,oh2 /’/4

0 0 2 [_ao,2h2_J Co,oh2

The solution of (7) gives

(8) ao,o=Uo=1/4(u+u2+u3+u4)-1/4Co,oh 2.

If Co.o is replaced by fo f(0, 0), then (8) becomes the classical 5-point formula. If all
the terms of degree 3 are included in the expansion of u, then there are 10 unknown
coefficients and 3 constraints. If we choose any seven points in Fig. 1 including the
points 1, 2, 3 and 4, we again get formula (8) by this procedure. This demonstrates
that the formula (8) is of order h2. The other coefficients a,o, ao,,’’’ determined
from (7) are useful, for example

[Ux]o,o=a.o, [Uy]o,o=ao,, [u,]h.o=a,o+2a2.oh+3a3.oh2+

These formulas approximate the derivatives to an order one less than the corresponding
formula for u. Numerical experiments carried out on several problems in particular
see 1 ], show that these formulas give excellent results.

For the boundary mesh point shown in Fig. 2, in order to obtain a formula
compatible with (8), we include all the terms up to degree 3 in the expansion of u.
This means there are three constraints of the type (3) and three constraints of the
type (4). The four points chosen for collocation are 1, 2, 3 and 4 shown in Fig. 2.
The difference formula obtained by this procedure is

(9) Uo l(U 1-t-/’/2) nt- 1/2/t4 "t- 1/2boh b2h3 1/4Co,oh 2 -t-c 1,oh 3.
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6 4

FIG. 2

--) Ux g(y)

-)x

If we replace C0.o by f0 and c 1.o by fo-f4 we get

(10) U0 1/4(Ul -- U2) -" 21-U4 -- 1/2boh b2h
3

gfo 2
ifa 2.

It is possible to replace b0 by (ux)0, 2b2h2 by (Ux)l+ (u)x-2(u)0 in (10), thereby
expressing all the terms in (10) in terms of the nodal values. Note that u3 does not
appear in the formula (9). If we set b2 0 and write f4 fo in (1 0), we get the classical
formula for the boundary point which is of order h, while (10) is of order h 2. Other
formulas may be obtained in a similar fashion. For instance, if we select points 1, 2,
3 and 5 in Fig. 2, we get

(11) U0 21-(U3 +/,/5)+ boh +b2h3-Co,oh 2 + 61-c 1.oh 3

which is of order h 2.
In general, the use of formulas (10) or (11) on the boundary in place of the

classical formula along with the second order formula (8) in the interior are not likely
to produce better results. This is due to the fact that a boundary formula is permitted
to be one order less than interior formulas to maintain the same overall accuracy. In
this sense, these formulas are not of any practical significance. We have given them
here to demonstrate the method which has been used to derive higher order formulas.

It is not necessary to select only those mesh points which are symmetrically placed
around the mesh point 0 shown in Fig. 1. Formulas with an arbitrary selection of
mesh points can be obtained by the procedure described earlier. Such a distribution
of points may be needed for points near the boundary or on a curved boundary or
where the mesh is not uniform. In the case of curved boundaries it may not always
be possible to write the constraints in the form (4). In this case each constraint is
replaced by collocation of the boundary conditions at one additional boundary point.
In fact, for any other linear differential equation, the only modification made is in the
constraints which follow from the differential equations or the boundary conditions.

For symmetrically placed points in the Poisson equation, one can find formulas
of high order with very few additional points. We now give some of the formulas of
order ha and h 6 obtained by this method.

Following I-2] we write

LhUo 4(u + U2 -I" U3 + U4) + (U5 -Jr" U6 -]" U7 -I- U8) 20u0

=4Uo+Uo-2Ouo.
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Then some of the formulas for the interior points are

(12a)

(12b)

2c)

(13a)

(13b)

(3c)

(13d)

where

LhUO 6Co,oh 2 + (C2,o + Co,2)h 4,

LhUo 6f0h 2 +1/2(fo-4fo)h:,

LhUo 6foh: + 1/4([--] fo 4fo) h2,
2LhUO 6Co,oh: + (C2,o + Co,2)h 4 + [g(C4,0 + C0,4) + 1-4c2,2]h 6,

LhttO [__ 8 <>fo + -’_[o]hfo- -fo+
7LhUO [-09fO -’]- i301o + -i3l-lfo oOfo]h,

37LhLlO [fo + -f3Ofo + K6l--qfo + -fo]h 2,

9fo f9 +flo +fll +f12,

_fo f13 +f14 +f15 +f16,

Ofo=f17+f18+f19+f2o (see Fig. 1).

Formulas (12) and (13) are of order h4 and h 6 respectively. Observe that if the nodal
values of f are used, then the 9 mesh points of the cell are not sufficient to give a
formula of order h 6. Use of the additional values of f may be acceptable, if f is known
at every point. However, there are problems where only the nodal values of f are
known. In such cases it may be more convenient to use the method of order h4 given
by (12). Formula (13c) is not convenient to use since near the boundary special
formulas would have to be used.

Some formulas for the boundary mesh point of Figure 2 are given by

LhUo U0-- U4---i0(U3 q-/25) --(U q- U2)
(14a)

cooh:+Cloh 3 -(C2,0 "[" c0,2)h 4 q.. -boh
(14b) h2[fl +f2 -]6 + 6]4 + 5fo] +-}b0h,

thuo _1_Co,oh2+_6ocl 0h 3 4 3 5-6(C2,o + Co,2)h + i-6-6C3,oh
(15a)

7+ 3--0-6C 1,2h +-boh b4h 5

(15b) -hZ[f +f2 +f8]+zA6-6h2113f6-ZYfo]-hZf4
6-h 2Ef3 +fs] + boh b4h 5.

Formulas (14) and (15) are of order h 4 and h 6 respectively. Note that the formulas
(14) make use of the normal derivative at the point 0 only since b0=[Ux]o. Some
numerical results obtained using these formulas are given in the next section.

Finally, the formulas for the derivatives ux and uy corresponding to the formulas
(12) are given by

(16a) huxo=(u1-u3)+22(us-u6-uv+us)-2hZ(f1-f3)

and

(16b) huyo (U2- U4)-[" -2(U 5 + U6- U7- US)- 2h 2(re--f4).
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Numerical results. In order to demonstrate the accuracy and usefulness of the
higher order formulas we have solved (1) over the square 0<=c, r/<= 1- The test
problems considered have the exact solutions

u FI(’, r/) 5 +3r/2+2r/5,

8
U F2(, r/) 8 + 27 + 35r/3 + 42r/6 + 3r/

u F3(sc, rt) e2 cos ft.

In Table 1 we give the results for the Dirichlet problem when u is given on all
four sides. The derivatives are computed using central differences when (8) is used

TABLE
Maximum errors for Dirichlet problems

Formulas

h (8) Derivs. (12a) Derivs. (13a) Derivs.

Problem F1
1/3 .1080 .4090 exact .2881E-1 exact .2881E-1
1/6 .3016E-1 .1535 exact .1800E-2 exact .1800E-2
1/12 .7893E-2 .5021E-1 exact .1125E-3 exact .1125E-3
1/24 .1991E-2 .1486E-1 exact .7118E-5 exact .7118E-5

1.99 1.76 3.98 3.98

Problem F2
1/3 .8293 1.738 .9032E-1 .8572 .8868E-3 .7693
1/6 .2418 1.132 .5820E-2 .1008 .1685E-4 .8842E-1
1/12 .6364E-1 .5026 .3721E-3 .8492E-2 .2606E-6 .7286E-2
1/24 .1617E-1 .1737 .2327E-4 .6109E-3 .1471E-7’ .5193E-3

1.98 1.53 4.0 3.80 6.01 3.81

Pr.oblem F3
1/3 .2680E-1 .5141 .1899E-4 .2699E-1 .4530E-7 .2698E-1
1/6 .7601E-2 .1795 .1266E-5 .2412E-2 .8254E-9 .2410E-2
1/12 .1941E-2 .5391E-1 .7777E-7 .1791E-3 exact .1790E-3
1/24 .4922E-3 .1495E-1 .1771E-7 .1218E-4 exact .1217E-4

1.98 1.85 4.02 3.88 5.78 3.88

and (16) when the high order formulas are used. In Table 2, we give results when u
is given on three sides and the normal derivative is given on c 1. In both tables we
list the maximum absolute error in the computed approximation. The table also
includes the experimentally observed rate of convergence r, given by

r ’g (x)/’g (l)
where e2 and el are the errors observed for h2-- 1/24 and hi 1/12 respectively. In
the case when the results are affected by roundoff errors as shown by or when they
are exact, previous values are used. We consider the results exact if errors are less
than 10-9. The computations were carried out on a DEC-20 in double precision.
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TABLE 2
Maximum errors ior the mixed problem

Formulas

h (8), classical (8), (10) (8), (11) (12a), (14a) (13a), (15a)

Problem F1
1/3 .1562 .1430 .1481 .5252E-2 exact

/6 .4782E- .4240E- .4488E- .3754E-3 exact

/ 12 .1268E- .1208E- .1245E- .2370E-4 exact

!24 .3202E-2 .3221E-2 .3283E-2 .1520E-5 exact
1.98 1.91 1.92 3.96

Problem
1 /3 1.245 .9493 1.010 .2757 .9739E-2
1/6 .4115 .3431 .3787 .1912E-1 .1689E-3
1/12 .1078 .1082 .1164 .1225E-2 .2677E-5
/24 .2722E- .3126E- 1 .3255E- .7731E-4 .7755E-7"

1.99 1.79 1.84 3.99 5.98

Problem F3
/3 .2241 .3052E- .8987E- .1854E-2 .4837E-6
!6 .6658E- .1123E- .6595E-2 .1269E-3 .9462E-8

1/12 .1728E-1 .3498E-2 .2700E-2 .8072E-5 exact

1/24 .4349E-2 .9991E-3 .8709E-3 .5618E-6 exact
1.99 1.8 1.63 3.84 5.68

Because of storage limitations, matrices were stored in banded form and the solutions
were obtained using S.O.R.

As expected, the results using formulas (10) and (11) give similar results to those
obtained by the use of the classical formula. However, to illustrate that these formulas
are an improvement on the classical formula, we give in Table 3 a comparison of the
results obtained when we used the classical formula and the second order improved
formulas (10) and (11) with the fourth order formula (12a) for interior points.

The truncation errors for the formulas in (12) and (13) are O(h 4) and O(h 6)
respectively. Explicit expressions for the truncation error can be written down. In the
case of the Poisson equation, for h sufficiently small, the descretizations are of positive
type, hence the discretization error is of the same order as the truncation error. This
result also holds for the Helmholtz equation, as shown by Boisvert [6].

Conclusions. A method for obtaining high order difference formulas for linear
partial differential equations has been described. For equations with constant
coefficients and also for equations in which the coefficients are polynomials of low
degree, the difference equations are the same for every mesh point for which the
mesh elements are similarly shaped. In the case of irregular mesh points, it is necessary
to determine the difference formula for every mesh point by solving a system of
equations. This involves extra computational effort which can be justified in view of
the accuracy attained. Estimates of the number of operations required in deriving the
difference equations and then solving them have been given by Lynch and Rice [4].
The operation count in our procedure is not the same, but we expect the order of
magnitude to be the same.

The difference equations we obtain by our method are the same as those obtained
by the procedure of Lynch and Rice for the Poisson equation but our method of
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Problem El

Problem Fe

Problem F3

TABLE 3
Classical versus "improved" formulas

h Classical (10) (11)

1/3 .2326 .9860E-2 .5751E-1
1/6 .8538E-1 .2527E-2 .5840E-2
1/12 .2405E-1 .3931E-3 .6599E-3
1/24 .6320E-2 .5477E-4 .7953E-4

1.93 2.84 3.05

1/3 1.674 .4941 .4196
1/6 .7181 .9912E-1 .6548E-1
1/12 .2186 .1546E-1 .8187E-2
1/24 .5922E-1 .2110E-2 .1096E-2

1.88 2.87 2.90

1/3 .2410 .1369 .1040
1/6 .7715E-1 .2513E-2 .1302E-1
1/12 .2084E-1 .3600E-3 .1693E-2
1/24 .5378E-2 .4780E-4 .2166E-3

1.95 2.91 2.97

derivation is quite different. It is possible to predict a priori the maximum number of
nodal values required in the difference formula to attain a certain order of accuracy.
Another important feature of our procedure is that we avoid the use of the nodal
values of the coefficient functions at least when the difference formulas are derived.
The option of using these values if necessary is exercised independently. All the other
conclusions and generalization remain the same as given by Lynch and Rice.

A computer program for second order elliptic equations with constant coefficients
has been developed using the technique described here. For a given degree, the
program requires coordinates of a certain number of grid points for collocation. In
the case when the system of equations for the determination of the difference formula
is singular, a different selection of grid points is called for. The program also checks
for the lowest degree for which the formula is not exact. In this way, questions of
consistency can be answered.
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A FINITE ELEMENT METHOD FOR GAS CENTRIFUGE FLOW
PROBLEMS*
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Abstract. A finite element method for the approximate solution of the flow in rapidly rotating gas
centrifuges is presented. The model equations to be discretized are derived using, in particular, the Onsager
pancake approximation. Various analytic and computational features of the finite element method are
discussed and a series of illustrative numerical examples are given.

Key words, finite element method, gas centrifuges, Onsager equation

1. Introduction. Worldwide, gas centrifugation is one of the most popular means
by which to enrich uranium in its fissionable isotope. Naturally, the nature of the fluid
flow within the centrifuge largely determines the efficiency with which the centrifuge
separates the different isotopes. In the past, this flow has been calculated by a
semi-numerical technique based on solutions by eigenfunction expansion methods of
the Onsager "pancake" model equations [11], [12]. The need for a more flexible
means of calculating the flow field results in the need for developing a fully numerical
solution technique. In this paper, we describe a finite element method for solving the
Onsager pancake equations in the case where the flow may be driven by sources of
mass, momenta or energy, or by boundary phenomena such as temperature gradients
or mass flows introduced at boundaries. A simpler version of this finite element
method, which applies to flows without sources, has been presented in [6].

The plan of this paper is as follows. In 2, we describe the Onsager pancake
model, concentrating on the development of the model to render it suitable for
discretization by a Galerkin finite element method. The latter is described in 3 and
4. Numerical results are presented in 5.

Before proceeding, we point out that the pancake model is a linear steady state
approximation of the compressible viscous flow inside a gas centrifuge. Another
numerical technique for approximating this flow field in the presence of sources is
given in [2]. Their technique retains some of the nonlinear character of the governing
equations and uses a time-dependent algorithm for marching to a steady state. A
survey of source free models for the flow in gas centrifuges is found in [9], where
other numerical techniques for such problems may also be found.

2. The Onsager pancake model with the Carrier-Maslen boundary condi-
tions. The derivation of the Onsager pancake equations and the Carrier-Maslen
Ekman layer boundary conditions differ in some of their details from that found in
[11]. The two derivations yield equivalent problems and the formal differences in the
present derivation are motivated by the desire to make the resulting problem more
immediately amenable to discretization by a Galerkin finite element method.

Let (r, 0, z) denote cylindrical coordinates with the origin located at the bottom
of the centrifuge, which we take to be a right circular cylinder, and on the axis of
rotation. The z-axis coincides with the axis of rotation while the r-coordinate measures
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the perpendicular distance from this axis. If the fluid is isothermal and rotates as a
solid body, then the velocity components in the (r, 0, z) direction are respectively
given by 11]

U-0, V=fr, W=0,

and the pressure distribution is given by
2

where 12 is the angular velocity of the cylinder, Pw is the pressure on the wall of the
cylinder, a is the radius of the cylinder, A--a/(2RTo)1/2, R is the specific gas
constant, and To is the uniform gas temperature.

We assume that the flow in the centrifuge is a small perturbation from the above
isothermal solid body rotation. This enables us to linearize the equations of viscous
compressible flow. Furthermore, we assume that the rotational speed is high enough,
i.e., AE>> 1, SO that most of the fluid is found very near the wall of the cylinder, i.e.,
r a. This enables us to set r a whenever r appears algebraically in the governing
equations. Third, we assume that away from the Ekman layers adjacent to the top
and bottom of the cylinder that the axial diffusion terms are negligible. Finally, we
assume that the flow is axially symmetric.

Using these four assumptions, the equations of viscous compressible flow reduce
to (see [11] for details)

(2.1) e-Xwy 2A 2(e-"u ), [/[,

(2.2) 4 (eP ), +e

(2.3) bx
ReS
A4 e-u (-- 2U)

8A6

(2.4) py =-eW + /42

(2.5) -4A4Hxx -Hyy 4A4[-+ 2(S- 1)7/’]

where (u, to, w) are the perturbation velocities in the (r, 0, z) direction, respectively,
p is the pressure, b 0 2to andH 0 + 2(S 1)to where 0 is the temperature, y z/a
and x =AZ(1-r2/a2). [/[, all, U, and Y are nondimensional sources of mass, the
three momentum components, and energy, respectively. In (2.1)-(2.5) all variables
have been nondimensionalized, using fla for the velocity components, pw for the
pressure, To for the temperature and the wall density, pw, for the density. The constants
appearing in (2.1)-(2.5) are the Reynolds number Re=owla2/tz and S=
1 +PrA:(3’ 1)/23, where Pr=c,/k is the Prandtl number and and Cp are the
viscosity and specific heat at constant pressure, respectively. We note that x measures
distances from the wall of the cylinder in "scale heights", i.e., e-foldings, of the ambient
density p pw exp (-x).

We now introduce a function satisfying

(2.6) e-Xu -tOy + ell (, y) dj

and

(2.7) e-w -2A2,,
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where xr is chosen large enough to accurately simulate the flow as x oo. Note that
if =0, then 4’ is the usual streamfunction, while if 0, we view as being a
"convenient" function. Eliminating the pressure between (2.2) and (2.4) yields that

8A6

(2.8) 4y (ew) + (etCe) + eXally.

Substituting (2.6) and (2.7) into (2.3) and (2.8) yields that

Re S Re S f"j//(, y) d_(_2oU)(2.9) 4 A4 "l//y 2A6

and

(2.10) 4
16A 8

Re
(e (e’O),,,,), + (e"7),, + e X?ly.

Eliminating & between (2.9) and (2.10) yields that

ReZIxXr(e(eOx)) +B2OY 32----- Xr(sc’ y) d(
(2.11)

Re
[(ey,CA),x, + (eXOg+

16A8 )yxx + (.Y- 2)y],

where B Re ,a/2/4A6. We now introduce the "master potential" X satisfying

(2.12) -2A2xx
into (2.11) and integrate the result from x to xr. Assuming that X and all its derivatives
are negligible as x - xr, we arrive at

(e* (eXXxx )** )** +BZxyy =F(x, y) forO<x <XT andO< y< YT(2.13)

where

(2.14)

F(x, y)---
32A lo (eX/Y’) + (e )y + (2U ff)y d

B2 IxX I,x ./tl y d, d,
and where yr is the location of the top of the cylinder. Equation (2.13) is the Onsager
pancake equation and is equivalent in form to that used by [11].

We now examine the boundary conditions which the master potential X should
satisfy. First, at the "top of the atmosphere," we assume that u w w 0 0, i.e.,
that the radial velocity and the normal derivative of the azimuthal and axial velocities
and of the temperature vanish. Then, by (2.7) and (2.12), we have that

(2.15) L3X(XT, y)=0 for0<y <yr,

where

(2.16) L3X

Further, since 4 =0-2w we have that b(xr, y)=0. But (2.10), (2.12) and (2.13)
combine into

Re ,t’yy + Re
F(x, y) + (e/g) + (eXy).
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Integrating with respect to y yields that

32AlB2
4,, (x, y) 4x (x, 0)

Re
[Xy (x, y) Xy (x, 0)]

(2.17)

fo { 32A lF(x, "o + [eX14/’(x, "O )]x,, + [eR, (x, "o )]x} drt.+
Re

Evaluating at x Xr and assuming that all sources vanish identically in a neighborhood
of x Xr, yields that

Xy (XT, y) KI
where K1 is a constant. Integrating with respect to y yields that

X(XT, y) =Kly +K2
where K2 is also a constant. Without loss of generality, we may choose K1 K2 0.
First, K2 0 because the variables of physical interest only involve derivatives of the
master potential X. We may takeK 0 since all variables of interest except b involve
an x derivative of ,V and by (2.17), 4x depends only on the difference ,t’y (x, y)-x’y (x, 0),
which is again independent of K1. Therefore, our second boundary condition at x XT
is that

(2.18) X(XT, y)=0 for0--<Y----<YT.
The condition u 0 at x xr and (2.6) yields that

y(Xr, y) 0

or that

t(XT, y K3
where K3 constant. Setting the streamfunction to be zero at the top of the atmosphere
then yields that K3- 0 and thus, through (2.12), that

(2.19) X,(xr, y)=0 for0=<y-<_yr.

At the wall of the cylinder, i.e., x 0, we assume that the velocity components
vanish and that the temperature gradient along the wall is prescribed. From (2.10)
and (2.12) we have that

32A
(2.20) by(0, y)= R----Lsx(0, y)+(eXr)(0, y)+(e’Ry)(0, y)

where

LsX (e (eXx)).

Furthermore, since b 0 2to and to (0, y) 0, we have that by (0, y) 0y (0, y).
Assuming that the sources 7#" and 0?/vanish in a neighborhood of the wall x 0, we
then have from (2.20) that

Re dOw
(2.21) Lsx(O, y)=f(y)-- for 0< y < YT32A 10 dy
where dOw/dy is the prescribed wall temperature gradient. Now, since w(0, y)= 0,
(2.7) and (2.12) imply that

(2.22) Xx (0, y) 0 for 0 < y < yr.
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Finally, we have that u(0, y)=0, so that by (2.6) and (2.12),

1 f0*l(sc, y) rise.(2.23) Xxy (0, y)

Integrating with respect to y from 0 to y yields that

1
(2.24) X,, (0, y) X, (0, 0)

If we integrate (2.23) from y to YT, we then have that

Ifo*/l(,l)dd.(2.25) X,(0, y)= X,(0, Yr) + 4----
Combining (2.24) and (2.25) yields that

fo Iolt(’ rt) ddrl X,,(O, 0)-Xx(0, Yw).
(2.26) 1 Y

4A4

Since Xx =-,/2A2= (e-Xw)/4A4 we have that

or, by (2.19)

4A4Xx (0, O) e (x, O) dx +X, (XT, O)

-jo
r

(x, 0) dx,(2.27) 4A4, (0, 0) e-*#

where e-*# (x, 0) is the axial flow through the boundary y 0. Similarly

(2.28) 4A4Xx(O, YT)=- e (x, Yr)dx.

Combining (2.26)-(2.28) yields that

*J//(, r/) ddy *e-*[r(x, yT)--I(X, 0)]dx

which, since e is the nondimensionalized ambient density, merely expresses the fact
that the mass introduced into the flow field by sources equals the mass exiting from
the flow through the boundary. Now, if we combine (2.24) and (2.27), we arrive at
our last boundary condition at x -0, namely that

fo n dn fo’ re (x, O) dx
1 1

X,(0, y)= G(y)=
4A4

(2.29)
for 0 < y < yr.

To complete the specification of the problem, we need only determine appropriate
boundary conditions at the top and bottom of the cylinder, i.e., y YT and y 0,
respectively. We recall that in deriving (2.13) that we have neglected all axial diffusion
terms so that (2.13) does not adequately model the flow in the Ekman layers adjacent
to the top and bottom of the cylinder. We would like to prescribe u, to, w and 0 at
these locations, but due to the absence of axial diffusion in our model, we are unable
to do so. However, Carrier and Maslen [1], [11] have developed through a series of
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consistent approximations, a relation among the flow variables which replaces the
details of the flow within the Ekman layer. This relation holds outside the Ekman
layer, but in a manner consistent with our linearization procedures, we may impose
the Carrier-Maslen relation at a physical boundary, e.g., y 0.

At y 0, the Carrier-Maslen relation takes the form [11]
--4eX/2S3/4 Rex/2 [if(x, 0)-(x, 0)] b (x, 0)-(x, 0)+ 2Sl/2a(x, O)

where the overbars denote quantities specified at the wall y 0. Differentiating with
respect to x, recalling that 4 0- 203 yields that

(2.30)-4S3/4 Rex/2 [(e/2O(x, 0))-(e/2(x, 0)),,] b,, (x, 0)- (x, 0)+ 2S1/2fix(x, 0).

Combining (2.9) and (2.12) and then integrating with respect to x yields that

6x(x, y)-x(X, y)=
2ReS
A2-[x,(x, y)-x(x-, y)]

Re SII’jj(:, )d(,d(+Ix’+2-- Y (T- 2 )(se’ y) dse"

Evaluating at y =0, assuming that the sources vanish there, and recalling that
4x (XT, Y)= 0 and Xy(XT, y)= 0, yields that

2ReS
(2.31) 4x(x, 0)= A2 Xy(x, 0).

Now, from (2.7),

Ix - Ix (,, 0) d"
1 _ff 1 _ff(2.32) O(x, 0)= (XT, 0) +-, e (s, 0)d: e

since we have set (XT, y)=0. Combining (2.12), (2.30)-(2.32) then yields that

O2,’y (x, 0)+ 2AB3/2[eX/2xx(x 0)]x go(x)

Re B= 32Al4’x(x’ O)+-ax(X, O)

(2.33)

B3/2[-,,ge x/2 IxXe-’ (so, 0)dsc] for 0 <x <xr

where 4, t7 and ff are the prescribed combination of temperature and angular
velocity, radial and axial velocity components, respectively, at the bottom of the
cylinder.

Similarly, at the top of the cylinder, we can derive the condition

B2Xy(x, YT)-2AB3/2[eX/2Xx(X, YT)]x g(x)

(2.34)

Re B
32A

10tx(X’ YT) + 4--/Jx (X, YT)

B3/212A- ex/2 I,xe-(’ yT)dsC] frO<x <xT"
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The statement of the problem governing the master potential X is now complete.
satisfies the differential equation (2.13) and the boundary conditions (2.16), (2.18),

(2.19), (2.21), (2.22), (2.29), (2.33) and (2.34). Once ,V is determined, we may recover
u, and w by differentiating X, i.e.,

0 -2A2,x, w 4A4,,xx, u 2A,g +2-

and 0 are given by

H-4) H+(S- 1)(b
to=------ and 0=

2S S

Now 4) is determined from X through integrating (2.8) and (2.9). To determine H we
must solve the differential equation (2.5) with the following boundary conditions. At
x 0, to 0 so that H(0, y)= 8,(y) where 0, is the prescribed wall temperature. At
x XT, t0x 8x 0 SO that H (XT, y)= 0. At y 0 and y YT, 05 and 0 are prescribed
so that H(x, O)= O(x, 0)+ 2(6’-1)th(x, 0) and H(x, yr)= 0(x, yr)+ 2(S-1)th(x, yr),
where again the overbar denotes a prescribed quantity. This completes the specification
of the problem for H(x, y). We will not consider this problem any further here except
to note that it is a standard second order elliptic boundary value problem whose
solution may be approximated by the use of standard finite element methodology 10].

3. Weak formulation. The finite element method described in 4 will be a
discretization of a Galerkin formulation of the governing problem for X. The latter
is derived in this section.

We begin by multiplying (2.13) by a smooth function ; and then integrating the
result over the domain D {0 < x < XT, 0 < y < Yr}. Then we have that

"{(eX (eXx"’ )xx )xx + BZgYY F} dx dy =0.

Integrating the first term by parts three times with respect to x and the second term
once with respect to y then yields that

(3.1)

" +F,} dx dy B:{x,}I={(L,)(Lx +B ,’(yXy

{Lx e XL4x + e xI-, 3,,1(}1 x=o dy 0

where the differential operators L3 and L5 are defined in 2 and where L4 is defined
by

L4X (eXxxx )xx.

We now substitute the boundary conditions (2.16), (2.21), (2.23) and (2.34) into (3.1)
and require that

ix(o, y)=/,x(O, y) =/(x, y)=;x(X-, y)=o.
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This results in

YoY {(L3,)(L3x)+ BZ,yXy +F,} dx dy

Io-2AB3/2 2(x, yr)[e"/2Xx(X, yr)]x dx

-2AB3/ 2(x, O)[e/(x, O)]&

+ f(0, y)f(y)dy- {g(x)f(x, yr)-go(x)f(x, 0)} dx =0.

Finally, integrating the second and third integrals by parts once with respect to x, and
recalling that (x, y)= 0 and (2.29) yields that

2. 2AB3/2 /2x{(L3f)(L3x) +B XyXy} dx dy + e (x y)Xx(X, y) dx

+ 2AB/ e/2x (x, O)x (x, O) &
(3.2)

F& dy +2A3/2 (x, y)g(x)--d(X, 0)g0(x)} &

0

yT

We have not made use of the boundary conditions

X(XT, y)=Xx(XT, y)=Xx,(O, y)=O and Xx(O, y)=G(y) forO<y

These must be explicitly imposed on the trial functions X(x, y) as the conditions
X’x(0, y)= X’xx(0, y)=,(XT, y)=,x(XT, y)=0 were imposed on the test functions
,(x, y). These are the essential boundary conditions for the problem, while the boundary
conditions L3X(XT, y)-0, LsX(0, y)=f(y) as well as (2.33) and (2.34) are natural
boundary conditions.

We next define function classes in which we will seek our solution X and in which
we will choose our test functions ,. We let (D) denote the space of functions with
three square integrable derivatives in the x direction and one square integrable
derivative in the y direction; i.e., if X (D), then

and

\Oxl]
dx dy < oo for/" =0, 1, 2, 3

y} dxdy< fork=0,1.

The space Yf(D) is an anisotropic Sobolev space in the sense of Nikol’skii [7]. We
also introduce the subspaces of (D) defined by

I(D) {X )(D)" Xxx(O, y) X(XT, Y) Xx(XT, Y) 0}

and

2(D) {X E I(D)" X,, (0, y) 0},
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the bilinear form

(3.3)
+2AB3/ e/{X(x, yr) (x, yr)+X(x, O)x(X, 0)}dx

and the linear functional

-(d) F, dx dy ,(0, y)f(y) dy

(3.4) -2AB3/2{,(0, yr)G(y)+d(0, 0)G(0)}

+2AB/ {(x, yr)g(x)-(x, 0)go(x)} dx.

Then our weak formulation is given by the following problem. We seek a function

X e (D) such that X(0, y) G(y) and (3.2) holds for all e o@(D), i.e., we seek a

X e (D) such that

(3.5) X, ) ’-() / e 2(D)

and

(3.6) Xx(0, y)=G(y) for0<y <y,.

By retracing the steps that led from (2.13) to (3.2), it is easy to see that if X satisfies
(3.5) and (3.6) and is smooth enough, then X satisfies (2.13) and all boundary conditions,
i.e., smooth solutions of (3.5) and (3.6) are classical solutions. On the other hand,
(3.5) and (3.6) admit solutions which are not smooth enough to be classical solutions
of (2.13). These weak solutions are important because it allows us to find solutions,
in a generalized sense, of (2.13) when the data f(y), go(x), gl(x), G(y) and F(x, y)
are not smooth enough for classical solutions to exist.

Eastham [5] has shown, for a problem similar to the one considered here, that
the bilinear form (3.3) is bounded and coercive on 2(D) 2(D). Furthermore, for
smooth enough F, G, f, go and gl, the linear functional (3.4) is bounded on 2(D).
These guarantee, by the Lax-Milgram theorem, the existence and uniqueness of the
solution X (D) of (3.5) and (3.6).

It is the weak formulation of the problem, given by (3.5) and (3.6) whose solution
we will approximate by a finite element method.

4. The finite element algorithm, In order to define our approximate solution,
we need to define sequences of finite-dimensional subspaces of Y(D), parametrized
by a parameter h such that h tends to zero. For us h is simply a measure of the grid
size. The requirements that X possess three LZ-derivatives in x and one in y leads us
to require that (D) must consist of C(0, xT) functions in x and C(0, yT) functions
in y. We therefore will approximate with cubic splines in x and linear splines in y.
Specifically, let

(4.1) 0 Yo < Y <" < YN YT

and

(4.2) O xo < x < < xt XT

be partitions of the intervals [0, y] and [0, x,], respectively. A point (xi, y.), 0 =<M,
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0<=/" _<-N is called a node. We define the space of linear splines L(0, yT), with respect
to the partition (4.1), by

L(0, yT) {/(y) C(0, y-);/(y) is a linear polynomial
in each subinterval [y., y+l],/" 0, , N- 1}.

The basis set for L(0, yT-) consisting of functions with minimal support is the set/j(y)
of hat functions depicted in Fig. la. Similarly, we define the space of cubic splines
S(0, x), with respect to the partition (4.2), by

S(0, x) {s(x) C2(0, xT-); s(x) is a cubic polynomial
in each subinterval [xi, Xi/l], 0, , M- 1}.

A basis set for S(0, xT-) consisting of functions of as small support as possible is the
set of B-spline functions si(x) depicted in Fig. lb. To properly define this set, fictitious

(y)

Yj-1 Yj+I

si(x)

(a) (b)
FIG. 1. Basis ]’unctions for finite element spaces. (a) The hat function/i(y) C(0, yT-). (b) The B-spline

si(x) C2(0, x-).

nodes should be added outside the interval [0, xT-]. For details of the construction of
both the hat and B-spline basis functions, see [3], [6]. We note that dim (L(0, y))=
N + 1 and dim (S(0, xa)) M + 3.

The basic finite element space we will use to approximate (3.5) and (3.6) is the
tensor product of the one-dimensional spaces L(0, yT) and S(0, xT-). Specifically, we let

M+I N

sh h hx (x, y); x (x, y) E Y. c,6 (y)s, (x)
i=-1

where/i(y) L(0, yT-) is one of the hat functions, si(x) S(O, xT-) is one of the B-spline
functions, and cii are a set of coefficients. That S h is a subspace of (D) is shown in
[5]. We then have that dim (S") (M + 3)(N + 1) and that the set

(4.3) X(x,y)={li(y)si(x)}, k=j(M+3)+(i+2) for-a<-_i<-_M+l, 0<=j<=N

is a set of basis functions for S h. Our parameter h is defined as

h max (h 1, h2)

where

hi max Ixi+,-x,I and h2 max lyi+l-yj].
O<=iM-1 O</’<N-1

We also define the subspaces

s", ={x" s"., X",x(O, y) x"(x, y) xa(x-, y)=O}



88 M. D. GUNZBURGER, H. G. WOOD AND J. A. JORDAN

and

The basis functions (4.3) can be constructed so that the set {Xh} for k=
j(M+3)+(i+2), l<=i<-M-1 and O<=f<=N, are a basis set for $2h. We have that
dim ($2h) (M- 1)(N + 1). (The space $1h will only be used when G(y) # 0, i.e., when
one of the essential boundary conditions is inhomogeneous. We treat this case separ-
ately below.)

In the case of G(y) 0, our approximate problem is given by’ seek a X
h e S such

that

(4.4) (xh, ,h) -(/ h) /h e S2h.
It suffices to choose , =X/h for l=j(M+3)+(i+2) for l<=i<=M-1 and O<-j<=N.
Then (4.4) is equivalent to the matrix problem

(4.5) Ac=b

where

(4.6) A,, (xh, x), 1 <-_r,s <-(M-1)(N+I)
where k=j(M+3)+(i+2), r=j(M-1)+i, l=j’(M+3)+(i’+2) and s=
j’(M-1)+i’. Here i,/" and i’, j’ are node counters, as are k and l, while r, s count
only those nodes whose associated coefficient cii is not determined, by the essential
boundary condition, to vanish. The (M- 1)(N + 1) vector e has components cs ci,r,
while the (M- 1)(N + 1) vector b has components br ’(x/h). Since the bilinear form

(X, ,) is symmetric and coercive on 2(D), the matrix A is symmetric and positive
definite and thus the existence and uniqueness of the approximate solution is assured.
In (4.3) we have used a node numbering system wherein we sweep in the x-direction
first, then in the y-direction. Then the half bandwidth of the matrix A is given by
(M + 2) while A has (M- 1)(N + 1) rows and columns.

The case of G(y)# 0 is treated in an analogous manner. We note that G(y)= 0
unless we have mass sources and/or the net mass flow through the top or bottom of
the cylinder is nonvanishing. When G(y) # 0, one of the essential boundary conditions
is inhomogeneous. We first approximate G(y) by its interpolant in L(0, yT), i.e., we let

N

(4.7) Gh(y) G(y.)/(y).
i=0

The approximate problem we solve is given by: seek a X
h e Sh such that gh(0, y)=

G"(y) and (4.4) hold. Now, the application of the former and the homogeneous
boundary condition Xxh(o, y)= 0 enables us to determine the coefficients cii for

h-1, 0 and 0 =</" =<N, in the expansion of h’ in terms of the basis functions (4.3). In
fact, our approximate problem is again equivalent to the matrix problem (4.5) with
A given by (4.6) and the vector e defined as before. However, now the right-hand
side vector b has components

(4.8)

where

b, (g)-, (,, X)

N

(4.9) (x, y)’-- E {C-ljS-I(X)qt-CojSo(X)}Ij(y)
/=0
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and C-lj, c0] are the solution of

(4.10) ,x (0, yi)=Gh(yi)=G(yi)=C-ljS’-l(O)+cojs(O),
(4 11) xx(O, yi)=O=c-ljs "- (0) "[- Co,So (0)

for 0<_-/" <_-N. Clearly, if G(y)=0, then c0. =c_li =0 and the remaining problem for e
is identical to the one prescribed before.

Using this finite element method, the expected rate of convergence for smooth
solutions h’ and its derivatives, which are related to physical quantities, is given by [6]

(4.12) Ilx -xhll- O(h 2),
(4.13) [[ -(--2A2xh)II 2A=llx --xhll O(h 2),
(4.14) ii(e-w) 4 h h 2)-4A x,ll=4m41lx-xll-O(h

h(4.15) Ilx, -x,ll-- O(h)
where 2A2h,xy e-Xu when J//=0, and is otherwise related to u by (2.6). In (4.12)-
(4.15),

Ilxll- x dx dy

14 13 12 11 10 9 8 6 5 4 3 2 0
SCALE HEIGHTS

x

Y/Yr

FIG. 2. Lines of constant O for a source of radial momentum located at x 8 and Y/Yr 0.5.
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1.0

0.9

0.8

0.7

0.6

Y/Yr
0.5

0.4

0.3

0.2

o.1

14 13 12 11 10 9 8 7 6 5 4 3 2
SCALE HEIGHTS

x

0.0

0

FIG. 3. Lines of constant O for a source of axial momentum located at x 8 and Y/YT 0.5.

Sample computations illustrating these rates for problems whose right-hand side F
and inhomogeneities in the boundary conditions f, go, gi and G are contrived so that
a smooth exact solution X is known were reported on in [6]. In 5 we report the
results of other computations, using a variety of data which induce secondary flows
in a gas centrifuge.

5. Examples. In this section we wish to present the results of numerical computa-
tions for different choices of data F, G, f, go and g l. Since our problem for X is a
linear one, the principle of superposition may be applied, and thus complicated flows,
driven by a variety of sources and boundary conditions, may be constructed by
superimposing simple flows. Here we consider a variety of such simple flows, each
driven by a different mechanism. For all cases, we present, in Figs. 2-6, level lines
for h (X, y) -2A2/,h (X, y When 0 these level lines are identically streamlines
If ((x, y) 0 these lines are essentially streamlines only for those values of y such
that J//(x, y) is negligible.

Two simple cases for which F 0, i.e., no sources, and G 0 were reported on
in [6]. The first case was F G go gl 0 and [ corresponding to a linear wall
temperature distribution. Indeed, in this case is a constant. The second case was
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F G f 0 and go and g corresponding to the introduction and removal of mass
through the end caps of the centrifuge at y 0 and y yr. The net mass flow through
each end cap was zero, which implied that G 0. In this work we confine ourselves
to cases in which F and/or G 0.

2 hFigure 2 displays plots of the level lines of Oh(X, y)=-2A X (x, y) for flows
driven by a radial momentum source placed at Xs 8, ys yr/2 for a centrifuge having
the following parameters"

a 9.145 cm, To 300K,

(5.1) YT 36.66, fa 700 m/s,

pw 13.3 kPa.

These parameters were obtained from centrifuges described in [4], [8] and were the
same as those in calculations reported in [6], [11], [12]. The value of Xr 14 is large
enough so that "top of the atmosphere" effects are essentially negligible. The momen-
tum source 0?/was chosen to be the Gaussian

(5.2) So exp {-a [(x -Xs) + (y ys)=]}.

0.0
14 13 12 11 10 9 8 7 6 5 4 3 2 0

SCALE HEIGHTS

FIG. 4. Lines of constant O for a source of azimuthal momentum located at x 8 and Y/YT 0.5.
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A value of a was chosen so that q/(x, y)= 10-6’0 at (x--Xs)2+(y--ys)2= 1. Then So
is chosen so that

In a similar manner, Figs. 3-4 display level lines of O h (x, y) for unit sources of axial
momentum 7g/" and azimuthal momentum 7/. Since in F, 3 and 7/" appear in the
combination -27/" only, a unit energy source would yield contours exactly like those
of a unit source of axial momentum except, of course, with twice the amplitude and
the opposite flow direction. For all these cases, f G go gl 0 and F(x, y) is easily
computed from the source shape (5.2).

Figures 5 and 6 display level lines of h for two cases for which G (y) - 0. In the
first of these, we take to be the Gaussian spike (5.2), and all other sources to
vanish. Half the introduced mass is removed, at each end of the machine, through
orifices located at 5.5 <-x =< 6.5. It is assumed that the outflow through these orifices
is uniform and is in the axial direction. With this information, we may calculate F, G,
go and gl. Here f 0. As an example of what these functions look like in a typical

0.6

Y/Yr

0.o
14 13 12 11 10 8 6 5 4 3 0

SCALE HEIGHTS

x

FIG. 5. Lines of constant h for a source of mass located at x 8 and y/yr 0.5. Half the mass is

removed at each of the top and bottom ends of the centrifuge.
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case, we list them for this particular example:

F(x, y)=
4A4 (Y -Ys) exp [-a(y -ys)2]

{(x xs)E(x. xs)

1
G(Y) 8A4

1
-(x Xs)E(x Xs +-[exp [-a (xr Xs)2] exp [-a (x Xs)2]]},

Socr {E(x.-Xs)+E(Xs)}{E(y-ys)+E(ys)},16A4a

go(X g (X)
B3/2 (1, O_-<x _-<5.5,

8A3 eX/2 l(x 8.5), 5.5 < x < 6.5,
0, 6.5 <x <XT

where E(x)=erf (x/x). For Fig. 6, we place a Gaussian mass source at (8, 3y7-/4)
and a mass sink of equal strength at (8, y7-/4) so that

//(x, y) So[exp {-a [(x 8)2 + (y 3y:r/4):z]}- exp {-a [(x 8)2 + (y yT/4)2]}].

1.0

0.9

0.8

0.7

0.6

Y/ Y’r

0.5

0.4

0.3

0.2

o.1

0.0

14 13 12 11 10 9 8 7 6 5 4 3 2 0
SCALE HEIGHTS

x

FIG. 6. Lines of constant O [or a source of mass located at x =8 and y/Yr =0.75 and a sink of mass,
equal strength, located at x 8 and Y/Yr 0.25.
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In this case f go g 0 but F and G 0. We again caution that for those y values
for which /(x, y) is not negligible, the level lines of Figs. 5 and 6 are not streamlines.
We note that 1///(x, y)l < 10-6a/7/" for [Y/YT 1/2] < 1/YT in Fig. 5 and for lY/YT 1/41 <
1/yT and [y/yT--3/4[< 1/yT in Fig. 6.

Whenever comparisons are possible, the results of Figs. 2-6 are in close agreement
with those calculated by eigenfunction expansion methods [11], [12]. The time and
storage requirements for the finite element code were also similar to those required
for the eigenfunction expansion method, All calculations were done using variable
grids. These grids were chosen so that points were packed in regions where the data
has steep gradients, e.g., near the center of a source (Xs, ys), or where the solution is
expected to have steep gradients, e.g., in the boundary layer adjacent to the wall
x 0. The particular calculations reported used M 40 and N 21.
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NUMERICALLY STABLE SOLUTION OF DENSE SYSTEMS OF
LINEAR EQUATIONS USING MESH-CONNECTED PROCESSORS*

A. BOJANCZYK’, R. P. BRENT AND H. T. KUNG

Abstract. We propose a multiprocessor structure for solving a dense system of n linear equations.
The solution is obtained in two stages. First, the matrix of coefficients is reduced to upper triangular form
via Givens rotations. Second, a back substitution process is applied to the triangular system. A two-
dimensional array of 0(n 2) processors is employed to implement the first step, and (using a previously
known scheme) a one-dimensional array of O(n) processors is employed to implement the second step.
These processor arrays allow both stages to be carried out in time O(n), and they are well suited for VLSI
implementation as identical processors with a simple and regular interconnection pattern are required.

Key words. Givens method, least squares, linear systems, numerical stability, orthogonal factorization,
parallel algorithms, QR method, special-purpose hardware, systolic arrays, VLSI

1. Introduction. Recently, several algorithms have been proposed for solving a
system of linear equations on a parallel computer. The algorithm of Csanky [1] solves
a dense system of size n in 0(log2 n) time steps with 0(n 4) processors. This is the best
known upper bound on the time complexity of the problem. Since f(log n) is a lower
bound we have a gap of order log n. Unfortunately, Csanky’s algorithm is numerically
unstable [14] and uses too many processors to be useful in practice. Gaussian elimina-
tion without pivoting can trivially be carried out in parallel in O(n) steps using n
processors [5]. If the matrix of the system is not special (e.g., diagonally dominant or
symmetric positive definite) then pivoting is generally necessary to guarantee numerical
stability. With pivoting we need O(n log n) steps and n 2 processors. To avoid the
pivoting problem, Sameh and Kuck [12] (and also Kowalik et al. [7], [8], [11])
proposed the use of Givens transformations to triangularize the matrix of coefficients.
The orthogonal factorization requires O(n) steps with 0(n 2) processors. The factorized
linear system can then be solved in O(n) steps using O(n) processors. Hence, the
algorithm for solving dense system of linear equations requires O(n) time steps and
0(/12) processors, yielding a speed-up of order n 2 over the usual sequential algorithms,
which require 0(n 2) time steps.

However, traditional operation counts do not adequately measure the cost of a
parallel computation. There are many other factors which must be considered when
evaluating the performance of parallel algorithms. One of the most important is the
cost of data transmission. In many papers dealing with parallel algorithms, there is
an explicit or implicit assumption that the time required to obtain a single datum is
negligible. This is not true in practice as every data transfer between processors takes
time. Interprocessor communication must be realized by a network that interconnects
the processors. Any algorithm can be supported by different networks but, in general,
the number of data transfers depends on the topology of the network. With different
networks one can have different execution times for the same algorithm. Thus, one
should decide what kind of network is to be employed and only then proceed to
evaluate the performance of the algorithm. Bearing this in mind, Kant and Kimura
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[6] showed that the solution of a dense system of linear equations can be obtained
in O(n) steps using n 2 mesh connected processors, but their algorithm requires that
the matrix of the system be "strongly nonsingular". The assumption of strong nonsingu-
larity is a severe one as it excludes many interesting nonsingular matrices (e.g. the
identity matrix) and it appears to be no easier to verify the assumption than to solve
the corresponding linear system. Thus, the result of Kant and Kimura [6] is mainly
of theoretical interest.

Kung and Leiserson [10] introduced a new model of parallel computation. The
model takes into account such issues as cost of I/O, control and data transfers. A
point of their work is that one should fit a network to an algorithm in order to obtain
good overall performance. Using a simple and regular network, called a "systolic
array", of 0(n 2) hexagonally connected processors, Kung and Leiserson [10] improved
the result of Kant and Kimura [6] by requiring only that the linear system be solvable
by Gaussian elimination without pivoting. For example, the matrix of the linear system
could be symmetric positive definite or irreducible and diagonally dominant. See Kung
[9] for a general discussion of systolic architectures for various special-purpose compu-
tational devices.

Combining the ideas of Sameh and Kuck [12] and Kung and Leiserson [10], we
introduce a systolic array of 0(n 2) processors which is capable of transforming any
nonsingular matrix to triangular form in 0(n) units of time in a numerically stable
manner. The resulting triangular system can be solved in O(n) steps on an array of n
linearly connected processors. Both processor arrays enjoy regular geometries, and
all processors are similar. As a consequence, cost-effective special purpose hardware
devices based on our scheme could conceivably be built using VLSI technology. For
many applications each processor needs to perform floating-point computations on
words of at least 32 bits. To achieve a throughput of one floating-point operation
every microsecond, present technology would allow only one (or a small number) of
processors per chip, but advances in technology should soon make it possible to put
many processors on a chip.

2. Givens rotations. Our algorithm is based on the orthogonal factorization of
a real nonsingular n by n matrix A (ai),

QA R,

where Q is an orthogonal matrix formed as the product of plane rotations, and R is
upper triangular.

A plane rotation is defined by a matrix
col.

Pi+ l,j i Si row i.

The matrix Pi/l.i applied on the left rotates rows and (i + 1) of A so as to annihilate
the off-diagonal element a/l.j. The parameters of Pi/i, are defined (except in degener-
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ate cases, which are dealt with in 4) by

did (a 2 1/2
i,i + a/2+1,/

Ci aid/did,

Si ai+l,]/di,].

Rows and i+ 1 of the product A ei+l,.iA are given by

i,p ciai,p + siai+l,p

i+l,p --siai,p @ ciai+l,p for p j.

The orthogonal matrix Q is formed as the product of plane rotations Pia such that
the elements of A below the main diagonal are annihilated.

3. Parallel Givens rotations. As some of the rotations Pi.i are independent it is
possible to apply more than one at a time. There are many possibilities. We propose
a scheme that requires N 3n 5 sweeps. Each sweep Qk, k 1, 2, , N, is a direct
sum of plane rotations Pi., where (i,/’) s Lk and sets of indices Lk, k 1, 2,..., N,
are defined by

(3.1) (i,])Lk iff 3(]-l)+n-(i-1)=k, l<=]<i<=n.

Note that Qk is a product of commuting orthogonal matrices Pi,i. The orthogonal
matrix Q is the product of sweeps Qk,

O OO- O.
From (3.1) it follows that if (i, ]) Lk then (i + 3,/" + 1) and (i 3,/" 1) also belong

to Lk provided they are in {(i, ])11 _-<] <i =<n}. The rule of thumb is as follows. Starting
from any element aid, >/’, and moving like a "long" chess knight on the chessboard,
one square left and three squares up or one square right and three squares down
within the lower triangular part of the matrix A, we reach all elements which are
annihilated at the same time as the element aid. This is illustrated for n 8 in Fig. 1,
where all elements annihilated in the kth sweep are denoted by ].
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FIG 1. Ordering of rotations (n 8).
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4. The basic processing element. Two kinds of operations are required for the
transformations Pi,j" determination of the rotation parameters c and s, and application
of the rotation, which is equivalent to

x c x

The operation (4.1) will be referred to as a rotation step.
Thus, we need a processor which is able to determine rotation parameters and

execute rotation steps. In addition to its computing capabilities the processor should
have four connections (two inputs and two outputs) and four internal registers (Rx,
Ry, Rc and Rs). To perform the first operation, the processor shifts data x and y on
its input lines (denoted by X and Y) into registers Rx and Ry (see Fig. 2). Then it

X X

Processor

Y Y

FIG. 2. The processing element.

computes parameters c and s by the following algorithm"

if R 0 then
begin

c:=0;
s:=l

end
else if abs (R)> abs (Ry) then

begin
_x := abs (Rx) sqrt (1 + (Rr/R)2);
c := Rx/x_;
s := R/x_

end
else

begin
_x := abs (R) sqrt (1 + (R/R)2);
c := Rx/_x
s := R/x_

end;

The computed values c and s are stored in registers Rc and Rs, and the new value _x
is made available as output on the output line _X. (The new value y on the output
line _Y is not calculated since c and s are chosen in such a way that y is known to
be zero.) The processor determines the parameters c and s only once, so the contents
of the R and R registers are not subsequently changed. Every subsequent operation
performed by the processor is a rotation step. More precisely, the processor shifts
data on its input lines X and Y into registers R and Ry, then executes the rotation
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step, i.e.,

_x := RxRc + RyRs, y := -RxRs +RyRc
and makes new values _x and y available as outputs on the output lines _X, _Y. There
is a simple finite-state machine which controls switching the processor from one kind
of operation to the other.

Knowing what operations the processor must perform, we define a time unit to
be the maximal time that is necessary for a processor to determine parameters c and
s or to perform a rotation step together with loading and unloading its registers.

It is possible that a rotation will take more or less time than determination of
the rotation parameters. The rotation parameters are determined only once, so the
processors may occasionally be idle. This is a price we pay to guarantee that the whole
system works correctly while keeping the system control relatively simple.

We assume that there is a synchronization mechanism which latches input and
output lines. When processors are connected together, the changing output of one
processor during a time, unit should not interfere with the input to another processor.
Sometimes we shall refer to the operations executed by a processor within one tim
unit as a pulsation (see Kung and Leiserson [10]).

5. Network organization. The systolic array proposed here is made up of a
network of n(n- 1)/2 processors, where n is the problem dimension. The position
of a processor in the network is fully determined by integers and k, 1-< k < _<-n,
so every processor will be specified by a pair (i, k). The processor (i, k) is assigned to
perform the transformation Pi.k.

The network organization has the property that all connections from a processor
are to at most four neighboring processors. More precisely, output line _X of pro-
cessor (i, k) coincides with input line Y of processor (i- 1, k), and output line _Y of
processor (i, k) coincides with input line X of processor (i + 1, k + 1) (see Fig. 3). All
connections form a rectangular grid on a triangle, as illustrated for n 6 in Fig. 4.

There are special "gray" processors or shift registers along the bottom of the
network. A gray processor does not perform any arithmetic. It simply delays data

(i-, k) (i-,k-)

(i,k)

(i+l,k+l) (i+l,k)

FIG 3. Inter-processor communication.
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1"12

r13

FIG. 4. Layout of the processors (n 6).

r14
r15

r
b

I"35

b3
[’45

-.

FIG. 5. Data flow into the systolic array (n 5).
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transmission by one time unit. This is necessary because only every third sweep
introduces a zero in the last row.

Data enter the network through the right boundary, i.e. through the processors
(i, 1), n, n 1, , 2, and leave the network through the left boundary, i.e. through
the processors (i, i- 1), 2, 3,..., n (see Figs. 4 and 5).

6. Operation of the systolic array. Our computational scheme is applied to the
n (n + 1) matrix _A [A, b ], i.e., to the matrix A augmented by the vector b.

In the following description the superscript of a matrix coefficient will usually
indicate the number of plane rotations Pi.k in which this coefficient was involved. By
convention, the coefficients of the original augmented matrix have superscript 0, with
the exception of the coefficients of the last row, which for notational convenience
have superscript 1.

(0) ()The computation is initiated at time - 0, when an-x, and an,1 enter the systolic
array through the right bottom processor, i.e., processor (n, 1). As its first operation,
this processor determines rotation parameters c and s corresponding to transformation
P,,1 as well as computing al,. At subsequent time steps processor (n, 1) performs
rotation steps. At time -= 1, processor (n-1, 1) starts to work. Subsequently pro-
cessors (n 2, 1), (n 3, 1),. , (2, 1) are activated at times - 2, 3,. , n 2. Figure
5 depicts how elements of the matrix are fed into the systolic array. In Fig. 6 we show
four consecutive pulsations of the network.

We now specify the operation of the network precisely by giving the schedule of
processor (i, k), 1 _-< k < -< n. The processor (i, k) (assigned to perform plane rotation
Pi,k) begins its activity at time -= 3(k-1)/(n-i). Its first task is to annihilate the
k-th element of row i. (The first k- 1 elements of rows i- 1 and will already have
been annihilated.) At time - the processor determines rotation parameters c and s

(2k-2) (2k-1)based on data a i-l,k and a i,k and computes the new value of the kth element of
(2k-1) (2k-1)row i-1, i.e. element a i-l,k Then a i-l,k is made available as an output on the

output line _X. Every subsequent operation by the processor is a rotation step. More
precisely, for k </’<_-n, at time 3(k-1)+(n-i)+(f-k) processor (i,k) executes
operations

(2k-1) (2k-2) (2k-1)
ai-1, :- C ai_l, /s ai,

(2k) (2k-2) (2k-1)a i,i ;= -s ai_,i / c x a i,i

(2k-l) (2k)and makes a _,j and a ,j available as output on its output lines _X and _Y respec-
tively. It is easy to check by induction that every processor gets its data at the right time.

It follows from the schedule of the output processors, i.e. processors (i, i-1),
(1)i- 2, 3,..., n, that at time n- 1 the coefficient a ,1 leaves the network. The whole

upper triangular matrix R QA and transformed right-hand side vector Qb are known
at time 3n- 3. Thus we have"

THEOREM 6.1. A dense nonsingular system of n linear equations can be
orthogonally transformed to a triangular system in 3n- 3 time units using a systolic
array consisting of n (n 1)/2 mesh-connected processors.

We still have to solve a triangular linear system. This can be done in 3n time
units, using a systolic array first introduced by Kung and Leiserson [10]. Thus we have"

THEOREM 6.2. IrA is an n n nonsingular matrix, then a linear system ofequations
Ax -b can be solved in 6n +O(1) time units using systolic arrays of n(n- 1)/2 and n
processors.

Remarks. Note that several systems with the same matrix A and different right-
hand side vectors b, b2,"’, b,, can be processed almost as easily as one. The
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-1,1

a(1)n,1

(a) time - 0

(o)
an-2,1

(1) a_)an-l,1 1,2

(1)a n,2

(b) time r

-3,1

n-2,1 an-2,2

(c) time " 2

(1) (0)
an-3,1 an-3,2

a(1) (0)
n-2,2 a n-2,3

(2) (1)
n-1,2 n-1,3

(3) (2)
an,2 an,3

(d) time r 3

FIG. 6. The first four steps.

(o)a n-l,4

(1)a n,4
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computational scheme is applied to the matrix _A [A, b1,"’, b,,] rather than to
[A, b l, and Q_A is obtained in the time 3n-4+m. Similarly, an obvious extension
of our scheme may be used to solve linear least squares problems. Recently Gentleman
and Kung [4] have proposed a different systolic scheme which has advantages over
ours for solving linear least squares problems. In addition, for handling banded matrices
they have proposed a scheme in which the number of processors needed in the systolic
array depends on the band width of the matrix rather than its order.

The error analyses of our Givens process and back substitution process are as
described in Gentleman [3] and Wilkinson [14] for the classical sequential processes.
Thus, we have speeded up the process of solving systems of linear equations and
maintained the numerical quality of the well-behaved sequential algorithm at the
same time. (Singular or nearly singular A can be detected once the Givens triangulariz-
ation of A has been computed, as in the sequential case.) A multiprocessor array
structure equivalent to ours was independently proposed by Gannon [2].

It is worth noting that matrices which are too large for a given systolic array can
be triangularized by first splitting them into blocks. The triangularization time is
O(n3/p:z) where n is the matrix dimension and p2 is the number of processor used,
p<-n.

Sameh and Kuck [12] and Kowalik and Kamgnia [7] present schemes that require
only N 2n-3 "sweeps" using the "short" chess knight move elimination order.
However, the time taken by each of these sweeps is that required to generate the
parameters in a rotation matrix and to perform a rotation. In addition, they do not
consider the cost of data transfers. Suppose that generating a rotation matrix and
performing a rotation each take a unit time, as assumed by the timing analysis of this
paper. Then one can easily see from data dependency relations that our N 3n- 5
sweeps with the "long" chess knight move elimination is the best one can do.

7. Application to the QR algorithm. One iteration of the QR algorithm can be
expressed in the form

factorization phase" QA R,

multiplication phase"

where Q is orthogonal and R is upper triangular. See, for example, Stewart [13].
Our systolic array is capable of performing the factorization phase. While the

matrix A passes through the network, the orthogonal matrix Q is formed as a product
of plane rotations Pi.i. Parameters defining the transformations Pi.i are stored among
the processors of the network. If we do not switch our network to process another
factorization phase, the previously computed orthogonal matrix Q (in multiplicative
form) is not destroyed and remains intact in the network. Now, by passing any other
matrix B through the network, we obtain the product QB.

In the multiplication phase we have to know how to form a product . RQ’.
By applying our systolic device to the matrix R 7" we can easily get ,T= QR .
instead. Now, to complete the multiplication phase it is enough to transpose the matrixr. Thus we need a fast method for matrix transposition. One way to achieve this is
to use a buffer that supports fast two-dimensional addressing.

When we have a systolic array for matrix triangularization and a buffer to support
matrix transposition, one iteration of the QR algorithm is easy to execute. First we
produce the matrix R, then transpose it, form a= QR, and transpose the matrix
,7- to obtain . The cost of one iteration of the QR algorithm performed in this way
is Kn time units. We shall not specify the constant K as it depends on how fast we
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compute matrix transposition. Our treatment of the QR algorithm here is preliminary;
future research is needed to study issues such as shift selection, convergence testing,
etc.
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CALCULATING THE ISOCHRONES OF VENTRICULAR
DEPOLARIZATION*
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Abstract. The inverse problem of electrocardiography is treated by a) the formulation of a suitable
model and a powerful transformation of the time domain; b) regularization techniques using the singular
value decomposition.

The solution calculated from the potentials at the body surface is expressed in terms of the activation
times on the heart surface. Promising results of numerical experiments with simulated measurements errors
are presented.

Key words, electrocardiography, ill-posed problems, regularization
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1. Introduction. In this paper an inverse problem from electrocardiography is
considered. This problem can be stated as: calculate the course of the electrical
depolarization process in the heart from the potentials which can be measured on the
body surface. It is, like many inverse problems, of an ill-posed nature. It leads either
to a Cauchy problem for the Laplace equation (cf. Colli Franzone et al. [1979]) or
to an integral equation of the first kind with a smooth kernel. Both are ill-posed since
small changes in the data may cause nonexistence or arbitrarily large perturbations
of the solution.

In such a situation it is necessary to obtain and exploit additional information to
make the solution better determined. Therefore in our research much effort has been
put into the formulation of a model and a representation of the solution which
incorporates as much physiological knowledge as possible.

Using this model a method is developed for the numerical treatment of the
problem based on regularization techniques and the Singular Value Decomposition.
Numerical experiments show that the method works remarkably well for a model set
up where the heart is approximated by a sphere, and even quite well for a more
realistic heart geometry including the ventricular cavities.

2. Problem description and model ormulation. Electrocardiologists distinguish
different phases in the heart beat cycle, of which we shall consider only one, namely
the electrical activation of the ventricles which, in the electrocardiogram, is represented
by a characteristic waveform known as the QRS complex. During the corresponding
time interval, say [0,T], in which the heart is mechanically at rest, the electrical
activation takes place which initiates contraction of the ventricular muscle.

The activation takes place at a front which moves through this entire muscle
(predominantly inward outward). The resulting electrical activity, as measured at a
distance, can be modeled by a double layer of constant uniform strength situated at
the boundary surface St(t) between tissue that is already activated and tissue which
is not yet reached by the depolarization wave front. In Fig. 2.1 a schematic representa-
tion is given of a cross section of the relevant part of the heart (the atria on top are
not depicted). Marked are Sr(t) and the already activated part of the ventricular muscle
(dotted) at an early time instant and a later one t2 in the depolarization sequence.

* Received by. the editors December 14, 1981, and in revised form October 11, 1982.

" Department of Mathematics, University of Amsterdam, the Netherlands. Present address: Philips
Medical Systems, NMR, HOI, NL5600MD Eindhoven, the Netherlands.
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FIG. 2.1

From observation points outside the heart the double layer on St(t) cannot be
distinguished from a double layer S’r(t) with the same uniform strength and boundary
curve in space (a "deformation" of S,(t), cf. Fig. 2.2), since the difference between
them is a closed uniform double layer which generates no external potential (Courant
and Hilbert 1961, IV. 1.3]).

FIG. 2.2

We can however turn this indeterminacy to our advantage by considering instead
of S(t) its "outfolding" h(t) to the heart surface X (the closed surface given by
endocardium plus epicardium) as an equivalent source (cf. Fig. 2.3). This is of course
equivalent to considering only the boundary curve of S,(t) as it moves over X. Sh(t)
is the part of X that borders already activated tissue at [0, T] (cf. Dotti [1974],
Salu 1978]).

$,(t)
Sh(t)

FIG. 2.3

Since the influence of the volume conductor surrounding the sources can be
treated in a quasi-static approximation (propagational effects are negligible, Plonsey
and Heppner [1967]), the relation between Sh(t) and the potentials v(y, t) on the
body surface y1 can be expressed by means of a Green’s function A(y, x). This
function is defined as the potential at y on Y due to an elementary dipole in x on
the heart surface X, directed along the outward normal on the surface. It also expresses
the effects of the shape and conductivity of the body and of all regions of different
conductivity that are being distinguished (such as lungs and cavities filled with blood).

The surfaces X and Y are closed, regular, orientable surfaces.
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For each fixed x, the potentials A(y, x) on the body surface Y can be calculated as
the solution of the so-called forward problem of electrocardiography, for example by
finite element techniques for the Laplace equation (cf. Colli Franzone et al. [1979])
or a boundary integral approach (Barnard et al. [1967]).

Consider the case of a homogeneous body with conductivity o-. Let voo(y; x) be
the potential that would be generated in an infinite homogeneous medium at y by an
elementary dipole at x directed along the outward normal nx to X"

1 O 1 1 (y- x) nxv(y;x)
47rtr Onx r(x,y) 4r, ly-xl3

A(y,x) is then equal to voo(y;x)+x(y), where X satisfies the following Neumann
problem for the Laplace equation"

AX 0
(2.2)

c3n

inside Y,

v(y;x) on Y,

expressing that (0/0ny )A( y, x)=0 on Y. The integral equation used in the boundary
integral approach follows from (2.2) as

(y, x) 2v,(y x)--
where do denotes integration over the solid angle subtended in y by a surface element
at r, and denotes the Cauchy principal value of the improper integral over Y. For
more details see Cuppen and van Oosterom [1983].

Note that A(y, x) is smooth since x never comes close to y.
Taking into account the orientation of the double layer St(t) corresponding to a

negative, or inwardly oriented double layer at Sh(t), it follows that v(y, t) is equal to
minus the integral of the contribution of all elementary dipoles contained in Sh (i.e.
active) at time t"

(2.3) v(y, t) -f A(y, x) dx, y Y, [0, T].
h(t)

The appearance of the unknown S(t) in (2.3) as the range of integration is not very
convenient for our purpose. We use the fact that for physiological reasons

(2.4) S. (tl) c Sh (t2) if tl < t2

which means that the direction of propagation of the depolarization front does not
reverse. Therefore Sh(t) can be characterized by a continuous function ’(x) which,
for each point x X, yields the time at which the front reaches x:

(2.5) ’(x) inf {t [0, T]lx Sh (t)}, x X.

By means of the Heaviside step-function

rl(u) {0, u<0,
1, u =>0,

(2.3) can be written as

(2.6) Ix A(y, x)lt(t-z(x)) dx -v(y, t), y Y, [0, T].
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Given the potentials v(y, t) for [0, T] and y on the body surface Y or a part
of it, (2.6) constitutes a nonlinear Fredholm integral equation of the first kind for the
"depolarization time" ’(x) on the heart surface X.

3. Properties and transformation o| the basic equation. The following integral
equation is related to (2.6):

(3.1) IxA(y,x)4t(x)dx 4,(Y), Y Y.

This equation can be seen as an equation for a double-layer density on X, given
the potential distribution 4’ on Y. Whenever we encounter an equation of the form
(3.1) or (2.6) we shall assume that a solution exists (a solution usually describes a
source which we know to be physically present).

Let us denote (for convenience) by A also the integral operator defined by

(3.2) (A,)(y) I, A(y, x)O(x) dx, y Y.

The operator A can be written as the product of two operators A1) and A(2), where
A1 produces the potential 4,oo generated by the double-layer source on X in a
homogeneous medium of infinite extent

(AI))(Y) fx p(x) doo(y)

and A is the inverse of a deflated Fredholm integral operator of the second kind
on the surfaces where the conductivity is discontinuous (cf. Lynn and Timlake [1970],
Barnard et al. [196"]]). Since the surfaces may be assumed to be smooth, the operator
A behaves as a compact operator from C[X] to C[Y]. See also the appendix where
a sketch of proof is given of the following property:

(3.3) The null-space N(A) is the space of constant functions on X.

Note that this means that solutions to (3.1) are unique up to a constant, which implies
uniqueness for the solution of (2.6) as expressed by the following lemma.

LEMMA. If V(y, t) is not identically zero then the solution z(x of (2.6), if it exists,
is unique.

Proof. If z and ’2 are both solutions to (2.6), satisfying 0-<-(x)<= T for all x,
then (3.3) yields that for each there is a constant c(t) such that for each x

H(t- ’l(x)) H(t-z2(x))+c(t).

Hence, for each t, H(t-’(x))-H(t--2(x)) is independent of x. Therefore, it easily
follows that if TI(X1)# TI(X2) or T2(X1)#T2(X2) then z(x) z2(x) and TI(X2)’-T2(X2)
(by varying between the two values). Therefore if either rl or T2 is not constant,
then ’1 and ’2 must be equal. If both are constant, (3.3) yields that v(y, t) is identically
zero. U!

The proof of this lemma suggests that z(x) might be calculated in two phases,
first approximating ft(x)= H(t-z(x)) for fixed values of from equations of the form
(3.1) and then calculating z(x) from the obtained approximations. There is, however,
a better way which is based on the observation that equation (2.6) behaves nicely
under transformations in the domain of t. For instance integrating (2.6) over from
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0 to T yields

(3.4)
T T

SO

Ix A(y, x)(T-’(x)) dx

where g(y) is a notation for Ior v(y, t) dt. With (3.3) it follows that

(3.5) IxA(y,x)r(x)dx=g(y), y Y.

Considering (3.5) it turns out that z is determined, up to a constant, by g(y).
This is remarkable because (3.5) employs only the time-integrated measurements t5 (y)
from which one would not expect to be able to calculate the development in time z(x)
of the activation.

A physical explanation of this phenomenon is based on the fact that, in the model
derived, the sources are highly restricted. The source in a point x on the heart surface
is either active or inactive at a certain time, and if it is active, then it has a fixed
strength , and it stays active. Therefore the integrated signal contains a contribution
from x equal to a static contribution corresponding to its fixed strength c, multiplied
by the time it has been active, i.e. (T-z(x)). Consequently, the integrated signal can
be viewed as the potentials one would obtain from a double-layer source on the heart
surface X, with strength c (T-z(x)) in x for all x on X. It is however well known
(cf. appendix) that each double-layer source is determined, up to a constant, from the
body surface potentials; which shows that r can indeed be determined from the
integrated signal.

More general transformations can be applied to (2.6). Consider a continuously
differentiable function f(t) and define

T

(3.6) (y; f) | f’(t)v(y, t) at.
o

Then integrating (2.6) as above yields

(3.7) Jx A(y, x)O(x) dx tT(y f), y Y,

O(x) f(r(x)), x X,(3.8)

which can be used to solve O from (3.7) and subsequently z from (3.8). Of course
several functions f can be used simultaneously, each of them determining a function
0 through (3.7). This gives a system of equations instead of (3.8). Examples of such
sets of functions are the polynomials

I \

(3.9) p(i’(,) {- 1} i= 1,2,...,I
\11

or, inspired on the Laplace transform,

(3.10) f(t)=e -st, s[-S,S].
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In the sequel two or three polynomials shall be used as given in (3.9) with right-hand
sides

(3.11) vi)(y) t(y pi)) ---1 v(y,t)dt.

This leads to a set of equations

Jx A(y, x)O")(x) dx v(i)(y), y 6 Y, 1,. .,/,(3.12)

(3.13) pi)(’(x))=oi)(x), x 6X, i= 1,... ,L

4. Regularization and elimination of indeterminacies. The equations (3.12) and
(3.13) from which ’(x) is to be solved can be written in operator form as

(4.1) AO(i):l) (i), D(i)(’r(x)):o(i)(x), x sX, i= 1,". L

If A0 (i)--
3

(i) is to be solved for fixed (1, 2 or 3 are used in the experiments) the
problem arises that such equations are ill-posed (cf. 1). Fortunately it is known from
physiology that the unknown function - is bounded and smooth (see also 6, note 2),
so standard techniques for the regularization of (4.1) can be applied (cf. Tikhonov
and Arsenin [1977]). First (4.1) is written as a least squares problem and then a
penalty function Ilc0(i)[I is added involving the norm of 0 (i) and/or some of its partial
derivatives to suppress oscillations.2 This leads to the following minimization problem"

Determine a function o<i)(x) that minimizes

(4.2) I[AO <i)- v i)ll2 + o,llCoi)ll2.
The parameter Oi, which must be chosen positive, controls the amount of regularization
(smoothing, filtering). The choice of this so-called "regularization parameter" is
discussed in 5. For positive ai, (4.2) is a well-posed problem if positive el and e2
exist such that IIAA011<IIAoll implies that Ilca011>IIA011. In practice C is formed
as (C’C) 1/2 where C*C is composed as a positive linear combination of the identity
I and components C/*Ci where Ci is a differential operator. If the coefficient of I in
this combination is positive, then C is positive definite and therefore (4.2) is well-posed
for positive ai. Probably, this is also true for combinations not containing I (cf. Locker
and Prenter [1980], Colli Franzone and Magenes [1979] and Colli Franzone et al.
[1979]), but an analysis of this problem is beyond the scope of this research.

Having obtained from (4.2) approximations (i) for 0 (i) for one or more poly-
nomials p<i), an approximation for - has to be calculated. Assume that pi)(t)=
(2t/T- 1)i, 1, 2, 3. Since the null-space of A consists of the constant functions, if<i)
approximates 0 ") up to an unknown constant bi. Ignoring further errors in if<i) leads
to the following set of equations in - and the constants bi"

For the treatment of the actual heart problem (cf. 7) with its special geometry, derivatives on the
surface are not sufficient. The lowest parts of the ventricular cavities are, in three-dimensional space, near
to the lower parts of the outer surface. But measured over the surface the distance between these parts is
large. To reflect the coupling between them which exists in reality, extra terms have to be incorporated in
C reflecting upper bounds for the derivatives of the activation time throughout the ventricular muscle. In
this way points which are close to each other in space are constrained to have activation times which do
not differ too much.
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A useful generalization of the method allows the kernel A(y, x) to contain an unknown
multiplicative positive constant c (the double layer strength which may not be exactly
known). This yields

(4.4) c -1 (i(x) + hi.

If the functions ( in (4.4) are given for 1, 2, 3 it follows that

(4.5) c (d(2(x) + b2) ((1)(x) + bl)2

and

(4.6) (((x) + b1)((3(x) + b3) (d(2(x) + b2)2.
If ff(l(x), (2(x), (3(x) and the constant function are linearly independent, then
(4.6) can have at most one solution for b, b2 and b3 (linear independence already
follows if z(x) attains at least four different values on X). A solution can be assumed
to exist, from which c and subsequently z(x) follow. In the presence of errors the
equations are solved in the sense of least squares. If c is known (as in our experiments)

1 and 2 or 1 and 3 suce for the calculation of

5. The choice of the regularization parameters. The choice of the regularization
parameters a balances the errors introduced by the regularization against those the
regularization attempts to suppress. If the a are chosen too small, the resulting linear
systems are still too ill-conditioned and regularization is ineffective" oscillating errors
dominate the results. On the other hand, if the a are chosen too large, the smoothing
terms are weighted so heavily that too much information is suppressed" the relevant
characteristics of the solution are lost.

Presently, no satisfactory general solution to the problem of how to choose the
a is available, although some progress has been made (cf. Golub, Heath and Wahba
[1979], K6ckler [1974]). The present problem formulation has the unusual property
that a choice can be made on the basis of an additional equation. In practice namely
only two of the independent equations given by (3.12) are used to calculate (for given
values of a and a2) an approximate solution z.. Therefore the residual of the third
equation

r, IxA(y, x)p3’(,,(x))dx -v’3’(y)ll
gives a measure for the quality of the regularization parameters a l, a2. In the
experiments presented below, a and a2 are chosen by a minimization of r,. This
yields satisfactory results, although in some experiments r, has one or more local
minima which yield worse results than those obtained for the global minimum.

6. Diseretizafion and implementation. The discretization of (4.2) is performed
as follows. The surface X is approximated by a set of triangles with vertices xi, and
on the surface Y a number of collocation points Yk is chosen (the observation points
where the electrodes are located in practice). For each xi a basis function bi on X is
defined by the conditions that b be linear on each triangle, zero in all vertices x with

], and one in vertex
For each collocation point Yk and each basis function b the matrix element Ak,i

is defined by

(6.1) Ak,i [ A(y, x)b(x) dx.
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Actually the integral Akd is directly calculated from the forward problem with the
source bj(x) (cf. Barnard et al. [1967], Lynn and Timlake [1968a], [1968b], van
Oosterom [1978]). Akd is, of course, a weighted approximation to/k(yk, x]).

A function 0 (x) on X is approximated by a linear combination of the b:
(6.2) O(x)Z Oibi(x), x X.

Consequently, the integral equation (3.12) is approximated by the following linear
system of equations:

(6.3) Ak.flj vi)(yk), Yk Y.

Thus, an approximation of the first term in the minimization problem (4.2) is obtained.
Note 1. It is not necessary that the number of discretization points on Y is larger

than or equal to that on X. Rather the discretization on X should be chosen such
that the smooth part of the solution can be adequately described, and the number of
points (measuring leads) on Y should be chosen according to the number of indepen-
dent potential patterns which can at the given noise level be observed on the body
surface. As in the example with the realistic geometry in 7, this may lead to an
underdetermined system of equations (6.3). However, the elements of the null-space
of matrix A are discretizations of source distributions that yield a zero potential in
all observation points on Y, so it follows from the smoothing properties of A that
these distributions belong to the class of spurious oscillatory source components
discussed above, which are filtered out by the regularization.

The second term in (4.2), the regularization operator, poses a problem in itself.
To approximate this term, one would like to obtain a matrix C such that the C-norm
of the vector 0 (0):

(6.4) IIcoll=---
approximates the norm of one of the derivatives of 0 on X, say its Hessian,

(6.5)

where (s, rt) represent a local coordinate system on X around x.
Note 2. Strictly speaking, neither the gradient nor the Hessian of z exist in points

on the heart surface where the activation starts or where the wavefronts collide.
However, since - can be well approximated by functions for which these derivatives
do exist, and the regularizing operator only plays a modifying role in the inverse
calculation, it is still possible to use the Hessian for regularization. This is advantageous
because higher derivatives in the regularizing operator tend to have more effect on
the dangerous high frequency components in the solution, and less on the low frequency
components which should rather not be modified at all.

Suppose that for each xi and for each partial derivative occurring in (6.5) the
matrix C contains a row giving a difference formula for the derivative on the basis
of value of 0 in x and a number of neighboring points xi on X (this difference formula
can be multiplied by the root of an integration weight for integration over X with
knots xi). Then it is clear that (6.4) is an approximation of (6.5).

Such difference formulae are obtained by first deriving a local coordinate system
(:, rt) around each point x and then performing a formal least squares fit to the
truncated Taylor series around xi. This means that for each discretization point xi on
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X a set of neighbors is chosen. A sphere3 is fitted through xj, as close as possible
through its neighbors (close neighbors weighting more heavily than far ones). The
neighbors of x. are then projected onto the sphere and a local coordinate system with
its origin in xj is derived from the angular coordinates of a spherical coordinate system
with its origin in the origin of the sphere. To obtain a local measure that conforms
to the Cartesian system, these angles are multiplied by the radius of the sphere.

The next step is to consider the Taylor series expansion of 0 around x in the
coordinates s and

Truncating the expansion at some point, and substituting the known values of (, )
for each of the neighbors x of x, yields a system of linear equations for the derivatives
of 0, with the (yet unknown) differences O(x)-O(xi) as right hand sides. By means of
the singular value decomposition a generalized inverse of the known coecient matrix
can be derived which approximates the partial derivatives of 0 in xi in terms of the
function values of 0 in xi and its neighbors.

The difference formulae giving upper bounds for the derivatives in space of 0 (in
reality z is defined throughout the muscle) are analogously derived. Here the set of
neighbors included points across the muscle tissue and the formal Taylor series
expansion is performed in terms of the normal Cartesian coordinates. Thus difference
formulae follow for the partial space derivatives of 0 in x. However, since the points
across the muscle tissue cannot be considered as close discretization points in space,
these difference formulae can only be seen as lower bounds for the derivatives of

Having obtained difference formulae, matrices C are derived, such that
OrCrCO approximates the square of the kth derivative at x. A weighted sum of
squares of the norm of the derivatives on the surface is then obtained by

CC
j,

where and k are weighting coecients.
One further manipulation is convenient which replaces the matrix C in (6.4) by

the matrix L which is a lower triangular Choleski factor of the positive (semi-)definite
matrix CrC. Formula (6.4) is then replaced by

(6.6) (OrLLrO)/.
Often L is a matrix with a relatively narrow profile, i.e. it has many rows starting with
many zeros. This can be used to obtain greater computational eciency.

If the null-spaces of A and C do not intersect then the discretized minimization
problem approximating (4.2) has a solution given by

(i) T)-IA(6.7) o, (ATA +aL (i)

Assuming that L is nonsingular, which can be achieved in our case by adding
l]CrC[l.e.e to CrC (removing the constant vector from its null-space), (6.7) is
equivalent to

-T --1, L (+,) %(’), AL-
This is not a truly quad.ratic approximation since a sphere is not the most general quadratic surface.

However, in the present application the obtained fit is considered acceptable. Moreover, the discretization
of the regularizing operator is not critical.
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and if the singular value decomposition of A is given by

U, V orthogonal, U1, V1 column-orthogonal, then (6.7) is further reduced to
-T VT, =L (vETE -J-olJ)-IvETu% (i)

-1 T T (i)(6.9) -L-Tv(ET,+aiI) , S 19

_-L-TVI(,+aiI)-IE1UL (i)

The decomposition (6.8) can be calculated by a new method described by Cuppen
[1983]. This method calculates the decomposition at approximately the cost of a

.,(i)bidiagonalization of A. The subsequent calculation of e,,, according to (6.9) for a
sequence of values of cti is comparatively inexpensive.

7. Numerical exleriments. Two series of numerical experiments were performed.
In the first a model geometry is used with two spheres, a smaller sphere as a "heart"
lying eccentrically inside the larger one used as "torso" surface. In the second series
calculations are performed using a realistic human heart-torso geometry. In the first
case a reference solution was generated and for the realistic geometry the activation
as given by the measurements of Durrer et al. [1970] was used as a reference solution.
The right-hand sides v")(y) were calculated according to (3.12) and subsequently
perturbed to represent measurement errors as are encountered in practice. The inverse
problem was then tackled with the methods described in this paper and the results
were compared with the reference solution.

The experiments were performed on a CDC Cyber 750 system. Setting up the
equations required, for the realistic geometry, about 3 minutes CP time and 5 minutes
IO time, whereas calculating inverse solutions for 100 choices of the regularization
parameters required 1 minute CP time and 1 minute IO time.

Model geometry. The two spheres with radii and 1 are situated such that the
center of the larger sphere is on the smaller sphere (cf. Fig. 7.1). The conductivities
are chosen to be 0 outside the larger sphere and 1 inside. The spheres are discretized
using 192 triangles and 98 points on the inner sphere, and 128 triangles and 66 points
on the outer sphere.

tr=0

model geometry
discretization inner sphere

FG. 7.1

The 128 centers of the triangles on the outer sphere are used as observation
points yi (cf. 6). The reference solutions generated and the inverse solutions are
given by the activation times "r(xj) at each of the 98 vertices x. on the inner sphere.
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TABLE 7.1
Reference solution, model problem

9.6
15.6 17.4 17.4 17.4 15.6 12.3 8.7 4.5 0.0 4.8 8.7 12.3
20.4 21.9 21.9 20.1 15.3 9.9 4.8 5.1 5.1 9.0 12.6 15.9
19.8 24.0 24.9 24.0 19.5 14.1 9.0 9.0 9.3 9.3 13.2 16.2
23.4 27.3 27.3 23.4 17.7 12.9 12.9 12.9 13.5 13.5 16.8 20.1
23.7 27.0 30.0 27.0 22.8 16.8 16.8 16.8 16.8 17.1 17.1 20.1
25.5 28.8 29.7 25.8 21.0 21.0 21.0 21.0 21.0 15.9 15.9 21.0
22.2 26.1 29.4 28.2 24.3 24.3 24.3 24.3 22.2 17.1 12.3 17.1
24.0 27.0 29.7 27.6 27.6 27.6 27.0 24.0 20.4 16.2 16.2 20.4

24.6

By folding out the small sphere these can be represented as is done in Table 7.1.
Note that this reference solution consists of a primary activation initiated at the grid
point with 0 and a secondary activation starting at 12 in the lower right-hand
corner. The point activated last at 30, is in the middle left. The secondary activation
simulates a phenomenon called a "breakthrough" in electrocardiology. Plots of iso-
chrones on X for this reference solution were generated by orthogonal projection
and linear interpolation and are given in Fig. 7.2 The left-hand plot is a frontal view,
and the right-hand plot gives a rear view.

/"

t" .,’" / / ",.

,.’,, ’, ,.8 //

FIG. 7.2. Reference solution, model problem.

In this experiment (3.6) is applied for the polynomials pl(z) (2-/T- 1), p2(t)
(2z/T-1)2 and p3(’r)= (2z/T-1)3. After calculation of v (1), v (2) and v (3 from (3.11)
these integrated potential distributions are randomly perturbed at the level of 1% of
their respective maxima. The inverse solution is calculated from v (1 and v (2 by
regularization with the Hessian on X. The necessary regularization parameters a and
a2 are chosen by a crude minimization of the norm of the residual r(3)= v(3)-flkp3(’r).
Table 7.2 gives the value of a and a2 used in this minimization, the norm of the
error in -, relative to the norm of the reference solution, and the norm of r(3), relative
to Ilv (311. The calculated solution for the optimal values of a and a2 with respect to
IIr(  ll is given in Fig. 7.3 and Table 7.3.

Comparing the calculated solution with the reference solution shows that the
activation pattern and the activation times are well represented in the results and that
most difficulties lie with the starting points of the activation. These minima are slightly
"flattened out" but are very well recognizable.

It must be stressed that this loose way of evaluating the calculated solution is
justifiable since for medical purposes a qualitative correctness, in particular of the
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TABLE 7.2

t 0/2 rel. err. residual no. of elements with 5, 10% err. etc.

.100E-8 .100E-8 .131 .361082

.250E-7 .100E-6 .465E-1 .552631E-1

.250E-7 .250E-7 .463E-1 .376170E-1

.250E-7 .251E-7 .463E-1 .376012E-1

.100E-6 .100E-6 .421E-1 .566200E-1

.100E-4 .100E-4 .804E-1 .226406

.100E-2 .100E-2 .151 .335900

15 48 20 11 3
61 35 2
58 38 2
58 38 2
66 30 2
44 44 6 3
17 37 21 16 5

FIG. 7.3. Calculated solution, model problem.

TABLE 7.3
Calculated solution, model problem.

10.2
14.4 17.1 18.6 18.0 15.6 12.3 7.8 4.5 3.3 4.2 3.9 6.9
19.5 22.2 22.5 19.5 15.0 9.6 5.4 4.2 4.5 7.5 12.6 16.5
20.1 23.4 26.1 24.3 18.3 13.5 9.0 8.1 8.1 9.3 13.8 17.7
23.4 26.4 27.9 23.4 17.7 13.8 12.6 13.2 12.9 14.4 17.7 20.7
22.8 26.1 28.8 27.6 22.2 18.3 16.5 18.0 18.0 16.2 16.8 19.5
25.5 28.2 29.1 26.1 22.2 20.4 20.7 22.2 19.8 16.5 17.1 20.7
22.8 27.6 28.8 28.2 25.5 24.0 23.7 24.0 22.8 17.7 14.7 16.5
24.9 28.2 28.8 27.6 27.0 27.3 26.7 24.6 19.8 14.7 14.1 18.6

25.2

points of initial activation and of the overall pattern of propagation, would already
be valuable.

Realistic geometry. Based on the cross sections and the activation times of the
heart provided in Durrer et al. [1970] a discretization of the heart geometry was
generated (van Oosterom [1978a]) with activation times as displayed in Fig. 7.4. This
was placed in a realistic torso geometry as described in Oosterom [1978b]. The body
is considered to be a homogeneous medium. As above, transformed body surface
potentials v i)(y) are calculated for a number of observation points y on Y, perturbed
with 1% of the maximum signal and an inverse solution is calculated by the methods
described in this paper. The discretization of the heart consists of 283 points and 562
triangles. The discretization of the torso consists of 320 triangles. For the inverse
calculation the potentials at the 162 vertices of these triangles are used.

The results of the inverse calculation are given in Fig. 7.5. These show a good
qualitative correspondence for the outer surface of the heart (epicardium) but a poor
correspondence for the ventricular surfaces (endocardium).
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Front view

0

Epicard Right ventricle Left ventricle

Rear view

FIG. 7.4. Reference solution.

Front view

Epicard Right ventricle Left ventricle

,.,

Rear view
FIG. 7.5. Calculated solution.
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Two remarks can be made. Firstly, it is not surprising that the activation times
on the epicardial surface are better determined than those on the endocardial surface
since the epicardial surface lies closer to the body surface and the activation as given
is smoother on the epicardial surface. The reference solution which is used here is in
many places rather irregular, especially on the ventricular surfaces. It is, however, the
only measured set of human heart activation data available. Secondly, the calculations
given assume a homogeneous body; the influence of inhomogeneities, as well as of
the discretization still have to be investigated.

The results given are not expected to be the best that can be obtained in the
present approach. The reason for this is that the application and the implementation
of the method requires various choices some of which are known not to be optimal
yet. These choices include the discretization of the heart surface, the relative weight
of the various components in the regularizing operator, and the choice of the poly-
nomials p(i) for calculating the inverse solution and for determining the regularization
parameters. Investigations will proceed on these points.

8. Conclusion. By considering the activation time on the heart surface the inverse
problem of electrocardiography can be stated (for the QRS complex) in a form which
allows both effective regularization and relatively efficient calculations. A transforma-
tion is possible which eliminates the time dimension, so only a few weighted integrals
of the potential at each observation point are needed for the calculation of the inverse
solution. Numerical experiments, in the presence of 1% measurement errors, but
without modeling errors, show that good results can thus be obtained for a model
geometry consisting of two spheres approximating the heart and body surface respec-
tively, and that promising results can be obtained for a realistic heart-torso geometry
and a realistic activation.

9. Allentlix. In this appendix the question of uniqueness of a double layer
Sh X which induces a given potential distribution on the body surface Y is discussed.

Let V denote the (conducting) body, and the surface So denote the boundary of
V (so Y So). It is assumed that V is composed of a finite number of subregions,
namely i) the heart, which is not subdivided, bounded by the surface $1 X; ii) regions
with a different conductivity (such as lungs and cavities filled with blood), bounded
by surfaces Sj,/" > 1; and (iii) the rest of V (cf. Fig. 9.1). The surfaces S.,/" _-> 0 do not
intersect. Further it is assumed that each subregion is isotropic and homogeneous
(constant, scalar, nonzero conductivity), so for each/"-> 0 o-- can be defined as the
conductivity just outside Si and try- as the conductivity just inside S..

The electrical potential u in V satisfies

(9.1) Au =0 in V except on Si,/" O, 1,

On
0 on So,(9.2)

On

+ Ou Ou
(9.3) --=- onS, i>O,

On On

q..(9.4) u =u onSj, i >1,

(9.5) u
/ u- double-layer strength on Sl.
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For physical reasons u must be bounded in V, therefore formula 5.4 from Payne
[1975] can be applied. This yields that if u is given on an open subset E of So then
u is uniquely determined in any sphere $ with its center outside S0 and $ f3 Si Y-, for
all/" (cf. Fig. 9.1).

FIG. 9.1

Note that by giving u on E and Ou/On on S0 (9.2) the problem of determining u
in V has the form of a Cauchy problem for the Laplace equation in V = 113.

Since u is uniquely determined, can be deformed inside S into the volume
conductor. The system with deformed surfaces S and Z (cf. Fig. 9.2) also satisfies
(9.1) to (9.5) and u is determined on E’. Continuing in this manner it follows that u
is determined in V outside S.,/" _>- 1.

So

FIG. 9.2

The statement that u is determined in V outside the surfaces Sj, f >= 1, implies that
u is determined in an outside neighborhood of at least one of the Sj. Now if such a
surface $i is not the heart surface (/" > 1) then (9.3) and (9.4) give that u and Ou/On
are determined on the inner side of Sj. This yields a Cauchy problem for u inside Si
for which the same approach is valid (there may be surfaces Sk inside Si). This gives
unicity for u inside Si and an analogous consistency criterion for existence of the
overall solution.

If u is determined in an outside neighborhood of Sa (as can be achieved in a
finite number of applications of the reasoning given above) u/and Ou/On / are deter-

+mined on Sl. Equation (9.3), possibly with o"1 rl-, yields that Ou/On is determined
on Sl. This gives a Neumann problem for u inside Sl so u is determined up to a
constant inside Sl, i.e. in the heart. Therefore u- is determined on $1 up to a constant,
so (9.5) yields that the double-layer strength on $1 is determined up to a constant. A

+condition for the existence of a solution Sh to the problem is that u -u takes only
+two values on S =X. Sh will then be that part of X where u -u has the lower

value of the two.
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DEFLATION TECHNIQUES AND BLOCK-ELIMINATION
ALGORITHMS FOR SOLVING BORDERED SINGULAR SYSTEMS*

TONY F. CHANt

Abstract. In numerical continuation methods for solving parametrized nonlinear systems, one often
has to solve linear systems with matrices of the following form:

where A may become singular but M is well conditioned. If A has special structures (e.g. sparseness,
special data structure, special solver), then direct Gaussian elimination on M with pivoting will destroy
the structures in A. An often used method that does exploit structures in A is the block-elimination (BE)
algorithm which involves solving two systems with A for each system with M. In this paper, we show that
the BE algorithm may become unstable and inaccurate when A is nearly singular. We then propose a
stable variant which employs deflation techniques for solving the two systems with A. The deflation
techniques can be viewed as working in coordinate systems orthogonal to the approximate null vectors of
A, enabling an accurate representation of the solution to be computed. The extra work amounts to a few
(e.g. 2) more backsolves with A. Backward error bounds and numerical results are presented.

Key words, singular systems, bordered systems, deflation, continuation methods

1. Introduction. In this paper, we shall be concerned with computational tech-
niques for solving linear systems of the form:

x

where the n n matrix A may become singular, but the vectors b and c are chosen
so that M remains nonsingular and well conditioned. The following lemma gives
necessary and sufficient conditions for M to be nonsingular.

LEMMA 1. (a) IfA is nonsingular, then M is nonsingular if and only if
(2) d-cTA-ib # O.

(b) If A is singular and has a one-dimensional null space represented by a left
null vector and a right null vector ok, then M is nonsingular if and only if
(3) $Tb#0
and

(4) cT$ #0.

Proof. Straightforward. A more general version can be found in 10]. The version
given above is more suitable for our discussion.

Systems such as (1) arise, for example, in numerical continuation methods for
solving parametrized nonlinear systems [10], [16], [17], [18] and in homotopy continu-
ation methods for solving general nonlinear systems [2], [9], and the solution of such
systems often constitutes the most time-consuming part of the overall computation.
Since M is assumed to be well conditioned, the use of Gaussian elimination on M

* Received by the editors March 26, 1982, and in revised form October 20, 1982. This research was
supported by the Department of Energy under contract DE-ACO2-81ER10996.

" Computer Science Department, Yale University, New Haven, Connecticut 06520.
We shall assume the nullity of A to be one, which is the most common case in applications. The

algorithms generalize easily to highest dimensional null spaces, but we shall not discuss that here.
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with some form of pivoting is guaranteed to be stable. However, this approach is only
suitable when n is small or when A is dense, since the whole matrix M has to be
stored to allow for ill,ins. When A is large but has special structures (e.g. sparseness,
band or profile structures) or when a special solver is available for A (e.g. fast elliptic
solvers, sparse matrix solvers, band or profile solvers), or when a solver for A is
needed for some other purposes anyway, it is natural to consider algorithms for solving
systems with M which only involve solving systems with A. The following block-
elimination algorithm has this desirable property:

ALGORITHM BE [4], [10].
Step 1: Solve

(5) Av =b,

(6) Aw fi
Step 2: Compute

T

(7) y=g-c w
d _cv

Step 3: Compute

(8) x =w-yr.

The work consists mainly of one factorization of A and two backsolves with the
LU-factors of A. If there are many right-hand sides with the same matrix M, then the
factorization of A and the vector v can be computed once, and the work reduces to

only one backsolve for each right-hand side, which makes Algorithm BE extremely
attractive in such cases. These situations arise, for example, in continuation methods
where chord-Newton type methods are used [6] (this issue, pp. 135-148), [10], [15],
[8].

Algorithm BE is well defined if A and M are nonsingular, because the
denominator in (7) is nonzero by Lemma 1. However, in 2, we show that Algorithm
BE maybe unstable numerically whenA is nearly singular and can produce completely
inaccurate solutions (x, y) in those situations. The main source of instability is in Step
1 of Algorithm BE where the vectors v and w are computed inaccurately when A is
nearly singular. In 3, we review implicit deflation techniques developed in [3], [20]
which can be used to compute accurate representations for the solutions v and w.
These deflation techniques can be viewed as working in subspaces orthogonal to
approximate null vectors of A and are implicit in the sense that they only involve
solving systems with A. In 4, we show how to use these deflated decompositions of
v and w to obtain a stable variant of the BE algorithm. Further, we show that the
new algorithm can be used to obtain a stable deflated decomposition of the solution
(x, y) when M itself is nearly singular, for example, in applications to continuation
around bifurcation points [1], [10], [17], [18]. We present a backward error analysis
in 5 that shows that the stability of the new algorithm is independent of the singularity
of A. This means that in practice only one technique is needed to solve the system
with the matrix M, independent of whether A is singular or not. Numerical tests
demonstrating the accuracy and stability of the new algorithm will be presented in 6.

Rheinboldt [19] has considered a related algorithm for solving the system (1) in
the special case when A is banded. In his applications, the vector c is always equal
to a unit vector; d is always equal to zero but the vector b is general. He considered
splittings of M of the form M Mo+ uz T where u and z are chosen so that M0 is
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nonsingular and so that it is easy to obtain a factorization for M0 (actually for a
reduced banded matrix of smaller dimension than Mo). The solutions (x, y) can then
be obtained through the use of the Sherman-Morrison formula [7], [19] by two
backsolves with M0. However, his approach requires explicitly working with the storage
structure of A in order to obtain the factorization of the reduced matrix, whereas our
approach is completely implicit in that it only requires the ability to solve systems
with A. Moreover, our approach works for general b, c and d as long as they satisfy
the conditions in Lemma 1 so that M is nonsingular. However, it should be pointed
out that Rheinboldt’s algorithm can be generalized to handle this more general case.
A rank-two modification is required and one more backsolve is involved, which makes
it about as efficient as Algorithm BE.

2. Stability of Algorithm BE. In this section, we show that Algorithm BE
may produce inaccurate solutions when A is nearly singular even though M is well
conditioned.

LEMMA 2. If we use vectors and satisfying A-b =rl and A-f=r2 in
Steps 2 and 3 ofAlgorithm BE, then the solutions (, ) satisfy"

T~(9) A] + )Tb -f r2- )Trl, C x + )Td g 0.

Proof. Straightforward.
In other words, the computed solutions (Y, 7) always satisfy the last equation of

(1) independent of their accuracy, whereas the residual for the first n equations in
(1) depends on the accuracy of t7 and ft.

Next we show that when A is nearly singular, r and r2 are generally large. From
(3), we see that bRange(A), and therefore the computed t7 will be large when A is
nearly singular. Similarly, ff will also be large unless f s Range(A). From standard
round-off error analysis [7], it follows that the residuals rl and r2 will be large.
Moreover, these residuals will not cancel out in (9). Specifically, consider solving the
system Az =p where A is nearly singular but p is not consistent with A. Let
{trl,’",trn} be the singular values of A arranged in descending magnitude,
{Ul,.. ", u,} be the corresponding left singular vectors and {v l, ", vn} be the corre-
sponding right singular vectors. Then th solution z can be written as"

(1 O) z . CiVi,
i=1

where

(11) ci \--i /"

Since p is not consistent with A, u,p is not small, and therefore the last term in the
sum in (10) will be large if r, is small. In finite precision arithmetic, this last term
will dominate the rest of the sum and the computed Y will have an expansion similar
to (10) but where the first (n- 1) coefficients cTi are inaccurate. Since the residual for
z can be written as

(12) r(Y.)AY-p= (Ci--i)bli,
i=1

we see that the residual corresponding to the first (n- 1) terms in (12) will be large.
Furthermore, this part of the residual depends on the particular values of the
coefficients ci’s. Therefore, we cannot expect these parts of the residuals rl and r2 in
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(9) to cancel out. It follows from Lemma 2 that the computed solutions (,)7) will
give large residuals for the system (1). Since M is assumed to be well conditioned, it
follows that the errors in (], 37) will generally be large. As we shall see in 6, this
actually happens numerically.

3. Deflation. The implicit deflation techniques that we are going to discuss here
were developed in [3], [20]. They can be viewed as techniques for separating the
subspaces corresponding to tr, from its orthogonal complement, and only need the
ability to solve systems with A. Referring to (10), they correspond to computing
the first n- 1 terms separately from the last term so that the accuracy will not be
adversely affected by the last term. Basically, the idea is to "proj.ect" the right-hand
side p, using approximate singular vectors, such that for the projected p, uip is as
small as r,. Explicit deflation techniques [3], [11], [12], [13], [14], which achieve the
same goal by working with parts of the LU-factorization of A explicitly, can also be
used when they are applicable.

The ideas mentioned above can be made more rigorous, as is done in [3]. We
shall now give a brief description of the main results. We consider computing a deflated
decomposition of the solution z of the system Az =p of the form"

(13) z z +(),
where zo is the unique solution to the following system:

(14) Aszo SAzo Rp,

(15) NZD ZD,

where As SA is a singular matrix "close" to A with a left null vector $ and a right
null vector . The matrices R and N are defined in terms of $ and and are chosen
so that the system (14) and (15) is consistent and has a unique solution that remains
bounded as A tends to being exactly singular. The coefficient c is a scalar that depends
on p, and the scalar tends to zero as A tends to being singular. In [3], we considered
two different classes of such deflated decompositions, one corresponding to choosing
As to be the nearest singular matrix to A in the Frobenius norm, and the other
corresponding to choosing As to be a singular matrix obtained by perturbing some
elements of A by amounts bounded by the smallest pivot, say e, in an LU-factorization
of A. For the LU-based approach to be successful, we need to make the assumption
that e O(r,), which is definitely not valid in general, but which we show empirically
here and in [3] and theoretically in [5] to be valid in practice.

In order to carry out the deflation techniques, we need to compute some approxi-
mate null vectors and define some projectors based on them.

DEFINITION 3. (a) Let P, 1- uu , with [[u]] 1, be the orthogonal profector.2

(b) For any u with ui # 0 and 1 -</" -< n, define the oblique pro]ector:

(16) E=I-
T

uej

(c) Let $sv, with IIsvll-1, be an approximation to the left singular vector
corresponding to the smallest singular value tr, of A. Define $sv rA-l$sv, where
r 1/]]A-,sv 11.

All norms used are the Euclidean norms.
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(d) Let k be the index of the smallest pivot in the LU-factorization of A. Define:

(17) LU aa-Tek, where

(e) Define:

1
(18) Ce "]/A-1ItLU, where y

]l"/’ /ff]]"---1--LUI’"

(f) Let/" be chosen so that3 [(0LU)il O(1). Define:

(19) =/3A -a
ei, where

In Definition 3, all the ’s and ’s are approximations to the right and left null
vectors of A, respectively. The computation of 6Lu, Csv, CE and Cp costs one
back-substitution each. For 6sv, a variant of the inverse power method can be used,
which is fast when the smallest singular value of A is well isolated. It is well known
that the inverse power method may have convergence difficulty for clustered eigen-
values.

In [3], we discussed eight deflated decompositions based on the LU-factorization
and three based on the singular value decomposition (SVD). We shall only use a
subset of these here since there exist simple relationships among the deflated solutions,
and the ones used here are representative and can be computed most efficiently. The
algorithms developed here can be applied to the other deflated decompositions as
well. These deflations are denoted by Zs, zE and Zp, standing for deflation by the SVD
(S), by LU-factorization with an oblique projector (E), and by LU-factorization with
the orthogonal projector (P). The projectors (orthogonal or oblique) are used to
project the right-hand side p onto the range space of the nearby singular matrix.

We are now ready to define the specific deflated decompositions by specifying
the matrices S, R and N in (14) and (15) and the coefficients c, and 6 in (13) in terms
of these approximate null vectors and projectors. In Table 3.1, we give the expressions
for , &, S, R, N and 8 for each of the three deflations (each corresponding to a row).
Note that R S for all three deflations. It was shown in [3] that for the Zs deflation,
the coefficient co reduces to 6vp if sg is exactly equal to the left singular vector
corresponding to tr,. The more general form in the table has to be used when the

TABLE 3.1
Deflated decompositions for Az=p. z =ZD+(%/6). k is the index of the

smallest pivot.

ZD "t $ R N 6 c

Zs Osv &sv Pg, Pg, r O[v(P -Azs)

ZE I[ILU )E
T E

We shall use the notation (U)k to denote the kth component of the vector u.



126 TONY F. CHAN

inverse iteration fails to converge or converges to the wrong singular value. We also
gave the following iterative improvement algorithm for stably computing the deflated
solutions, derived from one first proposed by Stewart [20]:

ALGORITHM IIA. Given Az -p, compute the deflated solution ZD satisfying (14)
and (15).

Start with an initial guess zD such that Nzo zo (e.g. zo 0).
Loop until convergence.
Step 1. Form r--Rp-SAzD.
Step 2. Form d -A-lr.
Step 3. zo --zD +Nd.

In [3], we analyzed the convergence and stability of Algorithm IIA, and showed
that for the Zs, zE and Zp deflations, the above iteration converges in exactly one step
for any initial guess satisfying the stated condition. By taking zero as initial guess for
zD, we then arrived at the following noniterative algorithm for computing zo"

ALGORITHM NIA.
Step 1. r- Rp.
Step 2. d-A-it.
Step 3. zo--Nd.

Since the vector r in Step 1 of both Algorithms IIA and NIA are consistent with
As which is "close" to A, the first n- 1 coefficients in the singular vector expansion
of zo will not be dominated by the last coefficient, and therefore they can be computed
accurately. Therefore, the deflated decomposition (13) can be viewed as an accurate
representation of the solution z. It was shown in [3] that the scalar r (Definition 3c,
above) tends to the smallest singular value trn as A tends to being singular and that
a, fl and 3’ are O(e). Thus we see from Table 3.1 that 6 goes to zero as A becomes
singular for all three deflations. If we were to compute z in (13) directly, then the
last term would dominate the first and the accuracy in zo, and consequently z, would
be lost.

4. Deflated block elimination. Recall that the reason Algorithm BE becomes
unstable when A is nearly singular is that the computed and have large relative
errors in the subspace orthogonal to b. The deflation techniques discussed in 3
overcome this problem by computing zo with low relative errors in the same subspace.
In this section, we show how to use the deflation techniques to obtain a stable variant
of Algorithm BE.

The main idea is to compute the deflated decompositions of v and w instead of
computing them directly from (5) and (6). By using Algorithm NIA (or Algorithm
IIA if necessary), we can obtain the following deflated decompositions for v and w"

and

(21) w= wo + () 4.

When A is nearly singular, one wants to avoid actually carrying out the division by
6 and the addition in the above formulas, because the second terms will be large and
will overwhelm the first terms, causing a loss of accuracy of the solution (x, y). It turns
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out that it is not difficult to derive a stable variant of Algorithm BE that uses the
representations of v and w in (20) and (21), but which does not involve adding large
vectors to the accurate deflated solutions vo and wo.

LEMMA 4. If l) and w are represented by (20) and (21), then the solutions (x, y)
of (1) can be expressed as:

(22) +" h4 1’

where

hi g-cT"wo, h3 hlCb -hzcr,
h 2 d c vo, h4 (c Tck)cr 8h 1,

D (c 7"c)Cb 8h2.

Moreover, D is nonzero ifM is nonsingular.
Proof. The proof that (x, y) given by (22) satisfy (1) can be derived by direct

substitution. We shall only show that D is nonzero if M in nonsingular. When A is
singular 8 0, and from Lemma 1 both cb and ff 7"b are nonzero. For the zE and Zp

deflations, Cb pb. For the zs deflation, Cb /"(b-Azs) 47"b, because O is then a
left null vector of A. Therefore, for all three deflations, we have D (c &)(7"b)# 0.
When A is not singular (8 #0), it can be easily shown from (5) and (20) that
D =-8(d-c 7"A-lb), and therefore by Lemma 1, D # 0.

We shall call the algorithm represented by (22) Algorithm DBE.
The expressions defining hi, h2, h3 and h4 are all stable formulas in the sense

that no large vectors are involved. Note also from (22) that the vectors vo and wo
generally have as much weight in the solutions (x, y) as the vector 4, and therefore
the accuracy of (x, y) depends directly on the accuracy of 4, vo and wo. Moreover,
one can also see from the formulas involved that when 8 is small (i.e. when A is
nearly singular), it is enough to control the absolute error in 8. This is important because
in general we cannot hope to be able to do better than this in computing 8. Furthermore,
the stability of Algorithm DBE depends only on the singularity of M in the sense
that [DI is as small as M is singular, and is independent of the singularity of A. This
means that in practice only one algorithm is needed for dealing with solving (1). We
shall prove all the above assertions rigorously in the next section.

There is a reason why we use the particular form (22) for expressing the solutions
(x, y). The reason is that as M itself tends to being singular, D tends to zero, and
(22) automatically becomes a deflated decomposition of (x, y). Moreover, the vector
multiplying (I/D) in (22) is then a null vector of M. In practice, one can monitor the
size of D and avoid performing the division by D and the addition to the first vector
when IDI becomes too small. The form (22) will then remain an accurate representation
of the solutions (x, y) and can be used in further computations just as we have done
here for the deflated decompositions of v and w. Such situations arise, for example,
in applying continuation methods around bifurcation points [10], where A is singular
but b 0 and therefore M is also singular.

Compared to Algorithm BE, the extra overhead involved in Algorithm DBE,
with Algorithm NIA for computing the deflated solutions, amounts to a few more
backsolves for computing the two null vectors and storage for them. For the SVD-based
deflated decompositions, the number of extra backsolves depends on the convergence
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of the inverse iteration. If the inverse iteration fails to converge, then an extra copy
of A has to be stored for computing cp. For the LU-based deflated decompositions,
only two more backsolves are needed and the matrix A does not have to be stored.
When there are multiple right-hand sides for the M-system, the null vectors and the
deflated decomposition for v have to be computed only once, and the cost per extra
right-hand side is then no more than that of Algorithm BE.

5. Error analysis. We prove in this section that Algorithm DBE is stable by
exhibiting a backward round-off error bound for (x, y). We shall show that the (x, y)
produced by Algorithm DBE give small residual to the system (1) if the computed
solution is not large. If M is well conditioned, then it follows that the errors in (x, y)
are also small. If M is ill conditioned, a small residual is all we can hope for.

We shall use to denote computed quantities. To simplify the error analysis,
we shall make the following assumption: We shall assume that the only source of errors
in Algorithm DBE is in solving systems with A (i.e. errors in o, o, dj and & and
that no round-off errors are made in carrying out the operations in (22). This is a
reasonable assumption because (22) represents a stable algorithm. The actual round-off
errors made in (22) can be bounded by a small constant times the machine precision
times quantities like o, 3o, , b, c, d, f, g. These can all be absorbed into our final
bounds.

The following lemma shows that the residual for (1) depends on the accuracy of
the computed tTo, fro, , and 3.

LEMMA 5. If the computed o, o, , and g used in Algorithm DBE satisfy

SaD-Rb=rb, Sao-Rf=rf, a==r,
then the computed solutions (, ) satisfy

a+b-f=rf-r+()r,
(23) c+d-g=O.

Proof. The proof is rather straightforward, albeit a bit tedious, and follows from
a direct substitution of (22) into the expression for the residuals.

The actual residuals rb, rf and r depend on the way tTo, fro and are computed.
Next, we consider the use of Gaussian elimination with some form of pivoting.

LEMMA 6. If we use Gaussian elimination with some form of pivoting ]:or solving
systems with A, then the residual r, satisfy"

(24) ro <= p(n ),llA II,

where eM is the machine precision and p(n) is a polynomial in n that depends on the
form of pivoting used. Further, if Algorithm NIA without Step 3 is used to compute
6o and o, then

(25) rb p(n)elloll IIAII,

(26) rf p(n)lloll Ilmll.
Proof. The standard backward error bounds for Gaussian elimination with pivot-

ing (e.g. [7, p. 181]) for solving a general linear system Az =p has the form

(27) lip -At[
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where k (n) is a slowly growing polynomial that depends on the pivoting strategy. The
bound for r, follows directly from this. For the other two bounds, observe that the
vector d produced in Step 2 of Algorithm NIA when solving for vo, satisfies Ad
Rb +B, where the vector B satisfies a bound similar to (27). Therefore, the residual
in Step 2, denoted by ra, is given by ra SAd Rb S(Rb +B) Rb (S I)Rb + SB.
It can easily be shown from Table 3.1 that (S-I)R 0 for all the choices of S and

TR. For S P,,, or P,,., IISB[I<-_[IB[I. For S (EL,) [ISBI[_-< (1 + 1/(4,Lu)j)I[BI[. Since
(Lcr)j is chosen to be O(1), we have IISB <- CIIB where C is a small constant. The
bounds for rb and rr follow since C can be absorbed into k(n). This completes the
proof of Lemma 6.

Notice that we have used Algorithm NIA without Step 3 in order to obtain the
above bounds. If Step 3 of Algorithm NIA is used, then we can show, by using the
bound (24), that SANd-SAd=B1, where IIB ll<-_2  ,p (n)llAIIlldll. It follows that

IIrll- II(SANd Sad)+ (SAd -Rb )ll <= etpz(n )llall [Idll, where again the constants are
absorbed into pl(n) and p2(n). However, we cannot in general obtain a bound in
terms of Ilzll rather than Ildll. Ifg, is not close to the left null vector of A in the Zs
deflation, or if e >>O(r,) in the LU-based deflation, then Ilzll can be much smaller
than Ildll. However, we believe that in practice the bounds for rb and rr will still be
satisfied if either Algorithm NIA or Algorithm IIA is used for computing tTo and fro.

Using Lemmas 5 and 6, we obtain our main result:
THEOREM 7. If the computed quantities o, fro, (, and g satisfy the bounds in

Lemma 6, and no further round-off errors are made in Algorithm DBE in the sense of
Assumption 1, then the computed solutions (, ) satisfy"

lie + gll 0.

Proof. The proof follows directly from Lemmas 5 and 6, and by observing that,
from (22),

D

From Theorem 7, we see that the key to the success of Algorithm DBE is to
control the size of tTo, fro, 37 and . When A is not nearly singular, this is no problem.
When A is nearly singular, Algorithm DBE achieves this by the deflation techniques.
Thus, the stability of Algorithm DBE is independent of the singularity of A. In practice,
this means that, with only a little overhead, the same algorithm can be used to solve
systems with M accurately independent of whether A is nearly singular or not.

6. Numerical results. We performed some numerical tests to verify the accuracy
and stability of Algorithm DBE with the various deflation techniques. We considered
two classes of matrices for A"

A 1:(1 2uu 7") Diag (rn, n 1, n 2,. , 1)(1 2vv 7") where u and v are chosen
randomly and scaled to have norm 1, and crn varies from 1 to 10-8.

A2: T-Amin(T)[--.o-n[ where T Tridiagonal (1, -2, 1) and r, again varies from
1 to 10-8.

Note that r, is equal to the smallest singular value of A and A2. For A 1, the
smallest singular value has multiplicity 2 when o-, 1. The dimension n of A is chosen
to be 19, so that the dimension of M is 20. The vectors b and c are chosen randomly
in (0, 1) and d is set to 1. The solutions (x, y) are also generated randomly and the
corresponding right-hand sides (f, g) are then computed by multiplying (x, y) by M.
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In the inverse iteration for determining the approximate singular vector Osv, we
start with the vector with all components equal to 1 and always take 5 iterations.
When A is highly singular, one or two iterations is enough for full accuracy. However,
we have some convergence difficulties when A does not have a well-isolated small
singular value.

For the deflation, we use Algorithm NIA without the correction step 3. This is
the case covered by the error bounds in 5. We have also performed the same tests
using Algorithms NIA and IIA with qualitatively the same results. Moreover,
Algorithm I[A always converged in one iteration. For comparison, we will also use
Algorithm BE without deflation and direct Gaussian elimination (GE) on M itself.
All LU-factorizations are performed by the routine SGECO of LINPACK [8] which
uses the row partial pivoting strategy. The computations were performed on a DEC-20
with 27-bit mantissas corresponding to a machine precision of about .4x 10-8.

The first set of tests is to see how well the LU-factorization identifies a small
pivot e that is O (or,). The computed e, its position k, the computed r and the reciprocal
of the estimated condition number of M (the parameter RCOND in routine SGECO)
are given in Table 6.1 for A and Az. We see that, at least for these two classes of
matrices, the smallest pivot e is indeed roughly O(cr,). Moreover, the smallest pivot
always appears at the (n, n)th position. Note also that, when or, is well isolated, the
computed is rather accurate and has low absolute error. However, when the smallest
singular value is not well isolated, the inverse iteration is not successful at all. This is

TABLE 6.1
Table of e, k and RCOND as a function of trn 10-.

A I computed tr e k RCOND

0 0.1000007E+01 0.1183648E+01 19 0.1065610E-01"
0.9999996E- 01 0.9543458E +00 19 0.1099506E-01

2 0.1000000E-01 -0.6528494E- 01 19 0.1687405E- 02
3 0.1000016E- 02 0.7956855E- 01 19 0.1218959E-03
4 0.9999102E- 04 -0.1555381E-02 19 0.2518016E-02
5 0.1001859E- 04 -0.9973533E-04 19 0.1758764E- 02
6 0.9929115E-06 0.4390627E- 04 19 0.6221786E- 02
7 0.9942711E- 07 -0.7852563E-04 19 0.2147673E- 02
8 0.1375734E-07 0.8866191E-06 19 0.6173249E-03

A [ computed tr e k RCOND

0 0.6739568E-01 -0.7148705E+00 19 0.9330396E-025
0.9806986E-01 0.7308936E+00 19 0.4726424E-02

2 0.1000000E-01 0.5541958E+00 19 0.1737031E-03
3 0.1000000E-02 0.6328177E-01 19 0.3318758E-02
4 0.1000006E-03 0.6386045E-02 19 0.3319462E-02
5 0.9999954E-05 0.6391779E-03 19 0.1049820E-02
6 0.9980513E-06 0.6379932E-04 19 0.2220898E-03
7 0.1047228E-06 0.6694347E-05 19 0.5903182E-02
8 0.1462737E-07 0.9350479E-06 19 0.7973481E-03

* Singular vectors had not converged after 5 iterations.
t Singular value converged to the wrong value.
t Inverse iteration has not converged after 5 iterations.
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especially true for A2 because its lowest eigenvalues are rather close to each other.
Since this only occurs when A is well conditioned, the accuracy of Algorithm DBE
with the SVD-based deflations is not affected.

The relative residuals of the M equation (normalized by the right-hand sides of
the M system) as computed by the various algorithms are displayed in Figs. 6.1 and
6.2. The relative errors in the solution (x, y) are displayed in Figs. 6.3 and 6.4. It is
seen that Algorithm DBE with any of the three deflation techniques achieves about
the same accuracy as does GE on M, whereas Algorithm BE with no deflation loses
accuracy as A tends to being singular. Note also that we do not try to control the
singularity of M itself and it can become rather ill conditioned. However, by the
backward error bounds in 5, the relative residuals to the M equation should still be
small in these situations because the solutions (x, y) are small by construction. The
relative errors, however, will be large if M is ill conditioned. This is reflected in the
numerical results, too.

Theoretically, the ($) deflation is more robust as it is based on the SVD, whereas
the (E) and the (P) deflations depend on the identification of a small pivot in the
LU-factorization. However, based on the numerical results presented here, it seems
that in practice the (E) and (P) deflations are almost as accurate as the (S) deflation.
Since the latter two are both cheaper and simpler to implement (e.g. no inverse
iteration, no need to store A), we recommend using them in practice, possibly with
a check on the size of the smallest pivot as a safety precaution.
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7. Conclusion. In this paper, we have presented a stable version of the block-
elimination algorithm for solving bordered nearly singular systems that fully exploits
structures in A by only calling A -1 as a black box for solving linear systems. To
summarize briefly, Algorithm DBE goes like this.

ALGORITHM DBE.
Step 1. Select one of the three deflated decompositions in Table 3.1.
Step 2. Compute the corresponding pair of approximate left and right null vectors

and the constant 8 using Definition 3.
Step 3. Compute the deflated solutions vo and wo in (20) and (21) by using

Algorithm NIA with the appropriate right-hand sides b and f respectively.
Each of the two solutions involves solving one system with A with a
"projected" right-hand side.

Step 4. Compute the corresponding coefficients c and c by using Table 3.1.
Step 5. Compute the solution (x, y) from the formulas in Lemma 4.

From the backward error bounds derived in 5, we see that the stability of Algorithm
DBE derives from using deflation techniques to control the size ofthe computed quantities
in the algorithm. Numerical experiments reported in 6 confirm this. Thus, Algorithm
DBE solves the dilemma of trying to exploit structures in A by treating A -1 as a
black box while being able to control the numerical stability caused by the near
singularity of A.
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NEWTON-LIKE PSEUDO-ARCLENGTH METHODS
FOR COMPUTING SIMPLE TURNING POINTS*

TONY F. CHAN

Abstract. We present a new method for computing simple turning points of nonlinear equations of
the form G(u, A)= 0 which is based on applying Newton’s method to the characterization dA (r)/dr O,
where r is a pseudo-arclength parameter used in a continuation method for following the solution paths.
The method is quadratically convergent and needs only one starting point on the solution path. Second
derivatives of G (or difference approximations of them) have to be computed but the method is relatively
insensitive to their values and they also give rise to a more accurate second order predictor in the continuation
method. We present a chord-Newton variant for improving the efficiency of the algorithm which requires
only one factorization of a Jacobian matrix. We also present a damped-Newton variant for improving the
robustness and the global convergence of the algorithm. Results of numerical experiments on two standard
nonlinear elliptic problems of Simpson’s [SIAM J. Numer..Anal., 12 (1975), pp. 439-451] show that the
new algorithm compares favorably with the best of the existing methods in terms of efficiency and
robustness.

Key words, turning points, arclength continuation, Newton’s method, nonlinear systems

1. Introduction. Many problems in computational physics can be formulated as
nonlinear eigenvalue problems of the form

() G(u,X)=O,
where u e B (a real Banach space), A e R, and G is a continuously ditterentiable
operator mapping B R into B. Usually, u represents the "solution" to the physical
problem (e.g. flow field, structural displacement) and , is related to a physical
parameter (e.g. Reynolds number, load on a structure). Often, one is interested in
the dependence of the solution u (,) on the parameter A, i.e. in tracing the solution
branches [u (A), , of (1). When the operator G is nonlinear in u and A, this is usually
accomplished numerically by some version of Newton’s method applied to (1) for a
fixed value of A, which makes use of the Jacobian matrix Gu(u, ). However, the
solution branches often possess very interesting but complicated nonlinear bifurcation
behavior, among which are existence of multiple solutions and singular points (where
Gu(u, ) is singular) known as turning points (where the solution branch bends back
on itself) and bifurcation points (where two or more solution branches cross). Straight-
forward application of Newton’s method to (1) encounters difficulties near these
singular points. To overcome these difficulties, some kind of path following continu-
ation method [2], [11], [15], [19] is usually employed. These continuation methods
are designed to trace past turning points and can be modified to switch branches at
bifurcation points.

In many applications, in addition to tracing the solution branches, one is also
interested in locating the singular points themselves, because they are often related
to the stability of the solution. Due to their special physical significance, many
algorithms have been proposed for determining these singular points accurately. In
this paper, we shall only deal with the determination of simple turning points, which
can be characterized as points on the solution curve where

G, is singular, with a one-dimensional null space,
(2)

G, boundedly invertible on its range,

* Received by the editors April 29, 1982, and in revised form October 20, 1982. This research was
supported by the Department of Energy under contract DE-ACO2-81ERi0996.

t Computer Science Department, Yale University, Box 2158, Yale Station, New Haven, Connecticut
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and

(3) Gx Range (Gu).

For an excellent survey of existing methods for computing turning points, we refer
the reader to the report by Melhem and Rheinboldt [14] in which they compare the
performances of algorithms proposed by Abbott [1], Moore and Spence [16], Seydel
[24], Paumier [17], P6nisch and Schwetlick [18], Rheinboldt [20], [21], Schwetlick
[23] and Simpson [25]. These methods can be classified into two general classes. The
first consists of local iterative algorithms based on an inflated system consisting of (1)
augmented by a characterization similar to (2), constructed so that the turning point
is a unique and isolated solution of the inflated system. The other class of algorithms
consists of methods based on a path tracing continuation method by successively using
it to compute points on the solution curve that approach the turning point. These
algorithms can further be categorized by whether one or more points on the solution
curve are needed as initial guess and whether second derivatives of G are needed. In
Table 1.1, we tabulated the properties of the best methods as found by Melhem and
Rheinboldt, judged by an overall measure of excellency in terms of a combination of
efficiency, robustness and generality. For the purpose of comparison, we have included
the method that we are proposing in this paper.

TABLE 1.1
Properties of some methods ]’or computing turning points.

Initial Rate of Needs 2nd Class of Characterization of
points convergence derivative? method turning point

Abbott 2 yes/no (s) 0
Moore & Spence 2 yes/no .Guw 0, w # 0
P6nisch & Schwetlick 2 yes/no h(s) 0
Rheinboldt 2 1.618 no C (s) 0
Schwetlick 2 1.618 no C h (z) extremum
Chan 1 2 yes/no C h’(tr) 0

Notation. inflated system, C continuation, is the arclength parameter, " and tr are arclength-like
parameters, "yes/no" means that the basic method requires second derivatives of G but difference
approximations are also used by the authors.

As can be seen from the table, the method that we are proposing is quadratically
convergent, needs only one initial guess on the solution curve, and is based on an
underlying continuation method for branch tracing. Methods based on continuation
have certain desirable properties. First, they can build upon the curve tracing
capabilities that are already in the continuation procedure. For example, very often
the same linear equation solver can be used without having to refactor any Jacobian
matrix. Second, they naturally provide more details of the solution curve around the
turning points. Lastly, as we shall demonstrate later, requiring the iterates to lie on
the solution curve tends to make the algorithms more robust than methods based on
using augmented systems. The property of requiring only one initial point is also
desirable because most continuation methods have to be slowed down near turning
points and it may be relatively expensive to obtain two points on the solution curve
where , changes sign, as is needed by some methods. We shall review briefly the
formulation of typical continuation methods in 2.
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Many of the methods in Table 1.1 use the characterization ,(s)= 0 for turning
points. Our method is based on an alternative characterization of simple turning
points, namely, that

(4) ,’(o.) -= =0
dr

where r is the pseudo-arclength parameter used in the continuation method. This
characterization has been suggested by Keller 12], although he only considered secant
methods and no numerical results were given. Our method is based on applying
Newton’s method to (4). We show in 3 that the second derivatives [u"(r), X"(r)]
can be computed rather inexpensively it the second derivatives ot G are available.
We note that none of the methods based on continuation cited in [14] is quadratically
convergent. This is obviously because the authors tried to avoid computing second
derivatives, which in some applications are very difficult to obtain. However, since a
function evaluation in these methods involves an inner Newton iteration which could
be costly, we believe that in many applications where the second derivatives (or
approximations ot them) are available, the use of a method with a faster convergence
rate may be beneficial. As we shall show in 4.1, the availability of second derivatives
also leads to a much more accurate predictor in the underlying continuation method,
which in turn improves the efficiency ot the overall algorithm.

Another desirable property for an algorithm is that of requiring only a solver for
G, (rather than a matrix derived from G,) since such a solver may already be available
in the application discipline and it can also exploit special solution techniques (e.g.
fast elliptic solvers). We show in 4.2 how this can be arranged in our algorithm. In

5, we present a chord-Newton variant for improving the efficiency and a damped-
Newton variant for improving the robustness and global convergence of the basic
algorithm. In 6, we discuss briefly the work and storage requirements of the new
algorithm, which are comparable to most of the existing methods. Extensive numerical
experiments have been performed on applying the algorithm and its variants to two
standard nonlinear elliptic problems ot Simpson’s [25] and the results are presented
in 7. They demonstrate that the new algorithm is both efficient and robust and
compares favorably with the best of the existing methods on these two problems.

2. lseudo-arclength cont|nat|on. In this section, we review the essential features
of some common path-following continuation methods.

The key idea is to parametrize the solutions [u(o,),A(cr)] in terms of a new
parameter o, that approximates the arclength parameter s, instead of parametrizing
u (,) in terms of the natural parameter ,. This is usually achieved by augmenting the
equation (1) by an auxiliary equation that approximates the arclength condition"

(5) Ila (s)ll= / I&(s)l= 1,

to give an inflated system with unknowns u(r) and A (or):

(6) G(u (r), X (r)) 0, N(U (or), X (r), r) 0.

Instead of solving for u (A) for a given value of A, we solve for u(r) and A (o.) for a
given value of r. Newton’s method and its variants are usually used to solve (6), in
which case we need to solve linear systems with the following inflated matrix:

(7) M=
Nu Nx"
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The auxiliary function N is constructed so that the matrix M is nonsingular on the
solution branch, even near or at simple turning points. Thus, Newton’s method encoun-
ters no difficulties with this inflated system and quadratic convergence is achievable.

Another major component of a continuation method is the computation of the
unit tangent [ti (s), h(s)] to the solution curve at a point [u, h on the solution curve,
which can be computed relatively inexpensively from its definition,

(8) G. (u, )d +G (u, h ) 0, [Id 2 + [[2 1,

by solving only one linear system with G,. The system (8) determines [, ] up to a
directional orientation, which can be fixed by some convention. The tangent is usually
used in a first order predictor to obtain an initial guess for the Newton iteration
applied to the system (6).

We summarize the essential features in the following general algorithm.

ALGORITHM PAC[uo, ho, tr, u (o’), h (o’)]
Pseudo-arclength continuation. Given [Uo, Ao] on the solution curve, and a step

length tr (for step length algorithms, see [8]), compute the new solution [u(tr),
satisfying (6).

1. Compute the unit tangent [tio, ,o] at lUG, Ao] by (8).
2. Compute the predicted solution [up, Ap] given by

(9) up Uo + trtio, Ap ,o + tro.
3. Use [up, hp] as initial guess in a Newton-like iteration for solving the system

(6) to obtain [u (tr), h (tr)].

A few typical N’s that have been used in the literature are:
1. NI(U, A, o’) ti’(u-Uo)+,o(h -ho)-ty (introduced by Keller [11]),
2. N2(u,h, tr)=-e(y-yo)-tr, where y (u, A)T, ei is the ith unit vector and the

index is chosen so that the matrix M is as well-conditioned as possible (introduced
by Abbott [1], Kubicek [13] and Rheinboldt [19]).

3. Newton on A’(o’) = 0. We shall consider only simple turning points where the
nullity of Gu is one. Consider the situation where we have an approximation [Uo, h0]
to a turning point [u,, ,]. The method that we are proposing works by estimating
the step length r to use in applying one step of the pseudo-arclength continuation
procedure PAC lUG, ho, r, u(tr), h (tr)] so that u(tr)=-u, and h (tr)-=h,. The basis for
estimating tr is derived from the following characterization of simple turning points:

DEFINITION 1. Define h’(tr)--dh (tr)/dr and u’(tr)--du(tr)/dtr.
THEOREM 2. Assume N,(tr) O. Then h’(tr) 0 if and only if [u(tr), h (tr)]--

[u,, x,].
Proof. First note, by differentiating (6) by o,, that [u’(g), X’(r)] satisfies:

(lO)
N. (,) N, (,r)] ’(o-)] -N(,r)

where the coefficient matrix in (10) is nonsingular by construction. Thus [u’(tr), h (tr)]
is well defined even near or at a turning point. Now first assume h ’(or) 0. The second
equation in (10) implies that Nuu’=-N O. Thus u’ is nontrivial. The first equation
in (10) reduces to G,u’= O. Since u’ is nontrivial, Gu must be singular. Next assume
that [u(tr), h (tr)]=--[u., h.]. Then by (2) Gu(tr) is singular. If h’(tr) 0, then the first
equation in (10) implies that Gx (tr) Range (G,(tr)), which contradicts (3). U
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We note that both N1 and N2 satisfy the hypothesis of Theorem 2.
Theorem 2 provides a basis for estimating the step length tr because it reduces

the problem to one of finding a root of h’(tr)= 0. Our method is based on applying
Newton’s method for doing this, for which we need to compute h"(tr). It is not
surprising that this requires computing the second derivatives of G. By differentiating
(10) with respect to tr, we obtain the following system for computing [u"(tr), h"(tr)]:

N.(r/ N(r) ,"(rl

(11) =( -(Guu(Cr)u’(r)u’(r)+2Gu(cr)u’(cr),’(cr)+G(r),’(r)h’(r)) )-(N,,(tr)u’(o’)u’(o’) + 2N, (cr)u’(tr 1, ’(tr)+ Nxx (o’), ’(tr)A ’(tr))-N(or)
We note that the systems governing [u’,h’] and [u", h"] have identical coefficient
matrices, which are almost exactly the same as that used in the last step of the Newton
iteration in the pseudo-arclength procedure. Thus, the same factorization of these
matrices can be used to compute [u’,’] and [u",,,t."] and they can be obtained
essentially free.

We outline the basic version of our method in algorithmic form.

ALGORITHM NTP[uo, ho, u., ,.].
Newton’s method for locating turning points. Starting with an initial guess [Uo,

on the solution curve, compute an approximation [u., .] to a turning point.
Initialize tr 0.
Loop until convergence"

1. Compute [u’(tr), ,’(tr)] and [u"(r), h"(r)] by (10) and (11).
2. Compute the change in the step length &r =-’(tr)/"(tr).
3. Update the new step length tr tr +
4. Call PAC [Uo, o, tr, u (tr), , (tr)].

Set u. z u (tr), h, (z:, (tr).

Note that in Step 4 of Algorithm NTP, we use Uo and ho instead of the most
current iterate. The reason is that the local parametrizations (N1 or N2) usually depend
on [Uo, ho] and Algorithm NTP is trying to find a pseudo-arclength step tr within this
local parametrization that will correspond to the turning point. Using the most current
iterate in Step 4 here will change the local parametrization.

Under mild conditions on the smoothness of G, it is not difficult to prove local
quadratic convergence for Algorithm NTP for simple quadratic (i.e. h "(tr) 0) turning
points. It can be shown from evaluating the first equation in (11) at the turning point
that the condition h"(tr) 0 is equivalent to Guu(tr)u’(tr)u’(cr) Range (Gu(tr)). We
shall not pursue the convergence analysis here.

We note that [u’, h ’] is not equal to the unit tangent [ti, ,] but is a scaled version
of it. As can be seen from Table 1.1, the characterization (s)= 0 for turning points
have been used by many authors but Keller [12] seems to be the only one who has
considered the use of the pseudo-arclength parameter o- of a continuation procedure,
together with the characterization h ’(tr) 0, in the context of an algorithm for finding
turning points. A system similar to (11) has been derived by P6nisch and Schwetlick
[18] but their method is not based on a continuation procedure.

4. Implementation. In this section, we discuss some of the implementation details
for Algorithm NTP. We address three issues: the construction of a more accurate
predictor, algorithms for solving linear systems with the inflated matrix of the form
(7), and the use of difference approximations for second derivatives.
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4.1. Second order predictor. Note that in Algorithm PAC, the solution
u (r), A (r)] is uniquely defined by the parametrization N and the step length r, and
one can use any reasonable predictor in Step 2 instead of the commonly used one
given in (9). We want to emphasize that the unit tangent at [Uo, Ao] is usually used
both to define the local parametrization and to obtain a predictor solution although
these two processes can be separated. For example, instead of the first order predictor
used in Step 2 of Algorithm PAC, we can use the following more accurate predictor"

up u (o’) + (6o’)u’(o’) + (6o’)2u"(o-)/2,
(12)

Xp X (o’) + (ao’)X ’(er) + (6o’)2X"(o’)/2.
This new predictor is more accurate for two reasons. First, the current approximation
[u(tr), A (tr)] to the turning point is used instead of [Uo, Ao]. It corresponds to using
the Taylor series expansions of [u (o- + &r), A (o" + &r)] around [u (tr), A (tr)] instead of
around [u0, A0] which is (9). Second, it has second order accuracy. Note that this more
accurate predictor is essentially free, since all the quantities in (12) have already been
computed in Algorithm NTP before the call to Algorithm PAC. Its higher accuracy
greatly reduces the cost of the inner Newton iteration in Step 4 of Algorithm PAC.

4.2. Block elimination and deflation techniques. All the linear systems that arise
in our algorithm are of the form:

y c r d y

where the n n matrix A may become singular near a turning point but the vectors
b and c are chosen so thatM remains nonsingular and well conditioned. The algorithm
that we have chosen to use for solving the linear systems of the form (13) is the
following block-elimination algorithm:

ALGORITHM BE [5], [11].
1. Solve

(14) Av =b,

(15) Aw =f.
2. Compute

Tg-c w
(16) y

d _cv
3. Compute

(17) x =w-yr.

The work consists mainly of one factorization of A and two backsolves with the
LU-factors of A. If there are many right-hand sides with the same matrix M, then
the factorization of A and the vector v need only be computed once, and the work
reduces to only one backsolve for each right-hand side, which makes Algorithm BE
extremely attractive in such cases. These situations arise in the chord-Newton variant
of Algorithm NTP (see 5.1). Note also that only a solver for A is needed, and
therefore any special structures (e.g. sparsity, bandedness, special data structures) in
A can be exploited and special solvers for A can be used (e.g. fast direct solvers,
multi-grid solvers). However, as we have shown in [3], Algorithm BE may be unstable
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numerically when A is nearly singular, as is the case in the present application. The
main source of instability is in Step 1 of Algorithm BE where the vectors v and w
are computed inaccurately when A is nearly singular. In [3], we proposed using implicit
deflation techniques developed in [4], [26] to compute accurate representations for
the solutions v and w. These deflation techniques can be viewed as working in subspaces
orthogonal to approximate null vectors of A and are implicit in the sense that they
only involve solving systems with A. We then use these deflated decompositions of v
and w to obtain a stable variant of the BE algorithm, which we called Algorithm
DBE. The only overhead involved for performing the deflation in this algorithm is
the computation of two approximate left and right null vectors for A. These can be
obtained either by an inverse power method or by a technique based on the existence
of a small pivot in the LU-factorization of A [6]. In any case, the extra work amounts
to only a few backsolves, which is usually negligible in comparison with the work
involved in computing the factorization. We refer the details of Algorithm DBE to
[3], where we also presented a backward error analysis that shows that it is numerically
stable.

We have assumed that direct elimination methods are used for solving the linear
systems that arise. For the use of iterative methods, which might be more attractive
for large and sparse problems, we refer the reader to [7]. For another method for
solving the inflated systems, see [22].

4.3. Difference approximations for second derivatives. In the context of
algorithms for computing turning points, for any method to achieve quadratic conver-
gence, second derivatives of G are required in general. Unfortunately, in many
applications, second derivatives are difficult to compute or not available at all. For
this reason, many algorithms avoid using second derivatives explicitly. In the specific
context of using the characterization A’(o-)= 0 for locating turning points, there are
at least three ways to achieve this. The first is to use a secant-like method for finding
a zero of ’(tr), as is the case in the methods of Keller [12] and Rheinboldt [20], [21].
However, the convergence rate will then not be quadratic. In order to retain quadratic
convergence, at least approximately, we choose to work with a Newton-like method
similar to Algorithm NTP. Within this context, there are at least two ways to avoid
second derivatives. This first is to use a difference approximation for "(tr), by
evaluating A’(tr) at two adjacent points. This is essentially the approach taken by the
method of Abbott in Table 1.1. Note that each evaluation of M(tr) may be rather
costly as it involves calling Algorithm PAC with a few different values of tr and
consequently involves solving a few linear systems with the inflated matrix M inside
the Newton iteration in Step 3 of Algorithm PAC. The last approach, which is the
one we have adopted in this paper, is to use a difference approximation for computing
the second derivatives of G. Note that these appear only on the right-hand side of
(11) rather than in the coefficient matrix, as is the case in the method of Moore and
Spence [16]. We believe that this property of the algorithm leads to better numerical
stability. For the numerical experiments in this paper, we have used a simple centered
difference approximation. For example, Gxx (tr) is approximated by

(18) Gxx (tr) (Gx (u (tr), A (tr) + e Gx (u (tr), A (tr) e))/2e.

In practice, one can use better techniques; see for example [10].
$. Variants. In this section, we present variants of the basic Algorithm NTP

designed to improve its efficiency and robustness.
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5.1. Chord-Newton variant. With direct methods for solving the linear systems,
the most expensive part of the computation is usually in factoring the Jacobian matrix
G,. Therefore, one can save a great deal of computation by reusing the factors of a
nearby matrix. There are two Newton iterations involved in Algorithm NTP, both of
which allow chord-Newton variants. For the outer Newton iteration, it does not pay
to use the chord-Newton variant because the coefficient matrix governing [u"(tr), A"(tr)]
in (11) is the same as the one governing [u’(tr),A’(tr)] in (10). Thus, the second
derivatives [u"(tr), A"(tr)] can be computed very inexpensively by performing only one
back-substitution. For the inner iteration in Algorithm PAC, however, one can obtain
a chord-Newton variant by using the same LU-factors of a Jacobian matrix G, in all
the Newton steps, for example, by using the LU-factors of the matrix G,(tr) used in
computing A’(o-) and A"(o-) in Step 1 of Algorithm NTP.

We note that with Algorithm DBE, Ga can be updated in M(tr) in each step of
the chord-Newton iteration without incurring a factorization of Gu, which in general
gives a better approximation for M(cr) than if an old copy of Gx, say Gx(0), were
used. However, if we choose not to update G, then the vector v in Algorithm DBE
can be computed once for all and each solve with M then involves only one, rather
than two, solves with G,. Therefore, if Ga does not change very much around the
turning point, it might be more efficient not to update Gx at every step in the
chord-Newton iteration. This is the strategy that we have used in our numerical
experiments.

The above chord-Newton variant requires one factorization of Gu(r) per outer
iteration step. This is similar to the treatment of the chord version of Rheinboldt’s
method. However, if the initial guess [u0, Ao] is close enough to the turning point,
one can reduce the work further. We can factor G,(0) once only at the initial guess
[u0, Ao] and reuse these factors of G,(uo, Ao) in all subsequent iteration steps, both
outer and inner. However, for the convergence of the outer iteration, we have to
ensure that the function values in the outer iteration, i.e. A ’(tr), are evaluated accurately.
Since the system (10) governing [u’(tr),A’(tr)] is linear, we can use the following
iterative improvement algorithm for doing this"

Starting with an initial guess for t(tr), iterate until convergence:

t(o’) <(=:: t(o’) +M(0)-l(r (r) -M(o’)t (o’)),(19)

where

(Gu(O) G,(O) M(r) (Gu(o’) Gx(tr))M(O)
\N,(o’) N,(o’)/’ N(o’) N(o’)

r(o’) (0, -N(o’))T, t(o’) (u’(o’), h ’(o’)) T.
A similar algorithm can be applied to the [u"(o-), h"(o-)] system (11) as well.

Moreover, since the second derivatives [u"(o), h"(tr)] are available from the last outer
Newton iteration, one can use a first order predictor for [u’(tr), h’(tr)] in (19), similar
to the one used in (12). Furthermore, although we have not pursued it here, the
iteration (19) can also be accelerated, for example, by a conjugate gradient type
method. No predictor for [u", h"] is available, however, unless one stores previous
values and uses extrapolation.

5.2. Damped-Newton variant. It is well known that Newton’s method is only
locally convergent. In the context of Algorithm NTP, if the initial guess [u0, A0] is far
away from a turning point, then the step &r generated at Step 2 of Algorithm NTP
may be so large that either there is no solution for [u (tr), A (tr)] or the inner Newton
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iteration in Algorithm PAC fails to converge. To improve the robustness of the
algorithm, we consider the use of a damped-Newton variant. Since our algorithm is
based on a continuation method, this can. be arranged naturally by replacing Steps 3
and 4 of Algorithm NTP by

3’. If the previous &r, say &rp, was damped and I1 > Iol then
&r sign

4’. Repeat until convergence"
4.1 rr+&r.
4.2 Call PAC [u0, Ao, tr, u (tr), A (tr)].
4.3 If no convergence in PAC, then

Here y is a scalar damping factor (we used y 2). To reduce the work wasted
in the damped steps, we declare that Algorithm PAC has "failed" if either the number
of iterations exceeds a maximum (we used a value of 5) or if the norm of the residuals
IIGII is not less than that at the previous iteration. This is similar to the treatment in
[19], [20]. Since the methods are based on a continuation procedure, it can be shown
[19] that the loop in Step (4’) above will terminate with a nonzero step length &r. For
methods based on inflated systems, no natural damped-Newton variant exists.

6. Work and storage. In Table 6.1, we summarize the work and storage require-
ments of Algorithm NTP and its chord variant, assuming that a direct factorization-
solve method is used for solving the linear systems. The storage for the damped
Newton version is the same as that for the nondamped version. Its work is more
difficult to estimate since it depends on exactly how the damped steps are taken. We
have therefore not included it in the table.

TABLE 6.1
Work and storage per step.

Work/step Storage

Evaluations
LU

Algor. Factors Solves Function Jacobian 2nd deriv. Factors Vectors

True Newton N + N + 2 N + N + 9
Chord-Newton 1" N +I N + N + 10

Notation. N number of iterations in Algorithm PAC, I number of iterative improvement iterations
for computing [u’, A’] and [u", 3,"].

* For the chord version, no factorization is needed after the first iteration.

Storage is needed for the vectors: u, du (in the inner Newton iteration), Gx,
G, u’, u" and the two approximate null vectors. For the chord version, one more
vector is needed to store the old Gx or v. We have ignored the work involved in
computing the approximate null vectors needed for deflation in Algorithm DBE since
they have to be computed only once per factorization and the work is thus negligible
in comparison to the factorization cost for Gu.

We note that the storage is comparable to those of methods of similar type
surveyed in [14], except that a few more vectors are required. The work is also similar,
except that for the chord version, no other author seems to have used the potentially
more efficient iterative improvement algorithm (19) for computing [u’, A ’] and [u", A"]
with only one factorization of G.
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For a general, dense n by n problem, the work required for evaluating the second
derivatives of G in our algorithm is O(n3). However, for many problems with sparsity
(e.g. see 7), the work is usually much less.

7. Numerical experiments. We have performed extensive experiments on apply-
ing our algorithm and its variants to the following nonlinear elliptic eigenvalue problem
[14], [163, [253:

(20) G(u,,)----Au +F(u, A) 0,

on the unit square with zero Dirichlet boundary conditions. Following previous authors,
we use a lourth-order finite difference discretization of (20) on a uniform mesh of
size h i/m, which results in a system of n-(m-1)2 nonlinear equations. Two
choices for the function F have been considered"

(21) F1 =,e u,

(22) F2 A (1 +(u +uZ/2)/(1 + u:/100)).

For m 8, the turning points that we are interested in are given in Table 7.1.

TABLE 7.1
Turning points for m 8.

F u (0.5, 0.5)

Fa 6.807504 1.391598

F2 7.980356 2.272364

All computations have been performed on a DEC-20, with 27-bit mantissas,
corresponding to a relative machine precision of about 0.4 x 10-8. The matrices
corresponding to Gu are banded and are factored and solved by the LINPACK routines
SGBCO and SGBSL [9]. The work for the factorization is O(m4), for the solve is
O(m 3) and for the evaluation of second derivatives is O(m2). Thus, for problems of
this kind (generally differential equations with a local stencil), the cost of evaluating
second derivatives is smaller than the cost of the solve phase.

We use the pseudo-arclength function N1 in all our computations. We note that
N1 is linear in all its arguments and hence all its second derivatives vanish and Nu
and Nx (tr) are constants.

For the convergence of the Newton iteration in Algorithm PAC, we use the
criterion: IlG[[ < 10- and IINll < 10-, which is adequate for the scale of our problems.
For the iterative improvement algorithm (19), we stop if the relative change in the
iterate is less than 10-5 For the difference approximations of second derivatives, we
use a value of e 10-4 in (18). For computing the approximate null vectors needed
in Algorithm DBE, we always use 3 steps of inverse iteration, the details of which
can be found in [3] (this issue, pp. 121-134). The damped version is always used.
We shall use the switch/FD to denote the use of difference approximations of second
derivatives.

Following Melhem and Rheinboldt [14], we considered two starting points for
F2:A0 7.96754 and hi 7.94617. We also considered two other starting points:
h 3 7.5 and 4 7.0o All are on the lower branch of the solution curve.
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We first tested the Newton version. In Tables 7.2, 7.3 and 7.4, we tabulate the
results of applying Algorithm NTP to F2, starting from Ao, A and A 2 respectively. In
Table 7.5, we tabulate the results for F1 starting from , 6.8 on the lower branch.
The notation is as follows"

I’ number of outer Newton iterations.
I1" number of iterative improvement iterations in computing A’, chord version

only,
12" number of iterative improvement iterations in computing A", chord version

only,
D: number of damped-Newton steps,
N: number of inner Newton iteration in Algorithm PAC.

For comparison, we have included in the tables the values of ,(s), which are not
needed in the algorithm.

TABLE 7.2
Results ]’or F2, initial guess Ao 7.96754, true Newton.

A’ I1 A" I2 &r D N A u(0.5, 0.5)

2.9E-01 0 -3.3E +00 0 8.8E-02 0 7.9803556E+ 00 2.2727977E+00 -6.2E-04
2 -6.5E-04 0 -3.3E +00 0 -2.0E-04 0 0 7.9803557E+ 00 2.2723642E+ 00 3.6E- 08
3 3.8E-08 0 -3.3E+00 0 1.2E-08 0 0 7.9803557E+00 2.2723642E+00 -1.4E-07

TABLE 7.3
Results ]’or F2, initial guess A 7.94617, true Newton.

A’ I1 A" 12 &r D N A u(0.5, 0.5)

4.7E-01 0 -2.8E+00 0 1.6E-01 0 7.9791579E+00 2.3324510E+00 -8.2E-02
2 -9.7E-02 0 -4.0E+00 0 -2.4E-02 0 7.9803553E+00 2.2735657E+00 -1.7E-08
3 -1.9E-03 0 -3.8E+00 0 -5.1E-04 0 0 7.9803558E+00 2.2723647E+00 -7.5E-07
4 -8.5E-07 0 -3.8E+00 0 -2.2E-07 0 0 7.9803558E+00 2.2723642E+00 -1.6E-07

TABLE 7.4
Results for F2, initial guess h, 7.5, true Newton.

A’ I1 a" 12 &r D N A u(0.5, 0.5)

4.8E-01 0 -1.9E-01 0 2.6E+00 0 3 7.8877703E+00 2.8753642E+00 -4.9E-01
2 -2.2E-01 0 -2.1E-01 0 -1.1E+00 0 2 7.9699776E+00 2.1055603E+00 2.6E-01
3 8.1E-02 0 -3.2E-01 0 2.6E-01 0 7.9803556E+00 2.2724285E+00 -9.2E-05
4 -3.0E-05 0 -3.2E-01 0 -9.4E-05 0 0 7.9803556E+00 2.2723643E+00 -1.6E-07
5 -5.2E-08 0 -3.2E-01 0 -1.6E-07 0 0 7.9803556E+00 2.2723642E+00 9.3E-10

TABLE 7.5
Results for F1, initial guess h, 6.8, true Newton.

A’ I1 a" 12 &r D N A u(0.5, 0.5)

4.5E-01 0 -1.1E+01 0 4.1E-02 0 2 6.8062598E+00 1.4189429E+00 -1.9E-01
2 -2.5E-01 0 -2.7E+01 0 -9.2E-03 0 6.8074830E+00 1.3951085E+00 -2.6E-02
3 -2.9E-02 0 -2.1E+01 0 -1.4E-03 0 0 6.8075035E+00 1.3916595E+00 -4.5E-04
4 -5.1E-04 0 -2.0E+01 0 -2.5E-05 0 0 6.8075035E+00 1.3915978E+00 -3.3E-07
5 -3.6E-07 0 -2.0E+01 0 -1.8E-08 0 0 6.8075035E+00 1.3915977E+00 -1.3E-07
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We observe from these results that:
The computed turning points are accurate to within machine precision.
The convergence is quadratic.
The number of inner Newton iterations decreases rapidly as the turning point

is approached. In fact, as the turning point is approached, the predictor is often so
good that no Newton iteration is needed to satisfy the convergence criteria.

No damped-Newton step is taken.
When compared to the methods surveyed in [14], our method seems to be more

efficient. For example, for the cases corresponding to Tables 7.2 and 7.3, all of the
methods in [14] took 4 outer iterations or more, whereas our method has converged
after 2 and 3 iterations respectively, as judged by the magnitude of .

Next, we tested the chord version on F2, with difference approximations for
second derivatives, which is the most efficient and most general version. The results
are presented in Tables 7.6 and 7.7.

TABLE 7.6
Results for F2, initial guess Ao 7.96754, chord/FD.

A’ I1 A" 12 &r D N A u(0.5, 0.5)

2.9E-01 0 -3.3E+00 0 8.8E-02 0 7.9803587E+00 2.2727739E+00
2 -6.2E-04 2 -3.3E+00 3 -1.9E-04 0 0 7.9803588E+00 2.2723626E+00
3 -3.3E-07 -3.3E+00 2 -9.9E-08 0 0 7.9803588E+00 2.2723624E+00 -9.1E-08

TABLE 7.7
Results for F2, initial guess A 7.94617, chord/FD.

a’ I1 A" 12 60- D N A u(0.5, 0.5)

4.7E-01 0 -2.8E+00 0 1.6E-01
2 -9.7E- 02 6 -4.0E + 00 6 -2.4E- 02
3 -2.0E- 03 4 -3.8E + 00 5 -5.1E- 04
4 -7.2E-07 -3.8E+00 3 -1.9E-07

0 5 7.9791640E+00 2.3324056E+00
0 7.9803528E+00 2.2735747E+00
0 0 7.9803533E+00 2.2723666E+00
0 0 7.9803533E+00 2.2723661E+00 -7.0E-07

These results show that the outer iteration is very similar to the results of the
basic algorithm. The inner iteration took a few more iterations because of the
chord-Newton strategy, but due to the more accurate predictor, the number of inner
iterations also decreases rapidly as the turning point is approached. As expected, both
the inner Newton iterations and the iterative improvement took more iterations when
the starting guess (A 1) is farther away from the turning point. But the total number of
solves is still reasonably small considering only one factorization was performed. Note
also that the number of iterative improvement iterations is less for [u’, A’] (which
have a better initial guess from a first order predictor) than for [u", A"].

To test the robustness of the damped version, we applied the true Newton version
on F2, starting at 4 7.0. The results are given in Table 7.8. Notice that the starting
point is quite far away from the turning point and, as a consequence, many damped-
Newton steps had to be taken in the beginning. As the turning point is approached,
however, no damping is needed and quadratic convergence is regained.

The next test we did was designed to show the effectiveness of the more accurate
second-orderpredictor. We repeated exactly the case corresponding to Table 7.4, except
that the first-order predictor was used instead. The results are presented in Table 7.9.
They are very similar to the results in Table 7.4, except as expected, the number of
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TABLE 7.8
Results for F2, initial guess ’4 7.0, true Newton.

X’ I1 " 12 &r D N A u(0.5, 0.5)

9.8E-01 0 -3.3E-02 0 9.3E-01 5 3 7.8777199E+00 1.7912264E+00 7.1E-01
2 8.4E-01 0 -7.5E-01 0 1.2E-01 3 2 7.9665943E+00 2.0815067E+00 3.0E-01
3 6.1E-01 0 -5.9E+00 0 2.5E-02 2 2 7.9790850E+00 2.2123320E+00 9.0E-02
4 3.0E-01 0 -2.6E+01 0 1.2E-02 0 2 7.9794920E+00 2.3233010E+00 -7.0E-02
5 -4.9E- 01 0 -2.0E + 02 0 -2.5E- 03 0 7.9802267E + 00 2.2919466E + 00 -2.8E- 02
6 -1.5E-01 0 -9.7E+01 0 -1.5E-03 0 7.9803523E+00 2.2755943E+00 -4.6E-03
7 -2.2E-02 0 -7.1E+01 0 -3.1E-04 0 0 7.9803558E+00 2.2724587E+00 -1.4E-04
8 -6.4E- 04 0 -6.7E- 01 0 -9.6E- 06 0 0 7.9803558E + 00 2.2723642E + 00 -1.6E- 07

TABLE 7.9
Results for F2, initial guess 2 7.5, true Newton, first-order predictor.

A’ I1 A" 12 &r D N A u(0.5, 0.5)

4.8E-01 0 -1.9E-01 0 2.6E+00 0 4 7.8877699E+00 2.8753644E+00 -4.9E-01
2 -2.2E-01 0 -2.1E-01 0 -1.1E+00 0 4 7.9699775E+00 2.1055603E+00 2.6E-01
3 8.1E-02 0 -3.2E-01 0 2.6E-01 0 4 7.9803549E+00 2.2724289E+00 -9.2E-05
4 -3.0E- 05 0 -3.2E- 01 0 -9.4E- 05 0 4 7.9803550E + 00 2.2723647E + 00 -1.6E- 07
5 -5.2E- 08 0 -3.2E- 01 0 1.6E- 07 0 4 7.9803548E + 00 2.2723647E + 00 3.6E- 08

inner Newton iterations does not decrease as the turning point is approached. Compar-
ing the two tables shows the dramatic increase in efficiency made possible by the more
accurate predictor.

The last test we performed was designed to test the effect of the deflation techniques
used in Algorithm DBE, by running some tests using Algorithm BE instead. Without
going into details, we shall just report that Algorithm BE is fairly reliable in practice,
producing results that are practically the same as if Algorithm DBE had been used.
A plausible explanation for the unexpected reliability of Algorithm BE is that it only
fails when Gu is very singular, at which point the accuracy is usually high enough that
the iterations can be terminated. The only kind of problems that we have encountered
with Algorithm BE occur when an iterate happens to be very close to the turning
point, then IIGII can actually increase in the inner Newton iteration, causing a damped-
Newton step to be taken. On the other hand, we have had no problem with Algorithm
DBE at all, and we believe that it is to be preferred because of its higher reliability
and minimal extra cost.

8. Conclusions. We have presented and tested a new algorithm for computing
simple turning points of nonlinear equations. It possesses quadratic convergence,
which, together with the more accurate second order predictor, makes it extremely
fast when applied close to a turning point. We have also demonstrated that, through
the use of a chord-Newton variant, the efficiency can be increased dramatically in
such cases. On the other hand, when started far away from a turning point, its use of
a natural damped-Newton strategy makes it reasonably reliable and robust. The use
of the block-elimination algorithm with implicit deflation makes it possible to exploit
special structures and solvers for the problem. Although second derivatives of G are
required, the experimental results show that difference approximations for them can
be used safely. Although more tests on different and larger problems are needed to
more completely validate the new algorithm, our limited experimental results show
rather convincingly that it is both efficient and reliable and compares favourably with
the best of the existing methods.
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A NUMERICAL METHOD FOR THE INVERSE
STURM-LIOUVILLE PROBLEM*

JOHN PAINES

Abstract. In this paper we present a method for solving a form of the inverse Sturm-Liouville problem.
The basis of the method is to modify the given differential eigenvalues so that the N N tridiagonal matrix
eigenvalue problem recovered from the first N eigenvalues can (after a suitable transformation) be identified
with the finite difference approximation of the required differential eigenvalue problem. Numerical results
are presented to illustrate the effectiveness of this method.

Key words, inverse eigenvalue problems, eigenvalues, finite difference approximation

1. Introduction. The inverse eigenvalue problem for the Sturm-Liouville
problem

-a+qu =,u, x [0, r],(1.1)

(1.2)

(1.3)

au(O) +ta(o) o,
,u (r) + a(rr) 0

consists of recovering the potential q from one or more of the spectra {Ak}k=l
corresponding to distinct sets of the boundary conditions (1.2)-(1.3). It is well known
[2] that when the spectrum for the essential boundary conditions

(1.4) u(0) 0 u(zr)

only is available, the inverse problem only has a unique solution in the class of square
integrable functions which satisfy the symmetry condition

(1.5) q (r x q (x

almost everywhere in [0, r]. In the remainder of this paper we will assume that the
potential satisfies this condition.

The method we present here uses the algorithm given in de Boor and Golub [3]
to recover a persymmetric tridiagonal matrix from N eigenvalues (we refer to this
algorithm as ALGC), the new feature of our approach being that a correction is added
to the differential eigenvalues before recovering the matrix. This correction com-

pensates for the differing asymptotic behaviour of the given differential eigenvalues
and the required finite difference eigenvalues.

In what follows we use the vector pair aT (al, , a) and ba (b2, b) to
represent the class of N N tridiagonal matrices

tl,2

t2,2 /’2,3

which satify the conditions ti, ai, 1,. ,N and ti,i+l * ti+l,i bi+l, 1,. ,N- 1.
This class contains a unique (up to the signs of the off-diagonal elements) symmetric
matrix, and all matrices in this class are similar.

* Received by the editors June 28, 1982.
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2. Development of the eigenvalue correction. There has been a great deal of
interest in developing an adequate theoretical grounding and useful numerical methods
for inverse eigenvalue problems (see e.g. [1], [4]). This work has usually been in two
distinct but related directions. The first is in establishing the existence and uniqueness
of solutions to the differential inverse eigenvalue problems (DIEVP) and in developing
numerical methods for recovering the potential; and the second is a study of the same
problems in the context of reconstructing a matrix eigenvalue problem with a specified
form from its eigenvalues i.e. the matrix inverse eigenvalue problem (MIEVP). The
two approaches are frequently linked in the development of numerical methods in
the sense that the DIEVP is often solved by converting it to a related MIEVP for
which a method of solution exists. The motivation usually given for the connection
between the MIEVP and the DIEVP is that the recovered matrix has the same
structure as the matrix eigenvalue problem obtained by applying a particular numerical
method to solve (1.1)-(1.3). Examples of this approach can be found in Hald [5]
where a Rayleigh-Ritz method with trigonometric basis functions is used and in Morel
[6] where the central finite difference approximation of (1.1)-(1.3) is used. The
identification used by Morel is particularly common since the finite difference approxi-
mation of (1.1)-(1.3) yields a matrix eigenvalue problem of the form

(2.1) -Au + hOu htxu,

where Q =diag{ql,... ,qN}, ur=(Ul, "’’, uv), and -A+h2O is the symmetric
tridiagonal matrix given by ai =2+h2% 1,...,N and bi 1, =2,...,N. Here
we adopt the usual notation qi =q(x), where x ih, and h =r/(N + 1), and it is
assumed that q e C210, zr].

As the finite difference approximation of (1.1), (1.4) yields a tridiagonal matrix
eigenvalue problem, if we can recover a tridiagonal matrix from N given eigenvalues
it may be possible to identify the recovered matrix with the finite difference form
(2.1) and hence recover the potential. This objective has been given as the motivation
for a number of methods aimed at solving the tridiagonal MIEVP, but to the author’s
knowledge there is no published work which examines its validity. (Note that Morel’s
numerical results use the exact finite difference eigenvalues rather than the differential
eigenvalues.)

It is clear that this identification should be examined more closely if we compare
the behaviour of the eigenvalues Ak of (1.1), (1.4) with q(x) 0 with that of eigenvalues
tXk Of (2.1) with Q =diag {0,. ., 0}. Clearly Ak k 2 while Zk 2h-2(1-cos kh) and
so txk/Ak 4/Tr2+0(h) as k N. In other words the asymptotic behaviour of the
differential and finite difference eigenvalues is substantially different and so the matrix
recovered using the differential eigenvalues cannot necessarily be directly identified
with the finite difference form. (It should be noted here that in Hald’s method [5] the
matrix and differential eigenvalues have the same asymptotic behaviour and so the
matrix he recovers from the differential eigenvalues can be directly related to the
matrix obtained by the Rayleigh-Ritz method.)

To investigate the effect that the differing asymptotic behaviour of the differential
and finite difference eigenvalues has on the matrix recovered using ALGC, we
recovered the tridiagonal matrix a, b from h 2k 2, k 1, , N for N 25.

The elements of the recovered matrix given in Table 1 for 1,. , (N + 1)/2,
when compared with the results given in Morel and in de Boor and Golub, clearly
show that the difference in asymptotic behaviour severely affects the recovered matrix
since it obviously deviates substantially from the expected form.
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TABLE
Matrix recovered from uncorrected

differential eigenvalues.

ai bi

0.560363
2 1.227185 0.189143
3 1.836272 0.578852
4 2.387198 1.112919
5 2.879860 1.740226
6 3.314264 2.414698
7 3.690462 3.095297
8 4.008537 3.746015
9 4.268588 4.335891
10 4.470715 4.839035
11 4.615014 5.234659
12 4.701559 5.507123
13 4.730402 5.645974

The question now arises as to whether we can improve the agreement of the
recovered matrix with the form (2.1). Since ALGC would yield the exact finite
difference matrix if we had the exact finite difference eigenvalues, and since the matrix
obtained by ALGC depends continuously on the given eigenvalues, we would expect
ALGC to give a matrix, close to the finite difference matrix if we could supply
eigenvalues which are close to the finite difference eigenvalues. This observation would
not at first appear to be useful since the finite difference eigenvalues are not known;
however, a method has been given in Paine, de Hoog and Anderssen [7] for improving
the accuracy of finite difference eigenvalues. This improvement is achieved by adding
a correction to each of the finite difference eigenvalues which gives them the same
asymptotic behaviour as the differential eigenvalues. Thus if we subtract this correction
from the (exact) differential eigenvalues we will obtain estimates of the desired finite
difference eigenvalues which will now have the correct asymptotic behaviour. What
we propose to do then is"

(i) correct the differential eigenvalues using

(2.2) k =Ak-(k2-2h-Z(1-coskh)), k 1,"" ,N

which is the reverse of the correction given in [7],
(ii) then use ALGC with these corrected eigenvalues to recover the matrix

a, I.
If we use this method in the above example we will recover the exact finite

difference matrix since the corrected eigenvalues in this case are precisely the finite
difference eigenvalues. So to test this method on a nontrivial problem we applied it
to recover the potential q(x)= 6 cos 2x from its eigenvalues. The results given in
Table 2 for N 25, represent a dramatic improvement in the agreement of the
recovered matrix with the form (2.1) since the bi are now almost unit entries.

If we ignore the discrepancy between the expected and recovered la and recover
the discrete potential using the equations ai 2 + h 2q the values obtained, also given
in Table 2, indicate that we have recovered some information on the potential since
the recovered potential has the same qualitative structure as the true potential.
However the discrete values are only approximately half those of the true potential
at the points x. Therefore, although correcting the differential eigenvalues does yield
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a matrix which is approximately of the required form, the discrepancy with respect
to the form (2.1) cannot be ignored, and so this approach does not in itself give us a
means for recovering the potential.

TABLE 2
Matrix recovered from corrected differential eigenvalues.

ai bi h-2(ai-2)

2.042623 2.919384
2 2.038761 0.959640 2.654865
3 2.032704 0.964465 2.239976
4 2.024749 0.971388 1.695160
5 2.015352 0.980012 1.051529
6 2.005061 0.989850 0.346661
7 1.994482 1.000334 -0.377927
8 1.984239 1.010851 -1.079494
9 1.974933 1.020774 -1.716917
10 1.967100 1.029513 -2.253420
11 1.961181 1.036551 -2.658824
12 1.957499 1.041477 -2.910994
13 1.956251 1.044011 -2.996534

3. Development of the inverse method. Although the matrix recovered in this
example clearly cannot be identified with the finite difference matrix in (2.1) since
the off-diagonal elements are not unit entries, it has been noted in Hald [4] that the
matrix can be identified with the finite difference approximation of the more general
Sturm-Liouville eigenvalue problem

(3.1) -(pb)’+rv =Av, s [0, 7r]

with the boundary conditions (1.4), where p and r satisfy (1.5), and p
r s C2[0, zr]. For this problem the finite difference eigenvalue problem is of the form

(3.2) -Dv+h2Rv=h2Av,
where R diag {rl, , rN} and -D + h 2R is the persymmetric tridiagonal matrix
given by

(3.3) ai =(pi+p+l)+h2ri, i= 1,... ,N,

(3.4) bi p2i, i=2,...,N.

Here ri=r($i), si=ih and pi=p(si_l/2) where si_1/2=(i-1/2) * h, i= 1,... ,N+I.
If we attempt to identify the recovered matrix with (3.2) we immediately discover

that pl is undetermined. However on observing that (3.1) and (1.1) are connected via
the Liouville transform

(3.5) x x(s), x(s) p-1/2 ds,

(3.6) u =wt, w =p-l/4,

(3.7)
2

q(x):r(x)-(-) (x)+(wW---") (x)
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if X (zr)= r, it seems reasonable to attempt to find a discrete version of the Liouville
transform to take (3.2) to the form (2.1). Unfortunately there is no discrete analogue
of (3.5)-(3.6) which will transform (3.2) exactly to (2.1), so we will instead discretize
(3.5)-(3.6) in the same fashion as (3.1) to obtain an approximate transformation.

The first step in implementing this approximate transform is to observe that the
values of the function p in (3.1) are known (via ALGC) at the midpoints of the
subintervals of a uniform partition of [0, r] except on the first and last intervals. This
immediately suggests that we can use midpoint quadrature to evaluate the integral in
(3.5) once we have fixed pl. Since we are assuming that p is symmetric about zr/2
the obvious choice for p (and hence pr/l) is that value which yields x(zr)= . This
requirement is satisfied if we set

(3.8) p 4h - hpi-/
i=

where the pi, 2,. , N are obtained from b using (3.4), and it is assumed that the
term in parentheses in (3.8) is positive. If this assumption is not satisfied, we have
x(r) > zr for the approximate transform and so it will not be possible to transform
(3.2) to (2.1) on the interval [0, r]. Once pl is determined in this way, the discrete
analogues of (3.5)-(3.6) are

(3.9) xi xi-1 + hp 7, 1/2, Xo O, 1, , N + 1,
-1/4(3.10) ui wvi, wi P 1," , N.

This identification of the recovered matrix with the finite difference form (3.2)
already provides a much better approximation of the potential as can be seen if we
recover the matrices with N 15, 31, and 63, evaluate pi, 2,... ,N from (3.4),
pl from (3.8) and then recover the ri using (3.3). The errors in the discrete potential
at the (uniform) points s of the s interval are displayed in Fig. 1 for 1, , (N + 1)/2.
In fact the recovered potential is very accurate and the convergence to the exact
potential appears to be second order for points away from the boundary. For points
near to the boundary, convergence is still obtained but is more complex in that the
order of convergence for the point closest to the origin is only one.

xlO-1

0.50

0.25

0.00

-0.25

-0.50

-0.75

-i.00

-1.25

-1.50

-1.75

ooooooooooooooooooooo’ oo

+ + + + + + + + + ,

0.00 0.25 0.50 0.75 1.00 1.25 1.50

FIG. 1. Errors in the potential recovered from the corrected eigenvalues. (*) N 15, (+) N 31,
(O) N 63.
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The remaining step in implementing the transform is to evaluate q (xi), 1, , N
from (3.7), which will then be the required discrete potential of the Liouville normal
form, but will in this case be known on the nonuniform partition of [0, zr] given by
the xi. The natural choice for evaluating (3.6) at the points x is to replace the derivatives
with respect to x with differences evaluated on the x partition. However the nonunifor-
mity of the partition of the x interval, coupled with the realization that q(x)- q(x (s))
and that the partition of the s interval is uniform, suggested that (3.7) be restated in
terms of derivatives with respect to s, which can then be readily and accurately
approximated by differences in the s interval. Thus, on noting that

t(s) (t)(s)
q(s)=r(s)+

4 16p(s)

we evaluate the discrete potential using the formula
.2

(3.11) q, r + .25ffi- .0625 Pi
where

i
Pi+l --Pi=, i-1,...,N,

h

and

-3/il + 4102 -/03
2h

/i+1
2h

=2,... ,N-l,

3/r 4/ir-1 +/r-2 t=N.
2h

Since the values of p are known at the midpoints of the subintervals of a uniform
partition of [0, r], the difference approximations of/i and ff will be second order
accurate, and so the values of q will also be second order accurate provided we use
/3 (p+l +pi)/2 in (3.11).

We implemented this method for recovering the potential from the matrices
recovered in the previous example and give the errors in the discrete potential at the
points x in Fig. 2.

The results obtained show that the q are generally better approximations of the
exact potential than are the r, and that the convergence of the discrete potential has
the same characteristics. Though it should be noted that there appears to be a Gibbs
type phenomenon for the points near the origin which was not observed in the previous
results.

As a final point we observe that, since this approximate Liouville transform is
aimed at producing a finite difference eigenvalue problem on a nonuniform partition
of [0, zr] which has the form (2.1) where -A + h2Q is given by

(3.12) ai 2h 2/hi_lhi + h 2qi, 1, ., N.

(3.13) b,+a =4h4/hi(hi_ +hi)(hi +hi+l), i= 1,... ,N- 1
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FIG. 2. Errors in the potential recovered using (3.11). (,) N 15, (+) N 31, ((C)) N =63.

where h zr/(N + 1) and hi, 0,. , N is defined as hi := (Xi+l xi) 0,. ., N,
an alternative method for recovering the qi is to recover the matrix a and b as before
and then determine the hi by solving the system of nonlinear equations (3.13) with
the given bi, subject to the constraint h0 + hi+"" + hN zr. Once the hi are known
the qi can be obtained directly from (3.12).

We implemented this approach by solving the system of nonlinear equations using
Newton’s method, and found that the partition defined by the hi and the recovered
potential agreed closely with those given by the approximate transform method. There
therefore appears to be little justification for using this alternative formulation as it
requires the iterative solution of a (possibly large) system of nonlinear equations.

4. Conclusions and discussion. In this paper we have presented what appears to
be an efficient method for recovering symmetric potentials from the spectrum associ-
ated with essential boundary conditions. The main deficiencies are that no theoretical
justification has as yet been obtained, and that the method as it stands can only be
applied to recover potentials q e C2[0, zr] which satisfy (1.5).

Since a method for correcting the finite difference eigenvalues for the general
boundary conditions (1.2)-(1.3) is given in [7], and a method is given in [3] for
recovering a general Jacobi matrix from its eigenvalues together with the eigenvalues
of its left principal submatrix of order N- 1, it would seem likely that the symmetry
constraint could be removed by combining these two methods. It would also seem
likely that potentials which are only piecewise twice ditterentiable could be recovered
from their spectra by using the method given in [8] for obtaining finite difference
approximations for such potentials. However the means for overcoming the lack of
theoretical justification of the methods given here are not obvious.
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Abstract. The well-known algorithms of Kruskal, Prim, and Sollin for constructing a minimum spanning
tree are surveyed in this paper. We discuss various data structures that can facilitate the search and update
operations of these algorithms. In particular, certain novel data structures for carrying out the Kruskal and
Prim algorithms are presented. Computational experience using four implementations of the Kruskal
algorithm and two implementations of the Prim algorithm on a class of moderately large networks is also
given. Overall, the best performance is attained by our new implementation of Prim’s algorithm which
incorporates an address calculation sort.

Key words, minimum spanning trees, computational experience, data structures, networks

1. Introduction. Minimum spanning trees, which connect together nodes of a
network at minimum total cost (or length), find application in the planning of efficient
distribution systems (pipelines, transmission lines) and in the designing of layouts for
circuit boards [28], [31]. In addition, minimum spanning trees provide useful informa-
tion for problems arising in clustering and taxonomy [15], [41], pattern recognition
[9], [30], [42], minimax control processes [20], [24], network reliability [26], and
chemical physics [37]. Variants of minimum spanning trees also occur in the study of
multiterminal network flows [21 and in the approximate solution of travelling salesman
problems 16], 17].

Three distinct procedures for calculating minimum spanning trees have been
developed [3], [271, [31] as well as several variants of these basic procedures. An
excellent survey of a number of solution procedures is provided by Kershenbaum and
Van Slyke [26]. The present paper extends this survey of solution procedures and
examines various data structures that can facilitate the search and update operations
of these procedures. Computational experience with existing and alternative
implementations is also presented.

2. Basic solution procedures. In this section, the minimum spanning tree problem
is defined more precisely and the three basic solution procedures are presented.
Detailed discussion of specific data structures and implementation issues is taken up
in3.

Suppose that G (N, E) is a loop-free connected network with node set N and
(undirected) edge set E. With each edge e (i,/) in E is associated a cost c (e) c (i,/’),
unrestricted in sign. Let n INI and m IEI signify the number of nodes and edges
in G respectively. A spanning tree T of G is a subgraph (N’, E’) of G with N’ N, E’

___
E, such that IE’I n- 1 and E’ contains no cycles. The cost c(T) of a spanning tree
T (N, E’) is given by

(1) c(T)= Y c(e).
eE’

A minimum spanning tree (MST) for G is then a spanning tree T’ such that c(T’)<=
c(T) for all spanning trees T of G.

* Received by the editors April 9, 1981. This research was supported by the Department of Mathemati-
cal Sciences, Clemson University; the Operations Research Division, National Bureau of Standards; and
the National Science Foundation under grant ISP-8011451 (EPSCOR). All computations were performed
at the Clemson University Computer Center.

t Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29631.
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2.1. Kruskal’s algorithm. Suppose e is an edge of G not in some given spanning
tree T. Since there is a unique path PT.(e) in T between the two end nodes of e, then
PT(c)t.J{e} forms a cycle in G. It follows that if T is a MST then c(e)>-_c(u) for all
edges u in PT(e), since otherwise the cost of T could be reduced by exchanging e for
some edge u in Pr(e). This necessary condition is also sufficient [12], [34], and so the
following optimality condition characterizes minimum spanning trees.

Optimality condition 1. Suppose T is a spanning tree of G. T is a MST iff for
all edges e not in T, c(e)>-c(u) for all edges u in PT-(e).

This optimality condition immediately suggests one method for obtaining a MST.
Namely,, construct an arbitrary spanning tree for G and test whether the optimality
condition above holds. If so, the current tree is optimal. Otherwise, there are edges
e and u such that the condition is not satisfied, and it is therefore advantageous to
exchange e for u in the current tree. By repeating this test/exchange procedure, we
will obtain a minimum spanning tree after a finite number of steps.

An alternative, and more systematic, method for obtaining a minimum spanning
tree also derives from the above optimality condition. Namely, suppose that edges
are considered for inclusion in T in order of nondecreasing cost and only chosen for
inclusion when they do not form a cycle with edges already chosen. Because of this
manner of selection, an edge forming a cycle with the chosen edges must have a cost
at least as large as the cost of any chosen edge in Pr(e). Thus, the optimality condition
is guaranteed to hold and so a minimum spanning tree is indeed produced by this
method. Although its origin has been attributed to Boruvka [4], this method is generally
referred to as Kruskal’s algorithm [27]. It was also independently discovered and
amplified upon by Loberman and Weinberger [28]. A statement of the general
algorithm is provided by the following.

KRUSKAL’S ALGORITHM. Given a connected, n-node network G=(N, E), this
algorithm produces a MST for G.

Step 1. SetS=E, T=b,i=0.
Step 2. Let e’ have minimum cost among edges in S.
Step 3. If T (.J {e’} does not contain a cycle then

Set + 1, T Tt.J{e’}.
If n 1 then STOP.

Step 4. Set S S-{e’}. Return to Step 2.

In the above algorithm, set S contains the candidate edges, T contains the edges
selected so far, and ITI. At any stage of Kruskal’s algorithm, the selected edges
form a forest (a node-disjoint collection of trees). Ultimately, after n- 1 edges have
been added, a spanning tree is obtained.

There are two major tasks involved in implementing the Kruskal algorithm"
selecting a minimum cost edge from S (Step 2) and checking for the creation of a
cycle (Step 3). These tasks have been carried out in a variety of ways by various
investigators. Namely, selection of a minimum cost edge can be done by searching
the set S each time for a smallest element [29], by presorting the edges according to
cost [5], [26], [36], or by keeping the edges in a heap [1], [6], [19], [26], [33]. Checking
for cycle creation can be accomplished by labeling and updating connected components
[5], [26], [36], by the use of linked lists to maintain connected components [1], [26],
by storing components as subtrees and using the subtree root as the component label
[1], [29], or by using tree structures and path compression together with efficient
"find" and "set union" operations [1], [6], [19], [33]. Depending on the specific
implementation used, the worst-case complexity of Kruskal’s algorithm ranges from
O(m 2) to O(m log m) where m ]E I. (In this paper, all logarithms are base 2).
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2.2. Prim’s algorithm. The optimality condition of 2.1 allows one to decide
whether a given spanning tree is a MST by examining certain (fundamental) cycles in
G. Alternatively, there is another optimality condition, dual to the first, that involves
cutsets of G [1], [8], [14], [34]. Recall that the cutset (X, Xc) is the set of all edges
in E joining a node in X to a node in X N-X.

Optimality condition 2. T is a MST iff for all X such that b cX c N, there is an
edge e’ of T such that e’ s (X, X) and c (e’) min {c (e): e (X, X)}.

Thus, a MST for G contains a minimum cost edge in every cutset of G. In
particular, suppose that T’= (N’, E’) is a subtree of a MST. Note that T’ is a minimum
spanning tree on the subnetwork of G induced by the node set N’. Taking X N’
in the second optimality condition shows that T’ can be extended to a larger subtree
of a MST by adding to it a minimum cost edge e’ s (N’, N’). This observation provides
motivation for a second basic solution method for constructing a MST. Namely, at
each stage we have a set of nodes N’ and a subtree T’ on these nodes. A minimum
cost edge e’ (i, ]), with N’ and ](N’, is then selected from the cutset (N’, N’),
whereupon/" is added to N’ and e’ is added to T’. Continuing in this fashion, the
current subtree is extended until it contains all nodes of G, at which point a MST for
G has been found. This method was first proposed by Prim [31 and later independently
by Dijkstra [11]. In contrast to the Kruskal procedure, each stage of the Prim procedure
generates a tree (rather than a forest). Moreover, a MST can be grown in the Prim
procedure starting from any node in N. A general version of Prim’s algorithm is
embodied in the following.

PRIM’S ALGORITHM. Given a connected, n-node network G=(N,E), this
algorithm produces a MST for G.

Step 1. Set X b, T b. Choose any ]’ N.
Step 2. Set X X LI {]’}. If X N then STOP.
Step 3. Choose e ’= (i, ]) with 6 X, ] Xc, such that c (e’)

min {c (e): e (X, X)}.
Step 4. Set T T LI {e’},/"= ]. Return to Step 2.

Several variants of this algorithm have been proposed to carry out the cutset
minimization in Step 3. Although it is possible to form the entire cutset (X, X) and
find the minimum cost edge by searching through the whole cutset of potentially
O(n :z) edges [5], [18], it is more efficient to restrict the search to an O(n) subset of
(X, X). A useful device is to keep a temporary label d (/’) that represents at any stage
either the minimum cost of an edge between node ] X and set X, or the minimum
cost of an edge between set X and node/’Xc. The former approach has been
employed, together with a fast nearest-neighbor procedure, for calculating MST’s of
k-dimensional point sets [2]. More commonly, however, the latter approach has been
used. Thus, the node ] selected in Step 3 is simply the node of X having minimum
temporary label. When set X is enlarged in Step 2 by adding node/", the remaining
nodes/" X need to have their temporary labels updated via: d (/’) min {d (/’), c (/",/’)}.

Accordingly, two tasks necessary for implementing this form of Prim’s algorithm
are: updating the temporary node labels and selecting a node with minimum temporary
label. Generally, the updating is done in a fairly standard way, while the selection of
a minimum-label node can be carried out in various ways. For example, the selection
step can be implemented by a direct search of all node labels, possibly using a flag
to indicate membership in X [19], [32], [33], [35] or using an array to index nodes
in X [14], [39]. Alternatively, the temporary labels (or their corresponding edges)
can be stored and updated using a heap [26], or a B-heap [22]. These different
implementations all have worst-case complexity O(n2). However, if G is sparse, an
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O(m log n) implementation is possible (see 3.2); if G is sufficiently dense, an O(m)
algorithm can be constructed [22].

2.3. Sollin’s algorithm. Another procedure for constructing a MST can be based
on optimality condition 2. This procedure appears to have been first proposed in 1938
by Choquet [7] for points embedded in a metric space, and then independently in
1961 by Sollin [3], [25] for arbitrary networks. Notice that by using X ={i} in the
second optimality condition, it follows that a MST must contain a minimum cost edge
out of each node i. Therefore, in this construction method, a minimum cost edge out
of each node is first selected. If these selected edges form a tree, then this tree is
a MST. More generally, these edges will form a forest of node-disjoint subtrees
T1,"’, Tk. If the node set of each subtree is "shrunk" to a single node, then the
procedure can be reapplied to the subnetwork defined by these k nodes; namely, a
minimum cost edge out of each new node is again selected. The procedure is repeated
until the original network has been shrunk to a single node. A general statement of
what is known as Sollin’s algorithm is provided by the following.

SOLLIN’S ALGORITHM. Given a connected, n-node network G=(N,E), this
algorithm produces a MST for G.

Step 1. Initialize the list L to consist of the single-node sets {1}, {2},..., {n}. Set
T--4,o

Step 2. If ]L 1 then STOP.
Step 3. Select a set S from L.
Step 4. Find a minimum cost edge e’ (i,/’) with in S,/" not in S. Set T T t3 {e’}.
Step 5. Merge the set S with the set S’ in L containing node ]. Return to Step 2.

Sollin’s algorithm has the advantage that Steps 3-5 above can be carried out
using parallel processors [14]. However, if the edge costs are not distinct then some
care must be exercised to avoid the creation of cycles. Goodman and Hedetniemi
[14] provide a tie-breaking rule for Step 4 that avoids this difficulty.

In carrying out this algorithm, several choices are available for selecting the set
S from list L in Step 3: e.g., randomly, using a stack, or using a (priority) queue.
Major tasks in executing the algorithm are identifying a minimum cost edge e’ (Step
4), finding the node set $’ (Step 5), and merging two sets of L into a single set (Step
5). Cheriton and Tarjan [6] have investigated several variants of the Sollin algorithm,
using tree structures for T,..., T together with efficient "find" and "set union"
operations for Step 5; also, several types of priority queues for edges are employed
in carrying out the minimization of Step 4. Yao [40] has modified the basic Sollin
algorithm by partitioning the edges incident to each node into "levels" based on edge
cost. Another Sollin-based algorithm that uses 2-3 trees as the underlying data
structure is outlined in [1].

The worst-case complexity of the basic Sollin algorithm is O(m log n), where
rn IEI and n IUl. This complexity can be reduced to O(m log log n) using several
of the above-mentioned modifications to the Sollin algorithm [6], [40].

3. Alternative data structures. In this section, algorithms for the basic Kruskal
and Prim approaches are presented in conjunction with data structures useful in their
implementation. Four distinct implementations of the Kruskal procedure and two
implementations of the Prim procedure are described. We have chosen not to investi-
gate the Sollin-type algorithms in the present paper. While such algorithms have a
better theoretical worst-case complexity than the Kruskal or Prim approaches, the
more complicated data structures and consideration of tie-breaking in the Sollin
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algorithm may adversely affect its actual empirical performance. Moreover, computa-
tional experience with the algorithms developed here shows that fairly large problems
can be solved very efficiently by properly implementing the Prim and Kruskal
approaches" problems with up to 500 nodes and 24,000 edges were solved in no more
than 0.6 seconds CPU time.

3.1. Implementations of Kruskal’s algorithm. As noted in 2.1, there are two
primary tasks in implementing Kruskal’s algorithm. The first, finding a minimum cost
edge, is frequently accomplished via a heap and that approach is taken here. The
second, determining whether a candidate edge creates a cycle, will be examined in
more detail.

Four approaches, leading to Algorithms K1, K2, K3, and K4, are considered for
detecting cycles. Recall that at any stage of Kruskal’s algorithm the edges selected so
far define a forest of disjoint subtrees {T, T2,..., T}. Algorithm K1, the most
straightforward implementation, employs a node-length array A of subtree labels
[38]. That is, A (i) provides for each node the identity (or label) of the unique subtree
Tr containing i. A candidate edge forms a cycle with the current forest if and only if
the labels of its end nodes are equal. When these labels are different, the candidate
edge joins distinct subtrees T and Ts; in this case, the subtree labels can be updated
by scanning the array A and changing every occurrence of the label for Tr to the label
for T. As noted in [26], this cycle-detection approach requires O(n ) operations in
the worst case. In addition, it may be necessary to examine m edges in order to
construct the MST, in which case finding the minimum cost edges (via a heap) requires
O(m log m) computations. Hence the effort required to generate the MST can be
dominated by either the cycle detection procedure or the examination of edges.

An improved procedure, Algorithm K2, maintains a linked list structure for each
subtree T. In other words, the nodes comprising each such subtree are chained
together using a successor function. Therefore, the subtree labels of all nodes in Tr
can be accessed and updated in a direct manner. Furthermore, it is advantageous to
update the subtree labels only for nodes of the smaller subtree. Algorithm K2 then
requires at most O(m log m) operations to generate the candidate edges, plus
O(n log n)+ O(m) operations to process and update the linked list structure [26].

Algorithm K3 employs .a rooted tree as a data structure for determining the
existence of cycles [1], [29]. The root of each subtree serves as the subtree label.
Using path compression and information as to the size of subtrees to maintain a
balanced tree data structure results in a cycle detection procedure which is almost
linear in rn [1]. Note, however, that generating the candidate edges is still an
O(m log m) operation.

The new algorithm proposed here, Algorithm K4, is similar to Algorithm K3 in
the use of a tree structure for identifying subtree components but it does not require
complete information as to the root of each subtree. The data structure employed in
Algorithm K3 maintains the nodes of each subtree Tr as a rooted tree on those nodes.
A predecessor function, defined for each node in T, gives the predecessor node of
node along the unique path from the root to node in the rooted tree. By convention,
the root node is used to label each subtree. Thus, the subtree label for any node is
obtained by tracing back (using the predecessor function) until the root of its subtree
is obtained. In Algorithm K3, this traceback cannot be terminated prior to reaching
the root.

An alternative approach, used in Algorithm K4, is to maintain subtree information
in a tree data structure where successive unions of subtrees are referenced by new
component names. This will require a maximum of (n 1) additional storage locations
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but allows a parallel traceback through successive components for any pair of nodes
to determine subtree membership. In determining whether two nodes are in the same
subtree, the parallel traceback can be terminated once the traceback for either node
is completed since two nodes are in the same subtree if and only if they share a
component at a higher level. This structure is best illustrated by example.

Consider the six node graph shown in Fig. 1. Suppose that edges (1, 2), (6, 5),
(3, 5), (2, 6), and (5, 4) are successively added to the spanning forest in constructing
a MST. Start initially with a component at level one for each node (Fig. 2a). For edge
(1, 2), nodes 1 and 2 share no higher level component and hence are in different
subtrees. Create a higher level component at level two labeled 7 (Fig. 2b). Similarly
create component 8 from edge (6, 5) and nodes 5 and 6 (Fig. 2b).

Edge (3, 5) is next to be added to the spanning forest. The predecessor component
of 3 at level two is 0 (none exists).; for node 5, the predecessor component is 8. The
traceback can be terminated at level two and the level two component of node 3 is
set equal to 8 (Fig. 2c). For edge (2, 6), the level two components are 7 and 8, which
are nonzero but unequal. The traceback continues to level three where the predecessors

FIG. 1. Six-node graph to illustrate component level data structure.

(c)

(e)

FIG. 2. Successive development in component level data structure.
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of components 7 and 8 are both 0 and so the original nodes (2 and 6) are in different
subtrees. A new component, 9, at level three is created as the predecessor of com-
ponents 7 and 8 of level two (Fig. 2d).

If edge (2, 5) were considered at this juncture, its two endpoints would be found
to have different components at level two (7 and 8), but the same component at level
three (9). Thus, the edge would be rejected for inclusion in the MST since nodes 2
and 5 are in the same subtree. Finally, consideration of edge (5, 4) yields the pre-
decessor component 0 for node 4 and the predecessor component 8 for node 5. The
nodes are in different subtrees and so the edge is added to the current forest; the
level two component of 4 is set to 8 (Fig. 2e). The algorithm terminates having found
the five edges required for a minimum spanning tree in this six node network (Fig. 3).

FIG. 3. Minimum spanning tree ]’or the network ofFig. 1.

In general, the traceback will yield predecessor components for each node at
each level. If the components are nonzero and equal, the original nodes are in the
same subtree. If only one of the components is zero, that component is set to the
other (nonzero) component number. If both components are zero, a new component
at the next higher level is generated. In each of these latter two cases, the edge is
added to the spanning forest. If both components are nonzero but unequal, the
traceback continues to the next level. A property of this construction technique is
that the rooted trees so generated have a depth which is at most that of a balanced
binary tree on the same number of nodes; i.e. the smallest integer greater than or
equal to (log n).

As with Algorithms K1, K2, and K3, the effort required in Algorithm K4 will
depend on the topology of the particular graph to be analyzed. Note that the maximum
depth of the component levels is O(log n) and this bound is attained if the associated
data structure is a binary tree. In the worst case, it would be necessary to scan m
edges in order to complete the construction of the MST. Since the maximum depth
of the rooted tree is O(log n), then at most O(m log n) operations are required. Again,
the generation of candidate edges by nondecreasing cost will require O(m log m)
operations in the worst case.

Computational experience with these four variations on Kruskal’s algorithm is
presented in 4.

3.2. Implementations of Prim’s algorithm. Two variations, denoted P1 and P2,
of Prim’s algorithm are presented here. As noted in 2.2, maintaining temporary
labels for nodes/’ sX requires the ability to update these labels and to find their
minimum. Algorithm P1 employs a heap [23], [26] to keep a partial order on the
temporary labels and a node index list to facilitate label updating. Algorithm P2, a
new variation on Prim’s algorithm, maintains the temporary labels via an address
calculation. The approach is similar to that employed by Dial [10] for solving shortest
route problems. The method for maintaining temporary node labels is now briefly
described.
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Let the maximum edge cost be denoted Cmax. The edge costs can be assumed
strictly positive and integral since all edge costs can be monotonically translated and
scaled without changing the minimum spanning tree. The address space consists of a
list L of Cmax elements (node indices) initialized to zero. If a new temporary label v
is obtained for node , examine the element of L in the vth position, L(v). If L(v) is
zero, then set L(v)=/’. If L(v) is nonzero, is added to a linked list LL (of maximum
length n) containing all such duplications. If node / had been labeled previously and
is not currently in the set X, there will be an entry/" in either L or LL which must
be deleted. The entry can be found via the previous temporary label of node/. Note
that the address calculation and data structure update take place only if the new label
for / is smaller than its previous label.

To find the minimum label (corresponding to the next node to be added to the
set X), simply scan successive elements of L searching for the first nonzero entry.
That entry will be the index of the node having minimum label. Note that the scan
must start at the top of the list L as opposed to the rotating scan employed in the
corresponding shortest route algorithm. However, some savings can be achieved by
start.ing the scan at the minimum of the last node label (previous minimum) and the
smallest label updated when that node was added to the set X. When a smaller updated
label is generated, the first nonzero element of L is available without scanning if the
minimum of such labels is retained.

It should be noted that this algorithm is the only one of the six presented here
which is sensitive to the actual values of the edge costs and not just their rank. If Cmax
is large relative to the number of edges, one might expect relatively few duplications
and hence less effort in updating labels since the linked list is rarely required. However,
a low duplication rate could also mean that many elements of L are zero (empty) and
more effort is required to find the minimum label. Conversely, if nonzeros are dense
in L, it is expected that fewer operations are needed to obtain the minimum label,
but more effort is required to update labels since duplications are more likely.

Finally, note that the length of the linked list will never exceed n if previous
label entries for nodes are eliminated when such labels are updated. Otherwise, LL
could grow considerably larger and when a minimum label is determined, the corres-
ponding node must be checked for inclusion in X.

To illustrate the address calculation data structure, consider the network of Fig.
4. With X {1, 2, 6}, (X, Xc) {(2, 3), (2, 4), (1, 4), (6, 5)}, nodes {3, 4, 5} have tem-
porary labels d (3) 4, d (4) 4, and d (5) 3. The list L and associated linked list LL
for duplicate labels are shown in Fig. 5. Notice that Cmx is five.

The worst-case complexity of the Prim-type algorithms can be derived by noting
that every edge in the graph is eventually checked as a candidate to update a temporary
node label. In the case of sparse networks, Algorithm P1 requires at most O(m log n)
operations for updating the heap of temporary node labels and O(n log n) operations

cut

FIG. 4. Network illustrating the address calculation data structure.
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L (address list) LL (linked list)

label :node node --> successor

i:0 1 --> *

TOP --> 2:0 2 *

3:5 3 --> *

4:4 4--> 3

5:0 5 *

6 -->*

FIG. 5. Illustration of address calculation data structure. The * denotes no following node in the linked
list. TOP is the starting position of the scan ]:or the next minimum. TOP is 2 since node 6 with label 2 was
the last node added to the set X. The address space length is 5 (the maximum edge cost).

to reform the heap after removing the minimum elements, yielding O(m log n)
worst-case complexity. For dense networks, updating the heap of temporary node
labels can be done in O(n 2) operations, resulting in an O(n 2) algorithm overall.
Algorithm P2 requires in the worst-case O(m n) operations to update labels in the
address space and O(n Cmax) operations to find the next minimum element.

Empirical computational evidence concerning the four Kruskal-type and two
Prim-type algorithms is presented in the next section.

4. Computational experience. The algorithms presented above were tested on
sets of randomly generated networks of various sizes. Before discussing the results,
some explanation of the test conditions is necessary.

4.1. Implementation of algorithms. The various algorithms were coded in FOR-
TRAN IV using structured programming and modular design. In particular, all versions
of the Kruskal-type algorithms were exactly the same except for minor differences in
the initialization routine and the particular section of code that determined whether
a candidate edge was to be added to the spanning forest. This last section of code
included the details of updating the data structure specific to each algorithm. A similar
approach was used for the Prim-type algorithms. In that case, the codes differed only
in the manner of finding the node of minimum temporary label and in the method of
updating node labels. This coding procedure permitted analysis of the specific differen-
ces between algorithms by separating those tasks common to all approaches.

The measure of computational effort reported below is CPU time (excluding
compilation time and I/O processing). Times were obtained by running the various
codes as load modules produced by the IBM Extended H level compiler on an IBM
370/3033 computer.

4.2. Sample problems. A set of connected networks was generated with the
number of nodes n ranging from 25 to 500 and with the edge density d ranging from
10 to 100%. The edge density is the total number of edges m divided by the maximum
number of possible edges, n(n-1)/2. In addition, for each value of n, a problem
having n edges was also considered. Table 1 gives the number of nodes and edges
for the problems considered. For each problem size (fixed n, m), a sample of 5 networks
was randomly generated. Restrictions imposed by the amount of readily available
core storage limited the number of edges to 24,000 in this study.

The graphs were generated at random in the following manner. Given a spanning
subtree on nodes {1, 2,...,/’}, a node k was chosen at random from that set and the
edge (k,/" + 1) was added to the spanning subtree. Additional edges were successively
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TABLE 1
Number of edges for each test problem. (*) denotes number of edges equal to number of nodes. ()

denotes problem not considered.

Nodes

25
5O
75
100
150
200
300
400
5OO

Edge density
* 0.1 0.3 0.5 0.7 0.9 1.0

25 30 90 150 210 270 300
50 123 368 613 858 1,103 1,225
75 278 833 1,388 1,943 2,498 2,775
100 495 1,485 2,475 3,465 4,455 4,950
150 1,118 3,353 5,588 7,823 10,058 11,175
200 1,990 5,970 9,950 13,930 17,910 19,900
300 4,485 13,455 22,425
400 7,980 23,940
500 12,475

generated to obtain a spanning tree for the graph. Finally, edges were generated
randomly from the set of all remaining edges and added to the graph until the specified
number of edges was obtained. Edge costs were generated from a uniform distribution
over a range 1 to 10,000. These costs were subsequently scaled down for successive
runs using the address calculation sort (Algorithm P2). The application of Algorithm
P2 to these data will be referred to as Algorithms P2A, P2B, P2C, and P2D for Cmax
equal to 10,000, 2,000, 400, and 80 respectively. In fact, the graphs and algorithms
are the same, with only the size of the address space changing; the designations P2A,
P2B, P2C, and P2D are used simply as a matter of convenience.

The data for each problem were saved and accessed in turn by each implementa-
tion of the six algorithms. The information required by the Kruskal-type algorithms
was the number of nodes n, the number of edges m, and a list of edge triples (i,/’, c (i,/’)).
The Prim-type algorithms required n, rn, and a list of nodes adjacent to each node
in the network and the associated edge costs (i.e., a forward star representation [13]
of the edge set). The processing order of edges for the Kruskal algorithms is randomized
by virtue of the random generation of edge costs. For the Prim algorithms, the starting
node j’ was arbitrarily set to the first node of the graph. Table 2 provides a summary
of the data storage requirements of each algorithm for a network having n nodes and
m edges. It should be noted that because m is generally the dominant term, the Prim
algorithms are more economical of space than the Kruskal algorithms.

TABLE 2
Data storage requirements ]’or algorithms, expressed

in terms of m (number of edges), n (number of nodes),
and Crnax (maximum edge cost).

Algorithm

K1
K2
K3
K4
P1
P2

Storage (words)

5m + 2n
5m +4n
5m+3n
5m+3n
4m+5n

4m + 4n + Cma
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4.3. Execution times. Table 3 gives the average execution times (in hundredths
of a second) for codes K1-K4 on the collection of test problems summarized in Table
1. A number of observations are apparent from this table. First, Algorithms K2 and
K3 are fairly comparable in terms of average execution time, and both produce
consistently smaller times than K4, which in turn performs better than K1. A linear
model of the form

(2) T barn + b2n log m

TABLE 3
Average execution times ]’or the Kruskal algorithms in hundredths of seconds. The number o]’ edges in

each problem is given in Table 1. Edge density ranges from 0.1 to 1.0; the number of nodes, from 25 to
500. (*) indicates n m" ( indicates problems not considered.

Nodes

25

50

75

100

150

200

300

400

500

Alg.

K1
K2
K3
K4

K1
K2
K3
K4

K1
K2
K3
K4

K1
K2
K3
K4

K1
K2
K3
K4

K1
K2
K3
K4

K1
K2
K3
K4

K1
K2
K3
K4

K1
K2
K3
K4

Edge density
* 0.1 0.3 0.5 0.7 0.9 1.0

2.19 2.27 3.14 2.95
2.03 2.28 3.11 2.92
2.02 2.23 3.33 3.09
2.13 2.29 3.34 3.06

3.52 5.68 7.97 6.17
3.43 5.50 7.75 6.03
3.38 5.44 7.85 5.93
3.40 5.53 8.02 6.05

5.07 9.14 13.58 12.37
4.73 8.85 13.07 11.77
4.83 8.91 13.00 11.83
4.77 8.93 13.37 12.43

6.77 14.52 15.15 17.96
6.23 13.93 14.25 17.06
6.28 13.90 14.21 17.08
6.26 14.31 14.69 17.63

10.11 28.04 28.71 28.74
8.86 26.29 27.15 26.80
8.92 26.39 26.97 26.94
8.89 26.86 28.05 28.19

13.74 39.15 40.72 44.61
11.53 36.47 37.64 41.10
11.55 36.76 37.87 41.67
11.60 37.86 39.87 43.55

23.45 62.10 62.50 76.50
17.40 55.08 55.70 68.11
17.81 55.33 55.68 68.25
17.52 56.90 58.85 72.84

32.21 86.92 102.07
22.71 75.41 88.27
22.77 80.73 88.26
23.07 78.18 94.07

42.97 120.50
29.22 97.37
28.36 97.36
28.46 107.89

3.78 3.36 3.86
3.51 3.30 3.78
3.71 3.26 3.73
3.69 3.36 3.84

7.45 6.81 8.93
7.15 6.56 8.56
7.13 6.56 8.58
7.30 6.84 8.87

12.31 12.92 12.97
11.66 12.30 12.25
11.67 12.29 12.39
12.28 12.77 12.90

15.60 20.65 19.36
14.73 19.51 18.31
14.68 19.32 18.28
15.39 20.36 19.10

33.50 34.46 37.58
31.07 32.07 35.00
31.00 31.82 34.79
32.03 33.87 37.10

44.05 50.53 56.45
41.96 46.84 51.76
39.82 46.30 50.64
42.66 49.92 55.10
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was found to provide a good fit of execution time T as a function of n (number of
nodes) and rn (number of edges). Least squares estimates for b and bE as well as the
multiple correlation coefficient R 2 are summarized in Table 4 for each of the Kruskal
algorithms. The virtual equality of the least squares estimates for K2 and K3 in Table
4 confirms the observation that these two algorithms are comparable in terms of
execution time. The high values obtained for R E indicate an excellent fit for model (2).

TABLE 4
Summary statistics for least squares fit of execution times for

the Kruskal algorithms versus (blm + ben log m).

Algorithm

K1
K2
K3
K4

Regression statistics
b2 R

0.000974 0.01333 0.960
0.001166 0.01067 0.946
0.001103 0.01090 0.939
0.001288 0.01113 0.941

As an example, Fig. 6 shows the average execution time for Algorithm K2, plotted
against the value predicted by (2). The near-linearity of this plot indicates that the
empirical complexity of K2 is O(m +n log m). A similar observation applies to the
other Kruskal-type algorithms.

This empirical O(rn + n log m) behavior can be explained as follows. The compu-
tational effort involved in implementing the Kruskal algorithms is dominated by the
heap operations. Forming the heap of edge costs is an O(m) operation and each
reforming of the heap requires O(log m) operations. Since the heap is reformed once
for every new candidate edge, the total effort to establish and maintain the heap is
O(m +k log m), where k is the number of candidate edges examined during the
progress of Kruskal’s algorithm. Clearly, the value k depends on the network topology
and edge costs, but not on the particular computer implementation.

/

T 80

0 70

T +I

E
/

40 /

1

E I0C

/1

FIG. 6. Average execution time (hundredths of seconds) versus (b,m + ben log m) for Algorithm K2.
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The observed dependence of the number of candidate edges on the number of
nodes n and the density d is shown in Table 5, which displays the mean number of
candidate edges k (averaged over the five networks at each size). In addition, for each
value of n, the maximum and minimum values of kin are shown. It is seen that the
value kin lies in the fairly restricted range of 1.1-3.2 for all problems considered
here. In other words, k is approximately 1 to 3 times the number of nodes. This
implies, in turn, that the computational effort for the Kruskal algorithms should be
dominated by O(m + n log m) operations, as we have already observed. It is worth
emphasizing that for the random networks generated here, the number of edges that
need to be examined by the Kruskal algorithm is never more than about three times
the minimum number of edges (n 1) required to build a spanning tree.

TABLE 5
Average number of edges, , examined by the Kruskal algorithms" also, the minimum and maximum

values of /n for edge densities ranging from 0.1 to 1.0.

Nodes

25
5O
75
100
150
20O
30O
400
5OO

Edge density
0.1 0.3 0.5 0.7 0.9 1.0

29 45 39 50 43 52
87 125 87 107 94 127
148 214 186 176 176 171
235 229 270 213 282 254
457 438 402 437 435 476
637 596 599 522 586 643
914 805 910
1237 1243
1572

Min
kin

1.14
1.74
1.97
2.13
2.68
2.61
2.68
3.09
3.14

Max
k/n

2.07
2.54
2.85
2.82
3.17
3.21
3.05
3.11
3.14

Table 6 displays the average execution times (in hundredths of a second) for
codes P1 and P2A-P2D on the test problems. It is seen that Algorithm P2C consistently
produces smaller execution times than P1, except in the very low density case when
rn n. However, in this case P2D is always superior to P1. In fact, Algorithm P2D
is generally the best performer for networks with up to approximately 5,000 edges.
With networks having some 5,000 to 15,000 edges, Algorithm P2C performs very
well, and for networks with more than 15,000 edges Algorithm P2B becomes com-
petitive.

Recall that the maximum edge costs Cmax used in Algorithms P2A-P2D are
10,000, 2,000, 400, and 80 respectively. Thus, it is not surprising that P2D performs
well for networks having relatively few edges, since in this case there will be relatively
few node labels in the address space and relatively few duplications. As the number
of edges is increased, more effort is required to manage duplicate labels but less effort
is needed to find the minimum node label. The empirical evidence shows that even
with up to 5,000 edges an address space with Cmax--" 80 is fairly effective, indicating
that the burden of duplicated labels is handled efficiently over a broad range for rn.
Beyond 5,000 edges, an address space with Cmax--400 is quite effective. A rough rule
of thumb suggested by these empirical findings is that Algorithm P2 can be quite
efficient so long as the number of edges is not more than 40 times the value of Cmax
(at least when edge costs are uniformly distributed over the range 1 to Cmax).

Execution times T for the Prim algorithms were fit quite well by a model of the
form

(3) T bin + b2rn.
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TABLE 6
Average execution times for the Prim algorithms using heap sort (P1) or address calculation sort (P2).

Algorithms P2A, P2B, P2C, and P2D refer to applications of Algorithm P2 with Cmax equal to 10,000,
2,000, 400, and 80, respectively. (*) indicates n m" ( indicates problems not considered.

Nodes

25

50

75

100

150

200

300

400

500

Alg.

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

P1
P2A
P2B
P2C
P2D

Edge density
* 0.1 0.3 0.5 0.7 0.9 1.0

3.31 3.33 3.57 3.46 3.54 3.65 3.66
5.16 4.80 4.03 4.08 3.73 3.80 3.81
3.63 3.57 3.48 3.45 3.68 3.59 3.59
3.34 3.34 3.32 3.43 3.64 3.58 3.61
3.27 3.28 3.52 3.38 3.48 3.58 3.57

5.89 6.19 6.25 6.64 6.81 7.04 7.06
9.53 7.92 6.91 6.79 6.79 7.04 7.12
6.59 6.32 6.36 6.41 6.50 6.82 6.95
5.95 6.05 6.23 6.46 6.59 6.79 6.96
5.85 6.00 6.18 6.46 6.58 6.76 6.88

8.54 8.82 9.39 9.83 10.43 10.93 11.25
14.86 10.34 9.81 10.00 10.26 10.82 11.17
9.75 8.94 9.33 9.64 10.13 10.68 10.90
8.64 8.83 9.30 9.58 10.20 10.61 10.94
8.45 8.65 9.10 9.52 10.13 10.52 10.89

11.28 11.82 12.58 13.32 14.14 15.43 15.51
19.48 13.18 12.65 13.28 13.90 14.80 15.10
12.92 11.84 12.31 13.02 13.64 14.59 15.12
11.49 11.71 12.15 12.99 13.69 14.65 15.00
11.27 11.51" 12.23 12.87 13.71 14.68 15.04

16.20 17.50 19.67 21.54 23.60 25.13 25.92
28.16 18.46 19.59 21.10 22.66 24.38 25.16
18.55 17.43 18.95 20.69 22.81 24.16 24.91
16.63 16.94 19.04 20.59 22.93 24.09 24.93
16.13 16.90 18.96 20.53 22.92 24.19 24.97

21.59 23.50 27.15 31.00 34.30 39.64 39.81
36.10 24.12 26.50 29.78 32.66 37.78 37.55
24.13 23.10 26.18 29.44 32.58 35.58 39.06
21.46 22.70 26.17 29.28 34.03 35.92 38.42
21.16 22.65 26.02 29.67 32.64 36.78 38.52

32.54 38.49 44.77 52.36
55.56 37.08 43.52 50.53
36.30 36.16 42.79 52.34
33.48 36.05 42.60 50.07
32.19 36.85 43.18 51.00

43.13 51.07 66.70
72.14 49.99 63.98
48.15 51.56 61.98
43.24 48.47 65.06
42.11 49.18 64.94

53.80 65.77
89.06 63.58
61.43 63.84
53.58 62.87
52.84 63.47
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Table 7 shows the least squares estimates for the parameters b and b2 together with
the multiple correlation coefficient R E. Table 7 indicates that as Cmax is increased for
the P2 algorithms, the value of b increases while the value of bE decreases. This
finding supports the observation that as Cmax increases, the effort to select the minimum
label increases while the effort to manage duplicate labels decreases.

TABLE 7
Summary statistics for least squares fit of execution times for the

Prim algorithms versus (bin + bErn).

Algorithm

P1
P2A
P2B
P2C
P2D

Regression statistics
bl b2 R

0.10866 0.0009322 0.999
0.15430 0.000008431 0.945
0.11685 0.0006672 0.997
0.10723 0.0008379 0.998
0.10608 0.0008730 0.999

The high values obtained for R 2 indicate an excellent fit for model (3). As an
example, Fig. 7 shows average execution time for Algorithm P2C plotted against the
value predicted by (3). Notice that the empirical O(m +n) complexity of the Prim
algorithms is in decided contrast to the worst-case estimates of at least O(m log n)
for these algorithms.
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FIG. 7. Average execution time (hundredths of seconds) versus (bin + b2m for Algorithm P2C.

Table 8 compares one of the best Kruskal algorithms (K2) with one of the best
Prim algorithms (P2C). It is seen that the Kruskal algorithm is generally faster for
n <-50 and the "ultra-sparse" case rn n. Otherwise, the Prim algorithm is superior,
even in the cases of low densities (d 0.1, d 0.3). In fact, the Prim algorithm is
some 35% faster than the Kruskal algorithm for the cases d 0.1 and n => 150.

More disaggregated data than that given in Tables 3 and 6 show that the individual
execution times are more variable among the five sample networks at each size for
the Kruskal algorithms than for the Prim algorithms. This greater variability appears
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TABLE 8
Comparison of average execution time (hundredths of seconds) for Algorithms K2 and P2C (address

calculation sort for temporary labels, Cmax 400). (*) indicates n m" ( indicates problems not considered.

Nodes

25

50

75

100

150

200

300

400

5OO

Alg.

K2
P2C

K2
P2C

K2
P2C

K2
P2C

K2
P2C

K2
P2C

K2
P2C

K2
P2C

K2
P2C

Edge density
0.1 0.3 0.5 0.7 0.9 1.0

2.03 2.28 3.11 2.92 3.51 3.30 3.78
3.34 3.34 3.32 3.43 3.64 3.58 3.61

3.43 5.50 7.75 6.03 7.15 6.56 8.56
5.95 6.05 6.23 6.46 6.59 6.79 6.96

4.73 8.85 13.07 11.77 11.66 12.30 12.25
8.64 8.83 9.30 9.58 10.20 10.61 10.94

6.23 13.93 14.25 17.06 14.73 19.51 18.31
11.49 11.71 12.15 12.99 13.69 14.65 15.00

8.86 26.29 27.15 26.80 31.07 32.07 35.00
16.63 16.94 19.04 20.59 22.93 24.09 24.93

11.53 36.47 37.64 41.10 41.96 46.84 51.76
21.46 22.70 26.17 29.28 34.03 35.92 38.42

17.40 55.08 55.70 68.11
33.48 36.05 42.60 50.07

22.71 75.41 88.27
43.24 48.47 65.06

29.22 97.37
53.58 62.87

to be the result of variations in k (the number of candidate edges considered by the
Kruskal algorithm) with network topology and edge costs. The resulting "robustness"
of the Prim algorithms, coupled with their smaller computation times and reduced
storage requirements (compared to the Kruskal algorithms), make them especially
well-suited for large-scale networks of the type considered here. In particular,
Algorithm P2 (adjusted as necessary for the value Cmax) can be especially effective in
solving large minimum spanning tree problems.

5. Conclusions. There appears to be little overall difference in the efficiency of
several sophisticated approaches for constructing a minimum spanning tree via Krus-
kal’s algorithm. While maintaining component flags in a linked list or representing
each subtree by a rooted tree exhibited better behavior than the component level
approach, computational effort was still dominated by the task of sorting the edge
list. Although expected for high density networks, the Prim-type algorithms generally
outperformed the Kruskal-type algorithms over all problems considered. In addition,
the Prim-type algorithms require less storage than the Kruskal-type algorithms.

Finally, the use of an address calculation sort for node labels in conjunction with
Prim’s algorithm provided the best overall performance, particularly when the edge
costs could be scaled to adjust the size of the address space for a particular problem.
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ON NONLINEAR FUNCTIONS OF LINEAR COMBINATIONS*

PERSI DIACONIS AND MEHRDAD SHAHSHAHANI$

Abstract. Projection pursuit algorithms approximate a function of p variables by a sum of nonlinear
functions of linear combinations’

(1) f(Xl,’",xp)’- gi(ailxl+"’+aip).
i=1

We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and
discuss nonuniqueness of the representation.

Key words, approximation theory, nonlinear high-dimensional nonparametric regression, polynomials,
Schwartz distributions

1. Introduction and statement of main results. We present some mathematical
analysis for a class of curve fitting algorithms labeled "projection pursuit" algorithms
by Friedman and Stuetzle (1981a, b). These algorithms approximate a general function
of p variables by a sum of nonlinear functions of linear combinations"

(1.1) f(xl,’" ",xp)-" gi(ailXl+’" "+aipxp).
i=1

In (1.1), f is a given function and univariate, nonlinear functions gi and linear
combinations ailXl+’’’+ai,o are sought so that a reasonable approximation is
attained. Such approximation is computationally feasible and performs well in
examples of nonparametric regression with noisy data, high-dimensional density
estimation, and multidimensional spline approximation. In addition to the articles of
Friedman and Stuetzle cited above, see Friedman and Tukey (1974), and Friedman,
Grosse and Stuetzle (1983) for examples and computational details. Huber (1981a, b)
begins to connect the algorithms to statistical theory. This note treats the algorithms
from the point of view of approximation theory.

It is easy to show that approximation is always possible.
THEOREM 1. Functions of the form i e 8’’x, with ai real, ai a vector ofnonnegative

integers, and x (x 1, , xp) are dense in the continuous real valuedfunctions on [0, lip
under the maximum deviation norm.

Proof. The functions eS"X separate points of [0, 1]p and are closed under multiplica-
tion. Finite linear combinations of such functions form a point separating algebra
which is dense because of the Stone-Weierstrass theorem. I-1

THEOREM 2. Functions of the form
Y, i cos (2zrai. x)+i sin (27rb i. x)

are dense in L2[0, 1]p.
Proof. Any function in L2[0, 1]p can be well approximated by its Fourier

expansion. See Zygmund (1959, Vol. 2) and the survey article by Ash (1976) .for
further details and refinements. El
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University of Virginia, Charlottesville, Virginia 22903 and Stanford University, Stanford, California
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Sometimes equality is possible in (1.1). For example,

xy 1/4(x + yf- 1/4(x y f,
max (x, y) lx + y I+ lx y l,

)4 4" )4__ 1 )4 2(xy)2 1/4(x + y + (x y
2 3 3 (x + 2y --(x +1/2y)4.

In what follows we will focus on conditions for equality in (1.1) as a method of
determining examples to test, compare, and evaluate algorithms. Consider first a
smooth function of 2 variables of the special form,

f(x, y) g (ax + by ).

Clearly,

If f has the form

a
0 )bo-;- f--o.

f(x, y) g,(aix + b,y),
i=1

then the differential operator

bi x ai ci n-i
i= i=O OX Oy

applied to f is identically zero. The next theorem gives a converse.
THEOREM 3. Let f e Cn[0, 1]2. Suppose that for some real numbers Co," ", cn, the

operator Yg=o ci On/Ox Oy
"-g

applied to f is identically zero. If the polynomial Yi=o cgzg
has distinct real zeros then (1.2) holds for some (ag, bi). The lines agx + bgy are all distinct.

Theorem 3 is proved in 2 which also contains a discussion of techniques for
finding directions (ai, bi) given f. Some applications of Theorem 3 are contained in
the following examples.

Application 1. The functions e xy and sin xy cannot be written in the form (1.1)
for any finite n. Indeed, the equation Y Ci(On/OX 0y"-g){eXY}--- 0 implies cg-=0 and the
associated polynomial has complex roots.

Application 2. Let f(x, y) be a polynomial of degree m. Then

f(X, y) E gi (agx + biy),
i=1

where each gg is a polynomial of degree at most m. This follows by elementary
manipulations from Theorem 3. Thus, any polynomial in two variables can be represen-
ted exactly. Since polynomials are dense in C[0, 1]2, this gives another proof of
denseness of projection pursuit approximations. A different proof of this result is in
Logan and Shepp (1975). An extension to more than two variables is in Proposition
1 of2.

Application 3. Representations of the form (1.1) are not necessarily unique. For
example,

xy c (ax + by)- c (ax by )2
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for any a and b satisfying ab 0, a2+b2= 1 with c 1/4ab. Writing a =cos 0,
b sin 0, any noncoordinate direction can be chosen for the quadratic gl. The second
direction is forced as orthogonal to this. This suggests that substantive interpretation
of the linear combinations (ai, bi) is difficult. For a more ambitious example, consider
the function (xy)2. This is of 4th degree. Use of Theorem 3 as outlined in 2, shows
that (xy)2 cannot be expressed as a sum of n 3 or fewer terms in (1.1). Four terms
of 4th degree suffice:

(Xy)2 OI(X h- bly)4-t- o2(x -t- b2y)4-t- o3(x h- b3y)4 q-o4(x +b4y)4,
where bl, b2, b3, b4 are chosen as distinct, and satisfying

bib2 + bib3 + bib4 + b2b3 + b2b4 + b3b4 O.

Then a 1, a2, a3, 04 are determined by

1 Y*b
6 l-l*(bi-bi)’

where the sum and product are over/" # i. This clearly defines a three-dimensional
family of solutions.

In thinking about nonuniqueness, we observed that the only examples of non-
unique representation we could find are polynomials. Indeed, polynomials have the
following strong nonuniqueness property.

DEFINITION. A function f(x, y) has strongly nonunique representations if there
are two sets of directions {(ai, bi)}_- 1, {(ai, Bi)}’-- 1, all distinct from each other, such that

f(x, y) gi(aix + b,y) E hi(six +,y)
i=1 i=1

for some gi and hi.
Polynomials have strongly nonunique representations" if degP(x, y)=n, and

(ai, bi) "+1i-- are any distinct directions, Theorem 1 implies that P(x, y) can be represented
in these directions. It turns out that only polynomials have this property. This is a
consequence of Theorem 4.

THEOREM 4. Letf(x, y) C"+"[0, 1]2. Suppose thatfor some directions {ai, bi}=l
and {(0i, [i)} mi= 1,

f(X, y)= gi(aix +b/y) )-’. hi(otix q-iy).
i=1 i=l

If, for some i, (ai, i) is distinct from (ai, bi), 1<- <=n, then hi is a polynomial of degree
at most n + m 2.

Proof. Let

and

Then,

A[ Y. Agi is a sum of functions in directions (ai, bi)’,
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SO

for

0 BAF Chi

i=1 ji

Thus, hi is a polynomial of degree at most m + n -2. 71
COROLLARY. A function f(x, y) has strongly nonunique representations ifand only

iff is a polynomial.
Remark. The statement and proof of Theorem 4 carry over to functions of more

than two variables in a straightforward way. See Lemma 1 of 2.
How are the curve fitting algorithms affected by nonuniqueness? To understand

this, we performed the following experiment. On each trial 200 independent, mean
zero, variance 1, normal points (xi, yi) were generated. The algorithm of Friedman
and Stuetzle was given xi, yi, and xiyi + ei, with ei normally distributed, mean zero,
variance .1 errors. We expected the directions fit to change a great deal. In each of
100 trials the algorithm fit univariate functions in directions (1, 1) and (1,-1) (to two
decimal places).

To understand this, it is important to consider the nature of the algorithm. At
each stage, it chooses the direction which minimizes the residual sum of squares when
the best fitting function in that direction is subtracted off. See Friedman and Stuetzle
(1981) for a careful description. If the sample size is large, the algorithm will behave
in the same way as the infinite population analogue. Thus, let X, Y be independent
Gaussian variables with mean zero and variance 1. Consider approximating XY by
the best linear combination of the form aX + bY. For fixed a and b, the L2 norm is
minimized by the function E(XYlaX+bY). Which values of a and b, subject to
a 2 + b2 1, minimize

E{XY E(XYIaX + b y)}27

Let us show that the minimum is achieved at a +b + 1/x/. Let U aX + b Y,
V aX- b Y. Then U and V are independent standard normal and

Then,

1xv -(u- v}, I---{U-_ 1}"E(XY[aX + b Y)
4ab

1 U2E{XY-E(XY[aX +6Y)}2=----- V2)-( 1)}2

(4abl)2E{V2 1}2.

Since the distribution of V does not depend on a and b, the right side is minimized
when a2= b2= 1/2. When the best fitting function is subtracted off, the second stage of
the algorithm subtracts off a quadratic in the orthogonal direction and the algorithm
terminates after two steps. The same result can be shown to hold when X and Y are
chosen uniformly in [- 1,112.

Similar computations can be instructively carried out for functions other than
XY. For example, consider (XY)2. David Donoho has shown that if X and Y are
normally distributed the algorithm chooses the four directions (1, 1), (1,-1), (1, 0),
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(0, 1). Moreover, Donoho can prove that the approximation does not terminate after
four steps, even though the function can be expressed as a sum of four 4th degree
polynomials. Infinitely many steps are required--successive terms being cyclically
added in each of the four directions.

Donoho and Ian Johnstone have independently proved that for normally dis-
tributed X and Y, the greedy approximation, which at each stage finds the a and b
to minimize

E{f, (X, Y)-E{f, (X, Y)[aX + b y}}2,
converges in L.

These results underscore a property of the projection pursuit algorithm" the
directions it chooses are the directions that minimize the L error. The situation is
somewhat like finding the principal components of a covariance matrix. There are
many possible bases, but the directions chosen have a well-defined interpretation in
terms of maximum reduction of variance.

Application 4. Even if the directions (a, b) are fixed, the representation need
not be unique. Suppose that n is the smallest integer such that

f(x, y) , g(ax + by).
i=1

If also

then

f(x, y) , hi(aix + biy),
i=1

fi(t) hi(t) pi(t), 1 <-_ <- n,

with p a polynomial of degree at most n- 1. The polynomials p can be chosen in an
arbitrary way subject to the constraint F. p-= 0. In particular, any n- 1 of the pi can
be chosen arbitrarily and a final polynomial can be found to satisfy the constraint.
These results all follow easily from Theorem 3; indeed the operator Li
I-Ii[bi O/Ox -ai O/Oy] applied to f(x, y) gives

(n-1)(aix +b/y) I-I (biai aibi)hi" (aix + biy) I-I (biai aibi) gi
ji jgi

The products are nonvanishing because the directions are distinct. It follows that hi
differs from g by at most a polynomial of degree n 1, and that an arbitrary polynomial
may be added subject to the constraint.

In the special case n 2, Theorem 3 was given by Dotson [4] who suggests further
application to factoring probability densities and separation of variables.

The generalization to dimension greater than two is not as neat. We give a result
for three-dimensions which generalizes to p-dimensions. Suppose that for n distinct
directions a 3, a function f can be represented, for x 3, as

(1.3) f(x)= g(a . x).
i=1

Let H {p R3: p a =0}. Let V--(O/OX1, O/OX2, O/OX3). Clearly,

(p.V)f-O for allp
i=l
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This condition is not sufficient. To see this, consider the function f(XI, X2, X3)=XlX2
and the three directions a (1, 0, 0), a 2 (0, 1, 0) and a 3 (0, 0, 1). For any nonzero
p II, the operator /I(p . V) applied to f is zero. Yet, f cannot be written as
f(X fl(X 1) +f2(X2) +f3(X3).

The condition is sufficient "up to polynomials""
THEOREM 5. Let a be distinct, nonzero, directions in R3. Let H be the plane

{p R3: a "p 0}. A function f C (3) has the form

f(x)= g(a. x)+P(x)
r=l

for a polynomial P of degree less than n, if and only if

(1.4) [I (p’’ V)f 0 for all i0 IIr.
i=1

Remark. As noted above, condition (1.4) is not sufficient to ensure that rep-
resentation (1.3) holds. If (1.3) holds, there are other obvious necessary conditions’ if
P

ij H f IF, then

( V)gi(a x)= (i V)g(a x)- O.

Thus, f is annihilated by differential operators of degree [(n / 1)/2],... ,n-1.
Unfortunately, even these conditions are not sufficient. H. Royden, in unpublished
work, has determined necessary and sufficient conditions of a rather different type.
These are stated at the end of this paper. In Proposition 1 of 2 we show that any
polynomial P can be written as a sum of univariate polynomials of linear combinations.
If deg P-k, then (k + 1)(k + 2)/2 terms may be required.

Thus far we have been assuming sufficient differentiability. Versions of all
theorems are valid if derivatives are interpreted in the sense of distributions. This is
discussed in some detail in 3.

Our theorems are related to Hilbert’s 13th problem. In modern notation, Hilbert
asked if there are genuine multivariate functions. Of course, x / y is a function of two
variables but xy =elgx+lg is a superposition of univariate functions and +.
Kolmogorov and Arnold showed that, in this sense, / is the only function of two
variables. They constructed five monotone functions $i" [0, 1] --> , which satisfy I$(x

Ths functions have the following remarkable property: for each

f C[0, 112 there is a g C[0, 1] such that for all (x, y),

f(x, y)= g(4,,(x)+4,,(y)).
i=1

Thus 4 are a "universal change of variables" which allows exact equality. A nice
discussion of this result and its refinements can be found in Lorentz (1966), (1976)
and Vitushkin (1977). While the functions 4 and g are given in a constructive fashion,
it does not seem that this result is used to approximate functions in an applied context.
This is probably because the functions 4 are fairly "wild". For example, it is known
that it is not possible to choose 4 to be C functions, so fixed linear combinations of
x and y are ruled out. It is known that f(x, Y)=i=I gi(aix +bgy) for all polynomials
f(x, y) is not possible with ai, bi fixed independent of f. In the projection pursuit
approach to approximation, a and b are allowed to depend on f and Example 2
shows that now any polynomial can be written in required form. Example 1 shows
that not all functions can be so expressed.
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This paper has characterized functions that can be represented exactly as a sum
of nonlinear functions of linear combinations. It is important to be able to recognize
functions that can be well approximated by such a sum. Some important work on this
problem is in the papers by Logan and Shepp (1975) and Logan (1975). These papers
work with prespecified directions, but the main results of Logan (1975) do not depend
on the directions. Roughly, Logan shows that a function on the unit disc can be well
approximated, in L2, by a sum of n univariate functions if and only if the function
has bandwidth n, in the sense that its Fourier transform is essentially supported on a
disc of radius n.

2. Proof and discussion of Theorems 3 and 5. Let L be the differential operator:
;o ci On/Ox Oy -. By hypothesis, the polynomial

CiX y Ci
=0 =0

splits into distinct linear factors. Thus, L can be written as 1-I[bi c3/c3x-ai 0/0y], with
the lines aix + biy distinct. It must be shown that f can be represented as Yi=l g(aix +
by). The proof is by induction on n. For n 1, suppose without real loss that a 0.
Then f(x, y) g(alX +bly) with g(z)=f(Z/al, 0). One way to show this is to fix (x, y)
and define h(t)=f(x +(bl/al)y-(bl/al)yt, ty). Then h(0)=/(x +(bl/aq)y, 0)=
g(alx +bly); h(1)=f(,x, y) and h’(t)=-O, for 0<-t<-l. The fundamental theorem of
calculus gives h(1)= h’+ h(0). Suppose the result is true for operators of degree
_-<n 1. To prove it for degree n, write

bi-x-a f: bi-x-a b.-x-a, f=-O.
i=1 i=1

By the induction hypotheses, there are functions g, 1 -<_ -<_ n 1 satisfying

(2.1) b,-x-a, f= E gi(aix+biy).
i=1

A solution f* of (2.1) of the form

n-1

f*(X, y): Y’. hi(aix +b/y)
i=1

is found by choosing hi(t)= (b,ai-a,bi)-1 o gi(s)ds. This is well-defined because the
lines are distinct. Now {b, O/Ox-a, O/Oy}(f-f*)--O can be solved explicitly with
(f-f*)(x, y)= h, (a,x + b,y) by the argument for n 1. It follows that f= f*+ h, can
be written in the required form.

Remarks on explicit computations. If f is of the form (1.2) then Theorem 3 gives
the existence of numbers Co,"’, c, such that Y.cj(O"/Ox Oyn-i)(f)=O. The ci can be
found by fixing n + 1 distinct pairs (xi, yi), calculating O"/Ox 0Y"-ilx,.y,) and solving the
resulting system of equations for ci. It is feasible to check if the polynomial Co +" +
c,z has distinct real roots using techniques in Henrici (1977, Chap. 6). Each stage
of the procedure is feasible by a finite algorithm. If the procedure fails at any stage,
then equality is impossible. Given feasible Co,"’, c,, it may be possible to find the
roots of the associated polynomial. This determines directions (ai, bi).
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In simple examples there is often enough freedom of choice to make determination
of (ai, hi) possible. Consider f(x, y) xy for n 2,

i=1 bi-x-ai =blb2-(blaz+bzal)+ala2c3x :z c3x c3y Oy2"
Since ozf/ox=Ozf/Oy=O, Of/Ox Oy 1; any distinct choice of ai and bi with baa2
-bal works. Taking a ba 1, a2 =-b2 1, we are led to solve

f(x, y) gl(x +y) +g2(x -y).

’(x- )’setting =0"Applying O/Ox 0/0y to both sides leads to y x 292 y y g2(x)
-x/2, g2 =-x2/4+c2. Similarly, ga(X)=X2/4+ca and the result is xy--
41_(x+y)2+ca_1/4(x_y)Z+c2 where ca+c2=0 is forced. In general, if f=
,i=a gg(agx +bey); 1-Ii.i(bi O/Ox--ai O/Oy)f =cigln-1)(aix +by), for an explicit Ci. This
determines gg up to an essentially free choice of an n 1 degree polynomial.

In the case of a polynomial f, some additional tricks become available. For a
multinomial xay b let a+b=n; only sums of the form ,i=lOZi(X+iy) need be
considered. Expanding out and equating coefficients gives

1
/. /." =0.20l.i-- O, Ol.i[ 0’’" Og . Ol.

This gives n + 1 equations in 2n unknowns. These are linear in the a’s for given/3’s
and may be solved explicitly because the matrix is a Vandermonde with a well-known
inverse. See Gautschi (1963).

The proof of Theorem 5 was outlined by H. Royden. The proof follows from
three lemmas. Throughout a are distinct nonzero directions in R3.

(/-1)LEMMA 1. If Y.= g(a x)=--0 then g =-0 and g is a polynomial of degree at
most 2.

Proof. Fix r. For each f r there is p H but p. a 0. Apply the operator
1-I. (pi. V) to the sum to conclude I-Ii (pi. ai)g(l-a)(pi, x)=_o. The coefficient is
nonzero, so the conclusion follows.

In the next two lemmas, the notation f. means Of/Oxi.
LEMMA 2. Let P and Q be polynomials of degree <-k in (x a, x2, x3). Suppose that

in some open 3

Then there is polynomial H of degree at most k + 1 such that

P= H2 and Q H3.

Proof. Argue in a cube {a _-<xl _-<a, b X2, C x3’y} contained in (. Let F
be a path connecting (Xl, a, b) to (xl, x2, x3) which lies entirely in the plane of constant
x a. The line integral

fr.P(Xl, y, Z) dy +Q(x, y, z) dz H(xa, x2, x3)

is independent of F in view of the hypothesis and Green’s theorem. Furthermore,

dH Pdx2 + Q dx3.
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Here d is exterior differentiation in the plane X constant. Therefore

OH_ p and
OH

O.

In particular, let F be the path

Then,

-" (x1, a +t(x2-a), b),- (x1, x2, b +(t- 1)(x3- b)),

H(Xl’Xz’X3)=(xz-a) Jo P(xa, a +t(x2-a),b)dt

2

+(x3-b) Ja P(Xl, X2, (t-1)(x3-b))dt

which is clearly a polynomial of degree -<_k + 1. 71
LEMMA 3. Let f Cn+2(I3) have the following properties" for n distinct directions

a, with a distinct from (1, 0, 0),

(2.2a) f.(x) g(a. x) +P(x),
r=l

(2.2b) f3(x) h,(a . x)+Q(x).
r=l

With Pand Qpolynomials ofdegree at most n 1; then there are univariate functions Gr,
1 <- r <= n + 1, and a polynomial H of degree at most n such that

f(x)= G(a x)+G,+x(Xl)+H(x).
r=l

Proof. Because fz3 =f32, conditions (2.2a) and (2.2b) translate into

O= (a3g -ah)(a x)+P3(x)-O2(x).
r=l

1-iBy hypothesis, for r there are vectors p s with p a 0. Let A Hi#r (pi ).
Applying A to P3(x)-Q(x) gives zero because this polynomial is of degree at most
n 2. Thus,

Oc{ar-(n) ()
3gr -azhr },

where

C-" H (0 i" ar) 0"
ir

It follows that

(2.3) ar3gr(a r" x)-ahr(a x)=P(a x)

for P a polynomial of degree at most n 1. Because the a are distinct from (1, 0, 0),
either a 2 0 or a 3 0. Define the n functions Gr by

(2.4a) G’r=gr/a: if a2 0,

(2.4b) G’r h/a 3 if a 2 O.
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Consider

(x) =f(x)- Gr(a"" x).
r=l

From the hypothesis, (2.3) and (2.4),

b2(x)=f2(x)- a2G’,.(a x) gr(a r" X)-I-P(x)-’P*(x)
a =0

with P* a polynomial of degree at most n 1. Further,

&3(x) =f3(x)- a3G’(a x)= E {h,.(a r" x a3G’(ar x )) + O.

Each term in the sum is a polynomial. If a 0, the rth term equals

h(a" x a3g(ar x )/a2
a polynomial from (2.3). If a 0, the rth term is zero. It follows that

3= O*(x)

with Q* a polynomial of degree at most n- 1. To finish off, observe that 23 32
gives P3* Q2*. From Lemma 2, there is a polynomial H of degree at most n, such
that H2 P* and H3--Q*. The function 4 -H has 42 3 0. Thus, is only
a function of Xl, as required. [3

Proof of Theorem 5. Clearly, if f can be represented as a sum of n univariate
functions plus a polynomial the differential operator kills f. The proof of the converse
is by induction on n. For n 1, we know that if f2 f3 0 then f is a function of Xl
only. Rotating to bring the plane 1-I into {p" 02 =p3 =0} proves the general case.
Suppose that the result is true for n 1. Let a 1, a 2, a n-l, a be n distinct nonzero
directions. By rotating, we may assume that a"= (1 0 0). Then, for any ioiE 1-I i,
l<=i<=n-1,

I](p’. v)f--[I(p’, v)f-- o.
The induction hypothesis yields that f satisfies conditions (2.2) of Lemma 3. The
theorem follows.

PROPOSITION 1. Letp and k be positive integers. Let r (,/-1). There are r distinct
directions a 1, a 2, a in P such that any homogeneous polynomial f of degree m
can be written as

f(x)= aj(ai x)" for some real numbers Ol.
j=l

Proof. The space of homogeneous polynomials of degree m is an r-dimensional
vector space over the real numbers. Let mi(x), 1<-i <-r be an enumeration of the
monomials. For each monomial, let Di be the associated differential operator (e.g., if
mi(x X

2
lX2X3, Di=On/oxcgx2Ox3). Observe that Di(a .x) =m!mi(a ). For

dimension reasons, to prove the proposition it suffices to show that directions a can
be chosen so that the polynomials (a i. x)m, f 1,..., r, are linearly independent.
Suppose

Y ci(a x )’ O.

Applying Di we get

mi(aJ)ci 0
i=1

for all 1,..., r.
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For this system to have a nontrivial solution (c 1," , cr), we must have

(.) det (mi(ai)) O.

We write a (a a Since det (mi(ai)) is a nontrivial algebraic expression withP

rational coefficients, if we choose the pr real numbers a; in such a way that they are
algebraically independent over Q, then

det (mi(ai)) O,

contradicting (.). [3

3. Some generalizations. The theory presented so far does not apply to identities
between nondifferentiable functions. Most of the results remain valid if differentiation
is interpreted in the sense of distributions. Consider the identity

max (x, y) 1/2(Ix + y I+ [x y [).

For fixed y the function max (x, y) is constant for x _-< y and equal to x for larger x. Thus

0 0, x < y,
max (x, y)

Ox I. 1, x >y.

This function is also called the Heavyside function shifted to y. Its derivative is well
known to be the delta function concentrated on the line x y. This acts on b C (R2)
by (4) 4(t, t) dr. Similarly, 02/0y 2 max (x, y)= 6, so max (x, y) is a solution of the
wave equation

02 02

ox2 U-Uoy 2 --0.

The only solutions of this equation are of the form U fl(X + y)+f2(x- y) where
and f2 are distributions (see Schwartz (1966, p. 9) for some history). We further show,
here and more generally, that if the solution U is a sufficiently well-behaved function,
then the f are functions.

Any undefined terms in the following discussion can be found in Barros-Neto
(1973) or Schwartz (1966). Let ([2) be the space of test functionsmcompactly
supported C functions. The dual space ,(2) is the space of distributions on
For 3’ (a, b), the translate of T @’ by 3’ is written T. This acts on 4 by
Tv{b (x)} T{&(x-y)}. The distribution T D’() depends only on ax +by if for all
real t, Tbt.-at)= T. The following theorem collects together several results in Schwartz
(1966, 11.5). It is the case m 1 of the theorem at which we are aiming.

THEOREM 6. Let T @,(2). For (a,b) nonzero, the following conditions are
equivalent"

(a) T depends only on ax + by.
(b) (b O/Ox-a O/Oy)T=O.
(c) There is a distribution g ,(2) such that for all qb (),

T(4)= g{I c(au +bv, bu -av) dv}
where g operates on the function of u inside the brackets.
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Remark. If T and g are functions with T(x, y)= g(ax + by) and a2+ b2-- 1, then
part (c) becomes

T(b) T(x, y)4 (x, y) dx dy g(ax +by)qb(x, y) dx dy

fI g(u)q(au+bv, bu-av)dudv =g{f rb(au+bv, bu-av)dv}.
Notation If T satisfies any of the three conditions of Theorem 6 we write T q* (g)

where 3’ (a, b) and qv is the linear map from N2 N given by qv (x, y) ax + by. We can
now state the distribution version of Theorem 3.

THEOREM 7. Let T e @’(N2). Suppose that for some real numbers co, C l,’", c,,,
the operator i=o ci O"/Ox 0y "-i applied to Tis zero. Ifthe polynomial ciz has distinct
real zeros then there are distinct nonzero 3"1, 3"2,"’, 3",. 3"i (ai, bi) such that, writing
qi for

(3.1) T E q* (gi) with g ’(R).
i=1

Conversely, i (3.1) hoMs, then [-I (hi O/Ox -ai 0/Oy) applied to f is zero.

Proof. One direction is clear; the argument for the other direction is by induction
on m. The case m 1 follows from Theorem 6. Thus, assume the result for m- 1.
Without loss of generality, assume a 2 +b/ 1 for l<_-i_-<m. Then

i=

This implies

(3.2) bl--x-al f= Y. q*(gi).
i=2

We will show that (3.2) has a solution f* of form

f*= 2 q*(hi).
i=2

Supposing this, (bl O/Ox a O/tgy )(f f*) 0, so by the result for m 1, f-f* q
for gl e’(N) giving the theorem. To complete the proof, let hi be a distribution
solution to

dhi 1
dt bla-albi

g"

A solution exists by Schwartz (1966, Thm. IX, p. 130). We claim

Y. q/* (hi) =/*
i=2

is a solution to (3.2). To show this, we need the following relation"

aq*(h’)=
0 .-x q h ).
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To prove this, consider 4 C ([2). Now

aq*(h’)() ah’(I c(au +bv, bu -av) dr)
-h(I [acl(au +by, bu-av)+b,z(au +by, bu-av)]dv).

Since b is compactly supported

-v (qb (au + bv, bu av )) dv =0.

Thus,

I [bqbl(au + by, bu -av)-aqbz(au + by, bu -av)] dv O.

Using this gives

aq*(h ’)(,l -h (I [a2bl(aU+bv, bu av + b2ql(aU + bv, bu av )] dv),
=-h(I l(aU +bv, bu-av) dv)
-xq*(h)(b).

Thus, (bl O/Ox-al /gy)q*(hi)=q*(gi). The claim regarding]’* follows.
The next theorem shows that if the equation

f(x,y)= E q*(gi)
i=1

holds in the sense that the two sides are equal as distributions, and if f(x, y) is a
sufficiently regular function, then each of the distributions g can be realized as a
function on . Theorems of this sort may be described as results on propagation of
singularities of partial differential equations.

The notion of "sufficiently regular" which we adopt involves the Sobolev spaces
H; the definitions involve Fourier transforms, and so the space 5 of C functions
that, together with all derivatives, tend to zero at infinity faster than any polynomial.
The dual of 5’, denoted’ is the space of tempered distributions. The Fourier transform
of ( ( ,.(2) is

(A II e-iXxq (x dx

where dx is 1/2r times Lebesgue measure. The Fourier inversion theorem becomes

qb(x)= II eiXx(A) dA.

The Fourier transform of a tempered distribution 0 6’ is defined by
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For real s, -az < s < m, the Sobolev space H ([2) is the set of tempered distributions
OS’(R) such that There are various embedding
theorems that say when a distribution is a function. For example, Taylor (1980,
Chap. 1, 3) gives:

(a) If s > n/2, then each 0 H ([") is a bounded continuous function that vanishes
at infinity.

(b) If s > n/2 + k, then H (") c Ck (").
(c) For 0 < c < 1, define C as the set of bounded functions u such that lu (x + y)

u(y)[<Clyl for ly[-< 1. Ifs=n/2+a, 0<a <1, then H2(") c C(").
(d) If O<=s <n/2, H(R")c Lq("), q 2n/(n -2s).

We have chosen the route of interpolating between integer values of s by means of
the Fourier transform. There are other routes. See Adams (1975) for discussion.

For U open in [2, Hloc(U) is the set of distributions 0 @’(U) such that for
each compactly supported $ 6C (U), $. 0 s HS([2). For example, max (x, y)s
Hoc (2). With this notation, we can state the main result.

THEOREM 8. Let Yi (ai, bi), 1 <= <- m be distinct nonzero directions in 2. Let q
denote projection in the direction yi, so q(x, y)= aix + bff. Let U be open in 2. Let Ui

--1be open sets in with q (Ui) Ufor all i. Suppose f Hoc (U) can be written

f= y’. q*(g,),
i=l

where gi6’(Ui). Then gi6noc(Ui).
The proof of Theorem 8 will be given following two preliminary lemmas. Let

(a, b) be a unit vector in 2. Let q(x, y)= ax +by denote the projection. For g s ’(),
the distribution q*g acts on Se(R2) as g( (au + by, bu av) dr). The distribution
p.g acts on functions s (2) by g((at, bt)). We have the next lemma.

LEMMA 4. () p,(ff).
Proof. (0)= q*g()= g{[ (au +by, 6u-av) dr}. Now the integral equals

f e-,(,+b)x-,(b-a),(x, y) dxdy dv= I e-’(ax+br)-,(bx-ar)(x, y) dxdy dv

-isu --itve (as + bt, bs at) ds dt dv

=I e-*"{I e-i%(as +bt, bs -at) dt dv} ds.

The inner integral equals O (as, bt); indeed for any function g C (R), e"g(t) dt dv
g(,) 6(g) g(0). Making this substitution, proves the result. [-1

The next lemma is the case m 1 of Theorem 8.
[12LEMMA 5. Let r" be the projection r(x, y) x, Ux and U zr- (U,).

Let T ’(U) and assume there is g ’(U) such that

T zr*(g).

If T Hoc (U), then g H,o (U).
Proof. Without loss of generality we may assume U 7r-(U) since T zr*(g).

Let V1 c Qa U and V1 open, 1 compact, and g C’ (U1) with g 1 on . Then
it suffices to show ,t’g H(R) Let f Xg and 0 zr*(xg). Then the hypothesis on T
implies

0 H (R2)loc
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Let b(x, y)= ba(y)with &IEC () such that

{1, lyl=<r,
(Y)-

0, lyl-->R,
for some constants 0 < r < R. Then 4X EC (U), so

0 H ().
This means b0 is a function and

(3.3)

We will argue that (3.3) implies f eH (t). Lemma 4 implies that ff p.(]). Moreover,
f is an analytic function of one variable, being the Fourier transform of a distribution
of compact support (see Barros-Neto (1973, 4.5)). Thus

(3.4) if(p, r/) .t’(p),o(r/).
Also,

(3.5)

Using (4’0)= j *6 with (3.4) and (3.5),

4 (0,

Thus, (3.3) becomes

(3.6) J./14 1(rl )l l.P(o )1:(1 + Io : + i:) <

Now elementary arguments show that for any real s there are positive constants
O such that

pllOl< I,()l(l+101+lnl)/ d <plol for lolel.

Using this and (3.6) gives
--1

Hence, the desired result:

1

Proof of Theorem 8. We may assume yi are unit vectors. The case m 1 follows
from Lemma 5 via linear transformation. For the general case, suppose

f= E q/*(gi).
i=1

Let Dg lIse (bs OlOx -as O/Oy). Then, for a nonzero constant C,

D,f D,q* (g,) Cq*,
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Lts--m+lSince f H,oc (U), Dif loc (U). By Lemma 5,

glm-l) G HlSom+m (gl),

This implies that giGHlSoc(U1), see for example Treves (1966, Thm. 7.6).

Acknowledgment. We thank David Donoho, Jerry Friedman, Bob Hulquist,
Winni Li and Bruce Reznick for helpful discussions. Two extremely helpful referees
found a gap in the original version of Theorem 5. We are grateful to Halsey Royden
for allowing us to use his elegant proof of the corrected version.

Note added in proof. Halsey Royden has communicated the following conditions
necessary and sufficient for a function f of m variables to be representable as a sum ofN
univariate functions: Let a =(al,’’ ", a,,) denote a multi-index of weight Y aj. Let
f denote the appropriate partial derivative and fj=(O/Oxi)f.

THEOREM (H. Royden). Let N= (,+//-1). Then a smooth function f(xl," Xm)
can be written

N

where the N vectors a a , do not lie on a hypersurface of degree in projective rn 1
space, if and only if them are functions h, an invertible N N constant matrix C C
where a runs over the N multi-indices of weight l) and N m x m constant invertible
matrices By [Bk such that

Y. cfiB =61kh,(x, ,x,,).

Here 6 , is Kronecker’s delta function. The functions g) are then uniquely defined (so
the representation is unique up to polynomials of degree l-1) and the directions a
are unique for those v’s with gt) 0.
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A MIXED VARIATIONAL INEQUALITY BOUNDARY
ITERATION METHOD FOR SOME FREE BOUNDARY PROBLEMS*

D. R. WESTBROOKt

Abstract. A combination of variational inequalities and free boundary iterations is used to obtain
approximate finite element solutions to some elliptic free boundary problems in an attempt to take advantage
of the best aspects of both methods.

Variational inequalities are used together with a fixed mesh to first obtain a good approximation to
the free boundary. This approximation is then improved iteratively by the movement of the free boundary
nodes leaving the rest of the mesh unchanged.

Numerical results are given for two membrane contact problems and for a dam seepage problem.

Key words, free boundary problems, variational inequalities, finite elements

1. Introduction. The numerical solution of free boundary problems for second
order differential equations, such as the dam seepage problem, has a lengthy history
(see Cryer [5] for an extensive review). Many of the earlier workers, e.g. Shaw and
Southwell [10], Taylor and Brown [11], use trial free boundary methods. In these
methods an initial guess at the free boundary and corresponding domain is made. The
partial differential equation is solved approximately in the domain using one of the
boundary conditions on the free boundary. The second condition on the free boundary
is then used to move the boundary to a new position. The process then proceeds
iteratively until practical convergence is attained. The mesh is usually changed as the
boundary is moved.

More recently many such free boundary problems have been reformulated as
variational inequalities (see for example Duvaut and Lions [6] where many problems
in mechanics are considered). A principal reason for such a formulation is that it
provides a means to prove existence and uniqueness theorems, but the formulation
also suggests an alternative numerical method in which the mesh remains fixed and
the approximate boundary is found without iteration.

The solution of the variational inequality does require iterations, but as already
stated it is done on a fixed mesh and according to Baiocchi, Comincoli, Guerri and
Volpi [2] requires much less work. Kikuchi [8] compares the solution of the isotropic
dam seepage problem by variational inequalities and by Taylor’s method and states"

(1) The method of variational inequalities gives a very rough free surface if the number of
meshes is small. In order to get a suitably smooth surface it needs more than ten times the
number of Taylor’s method. However, in Taylor’s method the system of linear equations has to
be solved several times to get convergence. In the method of variational inequalities, it is not
necessary to solve the system of linear equations more than one time.

(2) The method of variational inequalities can determine the seepage point without special
considerations. However, Taylor’s method needs some special considerations.

(3) Taylor’s method has no guarantee of convergence, but the method of variational
inequalities does.

The present work is an attempt to combine the best aspects of the two methods
for problems which can be formulated as variational inequalities. The principal idea
is to use finite elements with the direct methods and fixed mesh of the variational
inequality formulation to obtain a good first guess for an iterative trial free boundary
method.

* Received by the editors July 14, 1982.

" Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
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A main ingredient in the success of the method used here is that the nodes which
give the approximate free boundary in the variational inequality method are within
one element of the actual boundary (at least for a reasonably fine mesh). There is to
the author’s knowledge no proof of this conjecture, but no cases where it is not true
have been encountered. If this conjecture holds, then only those nodes on the
approximate boundary need be moved, and no special precautions need be taken to
see that elements do not become too distorted. Here a simple check is made after
each movement of the boundary.

In 2 the problems considered are stated along with the formulation as variational
inequalities. The numerical algorithm is in 3 and the numerical results are given in
4.

2. Description of problems.
2.1. The membrane contact problem. If a membrane has a given boundary

displacement and is stretched over a fixed surface, a contact problem is obtained in
which the membrane is in contact with the surface over an area which is a priori
unknown. The boundary of the contact region is the free boundary in this case.

The displacement of the membrane is given by u(x, y) and the fixed surface is
represented by the function X(x, y), both defined for (x, y) belonging to an open set
l’l with boundary F. If the contact domain is denoted by D, the displacement u will
satisfy the boundary condition u g on F where g is the given boundary displacement
(g -> X on F) and

Au=0, u>,v infl-D, u=,v inD.

In the region D the force between the membrane and the rigid surface is -Au
which must obviously be positive. These conditions lead to the complementarity
equations

or

-Au=0, u>g in ll-D,

-Au>-O, u=g inD,

-Au >--O, u >--X, (u-x)Au =O in

with u =g on F. This problem may be stated in a weak formulation as a variational
inequality (Kinderlehrer and Stampacchia [9, pp. 40-45]) in the following manner:

Let K {v Iv H (fl), v g on F, v _->,V a.e. in fl}. Then u K is the solution of

a(u, v-u)>-O Vv K

where

a(u, v)= J Vu Vv dS

(H a(fl) is the Sobolev space of functions with generalized first partial derivatives).
In practice it is more convenient to find w u-g which then satisfies

w K {v Iv Ha(O), v g -g on F, v => 0 a.e. in

and w is the solution of

a(w,v-w)>-l(v-u)
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where

l(v -u)= I, AX(v -u) dS.

(It has been assumed here that X is a sufficiently differentiable function, e.g. X e HE (l’l).)
In the present work two such membrane contact problems are considered. In

2 2)both fl is the interior of the square Ix < 1, ly[ < 1, and x (-x -y (hX =-1)
so that l(v)=-InvdS. In the first problem g=0 (w =1/4(xE+y2-1/2) on F), and in the
second g 6[1-1n {4(x2 + yE)}] (w =6[-1 +4(x E + yE)-ln 4(x E + yE)] on F).

The second example has the exact solution

=[--I+4(xE+yE)--lna(xE+y2)], xE+y2>I, (X, y) fl,
W

[0, xE+yE<
The free boundary is the circle x E+ yE= .

2.2. The isotropic homogeneous dam seepage problem. The problem may be
stated as follows (see e.g. Baiocchi et al. [2]):

Find u such that

Au =0

u =hx

u=h2

in ,
on AB

on CD

u =y on DE

u=y on F

(interface with water at rest),

(interface with air),

OU
0 on F (F is a streamline),

On

on BC (impervious boundary).

u represents the hydraulic head and F is the free surface. DE is the seepage surface
and E the seepage point. The letters refer to Fig. 1 which gives a representation of
the problem.

A (O,h) F(a,h)

water

D (a,h)

MPERVIOUS BASE
FIG.
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This can be restated as a variational inequality by means of a method due to
Baiocchi (see [2]) as follows. Let fl be the interior of the rectangle ABCF and define

Let

tT={u infiX,
y in

hi
w(x, y)= (tT(x, t)-t) dt

and

h (h-h) x
2 2
(h-y)
(h-y)

on BC,

on AB,

on CD,

on DF fq AF.

Then if K {v[v Ha(l)), v =g on Olq, v => 0 a.e. in f}, w K is the solution of

a(w, v-w)>-l(v-w) Vv K

where

a (v, w)= Ia grad v grad w dS,

/(v)= -I v dS.

This problem has been tackled numerically by several authors, for example Shaw
and Southwell [11], Baiocchi et al. [2], Aitchison [1]. A much more complete survey
is given in Cryer [4].

3. The numerical method. It is seen that the three problems of 2 all reduce to
essentially the same variational inequality on a rectangular region. In the membrane
contact problems (2.1) symmetry is used to reduce the region to 0-<x <- 1, -1 =< y =< 0.
The region is divided into triangles by three sets of parallel lines (see Fig. 2) and the
nodes are denoted xi, 1,. , N. For convenience the region is oriented so that the
contact region will be in the upper left corner.

The finite element method is used to discretize the variational inequality. The
finite dimensional subspace Vv of Hl(f) is defined by

where vi are the nodal values v(xi) of v and bi are basis functions which are piecewise
linear in each triangle and b(xj) 6ij. If V denotes the N-vector with components v,
the closed convex subset KN is defined by

KN={VIl)i=g(xi),xiGO’], V_>-0 (i.e. l)iO,i 1,... ,N)}.
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FIG. 2. A typical finite element mesh with the approximate free boundary marked by the thick line (the
contact region is in the upper left corner). The free boundary nodes are moved in the directions shown, i.e.,
parallel to the y-axis if its neighbors have the same x coordinates, parallel to the x-axis if its neighbors have
the same y coordinates, along the diagonal otherwise.

The approximate solution w with vector of nodal values W now satisfies the variational
inequality"

Find W s Kr such that

(V- w)T(AW-F)>=O
where A is the matrix with i, ] entry aij given by a a(4,, 4) and F is the vector
with entries fi l(i) (with adjustments due to boundary conditions). It may be seen
that W satisfies

(3.1) AW-F >= O, W >= O, WT(AW -F) O.

The equations (3.1), which are equivalent to a quadratic programming problem, are
solved by a method of successive overrelaxation with projection, a method used by
many authors, e.g. Glowinski, Lions and Tremoli6res 17, pp. 67-71], or Cryer [3]
where proofs of convergence are given.

The iteration is started with an initial choice (in the current work w ) 0) and
the (n + 1)st iteration is described as follows:

(n) (n + 1)
ai’w

(n)
ri =fi- E aijw E

i<i

W max O, W -" J
i=1,...,N.

to is the relaxation parameter. In the current work to 1.7 was found to be satisfactory.
Iterations were repeated until a stopping criterion of the following form was satisfied"

N N
(n+l) (n)

i=1 i=1

where e is a chosen tolerance.
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The contact region is identified as the union of those triangles in which w 0
(wi 0 at all three vertices) and the approximate free boundary is taken as the boundary
of this region (note that Baiocchi et al. [2] use a slightly different choice for the
identification of the free boundary).

At this stage the approximate free boundary suffers from the disadvantages noted
by Kikuchi [8], but it does give a reasonably accurate approximation to the actual
boundary, and from this point a trial free boundary iterative method is adopted to
improve the location of the free boundary. Since wi 0 at all free boundary nodes,
one of the boundary conditions at the free boundary is satisfied. The second condition,
which corresponds to the natural boundary condition at the boundary of the noncontact
region, is used to move the boundary. Each boundary node is allowed to move in a
specific "pseudonormal" direction which depends on the configuration of its neigh-
bouring boundary nodes and which is recorded along with the node numbers of the
boundary nodes as these nodes are identified. A diagram of the mesh and the three
pseudonormal directions is given in Fig. 2. With the given mesh configuration one of
three possible directions is determined for each node. The element numbers of all
triangles, the boundary elements, with a free boundary node at a vertex and which
lie in the noncontact region are also recorded. The algebraic equations which corres-
pond to the natural boundary condition at the free boundary for the noncontact region
depend on the boundary node coordinates, and these nodes are moved in the pseudo
normal directions by amounts which are the solution of quasi-Newton equations with
the node positions as variables and with fixed values for the wi. The iterations are as
follows beginning with the mesh points and wi values obtained by the variational
inequality method"

(i) Use the quasi-Newton equations derived from the natural boundary condition
to obtain new coordinates for the free boundary nodes (wi fixed in this step).

(ii) Recalculate the matrix A and load F of the variational inequality and resolve
this problem using the current wi as starting values for the S.O.R. routine.

(ii) Return to (i) until the maximum change in coordinates is below a given
tolerance.

In step (i) the Jacobian is formed element by element using only the boundary
elements. In this work the partial derivatives with respect to the nodal displacements
were calculated by hand. In general a secant method might be preferable. The Jacobian
for this system is tridiagonal so that the solution is obtained easily. These equations
are solved once only with the current w before moving on to (ii).

In (ii) only the contributions to A and F from the boundary elements need be
changed. Contributions from elements in the contact region do not affect the results.

At the same time that element contributions are adjusted, a check is made to
see that the elements do not overlap. (In the examples considered this occurred only
in the first boundary change for the dam seepage problem and was corrected by
damping.) The same stopping criterion was used for the S.O.R. routine, but in this
case a limit of five iterations was imposed if convergence had not been attained.

In variational inequality approaches to the dam seepage problem, the seeping
point D is usually determined by extrapolation because w 0 on the seepage surface.
In the current work two nodes belonging to the seepage surface are allowed to move.
One is the node where the approximate free boundary first meets the seepage surface
and the other is the node on the seepage surface immediately below the first. The
second node gives a direct approximation of the seepage point after the boundary
iteration.
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In examining Fig. 2 it may be felt that the opposite diagonals would lead to a
better approximation. This would be true of a direct use of variational inequalities,
but when this is followed by boundary iteration the present orientation seems better
suited to avoiding overlapping of elements or their distortion into thin triangles.

4. Numerical results.
4.1. First membrane contact problem. The results for the first membrane contact

problem are illustrated in Fig. 3.

Y
0.0

-0.2

-0.5

-0.4

0.1 0.2 0.5
FIR;T MEMBRANE CbNTACT PROBLEII (one
eighth region)

11Xll MESH
&21X21 MESH

BOUNDARY AFTER VARIATIONAL IN-
EQUALITY 11X 11
BOUNDARY AFTER VARIATIONAL IN-

AXSOF

____NMETRY
r T

FG. 3

The points marked are the location of the free boundary points after iteration
in the case of a 21 21 mesh. The points marked are the locations of the final free
boundary points with an 11 11 mesh. The free boundary on the fixed mesh obtained
by the solution of the variational inequality is also shown.

4.2. Second membrane contact problem. The second membrane contact problem
has the boundary of the contact region at r 0.5. Table 1 gives the coordinates of
the final set of boundary points together with the value of r (x 2 + y2)/2 for the case
of 21 21 mesh. The final positions are also shown in Fig. 4 (marked &), together
with the actual boundary.

The dam seepage problem. In these problems hi 24, a 16 and h2 =4 or 0.
The free boundary coordinates are compared with the results of Aitchison [1], h 2 4,
and the coordinates of the seepage point with that given in Cryer [4], h2 4 and 0.
Since Aitchison uses a boundary iterative method in which boundary points are moved
parallel to the vertical walls of the dam, the present results cannot be compared
directly. To obtain boundary points with the same "x" coordinate, linear interpolation
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TABLE
(x, y) coordinates of free boundary nodes before and after iteration of the

boundary. The values of /x2+ y2 are given ]’or the final values. Only points in

of the region are given because of the symmetry.

Before iteration After iteration

x y x y 4x+y

0.5000 0.0000 0.5059 0.0000 .5059
0.5000 0.0500 0.4991 0.0500 .5016
0.5000 0.1000 0.4953 0.0953 .5044
0.4500 0.1000 0.4779 0.1279 .4948
0.4500 0.1500 0.4760 0.1500 .4991
0.4500 0.2000 0.4583 0.2000 .5003
0.4500 0.2500 0.4437 0.2437 .5062
0.4000 0.2500 0.4167 0.2667 .4947
0.4000 0.3000 0.4036 0.3036 .5050
0.3500 0.3000 0.3736 0.3236 .4943
0.3500 0.3500 0.3571 0.3571 0.5050

0.1 O.2 0.5

SECOND MEMBRANE CONTACT PROBLE
& 21X21 MESH

BOUNDARY AFTER VARIATIONAL
INEQUALITY
EXACT FREE BOUNDARY

0.4

FIG. 4

AXIS OF
SYMMETRY

of the nearest two of the present boundary points has been used. The results are given
in Table 2. Columns 1 and 3 are Aitchison’s results for 9 and 17 divisions in the x
direction respectively and 2 and 4 are from the present work with 9 13 and 17 25
meshes respectively. The results marked with an asterisk are obtained by linear
interpolation using the nearest two free boundary nodes obtained by the present
method.

Cryer’s results for the seepage point are obtained by an integral equation method,
and comparisons are made with this result and many others given in Cryer 14] in
Table 3. All results are quoted from Cryer [4, pp. 54-57]. The result marked with a
dagger was obtained by Cryer graphically.
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TABLE 2
Free boundary coordinates for the dam seepage problem.

2 3 4

x y y y y

0 24.00 24.00 24.00 24.00
23.74 23.75

2 23.40 23.40 23.41 23.39*
3 23.02 22.96
4 .59 22.37* 22.59 22.60*
5 22.12 22.00*
6 21.60 21.56 21.60 21.60
7 21.04 20.97*
8 20.44 20.18’ 20.43 20.42
9 19.78 19.74"
10 19.08 19.01 19.08 18.95"
11 18.31 18.20"
12 17.50 17.42" 17.48 17.46
13 16.57 16.55"
14 15.62 15.35’ 15.54 15.53"
15 14.39 14.12"
16 12.85 12.34 12.79 12.48

TABLE 3
Seepage point for the dam problem. The y coordinate of the seepage point is

given by various methods for h2 4 and for h O.

y-coord.
h2 4 seepage pt. Method

Cryer
Aitchison

12.71 Integral equations
12.79 Trial free boundary

24 divisions of h
12.75 Trial free boundary

48 divisions of h
Shaw and Southwell 12.755"
Comincoli, Guerri, Volpi 12.89
Comincoli, Guerri, Volpi 14.4

Present 12.34
12.48

Trial free boundary
Variational inequality

30 divisions
9 x 13 mesh
17 x 25 mesh

h2=0

Cryer 12.57 Integral equations
J. M. Taylor 12.64 Trial free boundary
McNawn, Hsu Yih 10.32 Trial free boundary
Present 12.25 9 x 13 mesh

12.33 17 x 25 mesh

In Fig. 5 the free boundary points are plotted for the cases h2 4 for 9 x 13 mesh,. Aitchison’s points are also plotted .
In Fig. 6 the same are plotted for a 17 x 25 mesh.
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y
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16
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DAM SEEPAGE PROBLEM h,=24,
h= =4, a=16
AITCHISON 9X13 MESH
PRESENT & 9XI3 MESH

BOUNDARY AFTER VARIATIONAL
INEQUALITY

[ GRID ORIENTATION

4 8 12
FIG. 5

16 x

Y24-e---
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DAM SEEPAGE PROBLEM h1=24,
he=4, Q:16
AITCHISON 17 X 25 MESH

12
PRESENT 17X25 MESH

BOUNDARY AFTER VARIATIONAL
INEQUALITY

GRID ORIENTATION

o
FIG. 6

Conclusion. The numerical results suggest that the method works successfully
and overcomes Kikuchi’s objections stated in the introduction, in that it provides a
reasonably smooth boundary without excessive iterations. The seepage point is given
directly in the dam problem.

There is of course still no proof that the boundary iteration process converges,
nor that the approximate free boundary obtained by variational inequalities is
sufficiently accurate that mesh distortion problems do not arise in the boundary
iterations.
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PRACTICAL USE OF SOME KRYLOV SUBSPACE METHODS FOR
SOLVING INDEFINITE AND NONSYMMETRIC LINEAR SYSTEMS*

YOUCEF SAADt

Abstract. The main purpose of this paper is to develop stable versions of some Krylov subspace
methods for solving linear systems of equations Ax b. As in the case of Paige and Saunders’s SYMMLQ
[SIAM J. Numer. Anal., 12 (1975), pp. 617-624], our algorithms are based on stable factorizations of the
banded Hessenberg matrix representing the restriction of the linear application A to a Krylov subspace.
We will show how an algorithm similar to the SYMMLQ can be derived for nonsymmetric problems and
we will describe a more economical algorithm based upon the LU factorization with partial pivoting. In
the particular case where A is symmetric indefinite the new algorithm is theoretically equivalent to SYMMLQ
but slightly more economical. As a consequence, an advantage of the new approach is that nonsymmetric
or symmetric indefinite or both nonsymmetric and indefinite systems of linear equations cin be handled
by a single algorithm.

Key words, numerical linear algebra, iterative methods, nonsymmetric systems, conjugate gradients

1. Introduction. In the previous few years considerable attention has been
devoted to solving large sparse sets of equations of the form

(1) Ax =b

where A is an N N real matrix. Linear systems of equations fall into four distinct
classes:

1. A is symmetric positive definite;
2. A is symmetric indefinite;
3. A is nonsymmetric positive real, i.e., its symmetric part (A +Ar)/2 is positive

definite;
4. A is nonsymmetric nonpositive real, i.e. its symmetric part is indefinite. We

will then often say that A is indefinite.
Roughly speaking, the four classes above are ordered according to increasing

difficulty of solution.
While the problems of the first class are well understood, the other classes have

attracted much of the recent research in numerical linear algebra and are still under
intensive investigation. Recent work by Vinsome [18], Axelsson [1], Elman, Eisenstat
and Schultz [3], Elman [4], [5], Young and Jea [8] and Saad [14] concerns Krylov
subspace methods for the case where A is nonsymmetric. A common feature of all
of these methods is that the approximate solution x. belongs to the affine space
x0 + K,. where K. is the Krylov subspace K,. span [r0, Aro, , A"-lro] and r0 is
the initial residual vector ro b -Axo. Their principle is to attempt to make the residual
vector r. orthogonal to some subspace L.,, usually different from K,. [15]. These
processes can also be regarded as different realizations of Galerkin projection methods
on K,., whereby the original problem is replaced by an m-dimensional problem with
the linear operator A. P.AIr..., where P. is the projector onto K. parallel to L,..
We will refer to A,. as a section ofA in K..

Many of the Krylov subspace methods developed in the literature assume that
the matrix A has a positive definite symmetric part, i.e. they deal with problems of
the third class. Problems of the harder class 4 often occur when a preconditioning

Received by the editors February 9, 1982, and in final revised form November 12, 1982. This work
was supported in part by the U.S. Air Force grant AFOSR-81-0193 and in part by the National Science
Foundation grant MCS-8104874.

Computer Science Department, Yale University, New Haven, Connecticut 06520.
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technique is used in conjunction with the iterative method. Then the resulting iteration
matrix is nonpositive real even though the original matrix is positive real (see [5]).

The Incomplete Orthogonalization Method (IOM), closely related to the Galerkin
process, was introduced in [14]. The IOM was devised to handle problems of classes
2, 3 and 4. Experience shows that it is effective on problems of the second and third
class and on problems of class 4 that are mildly indefinite or mildly nonsymmetric. A
peculiarity of the original version of IOM is that the solution is not available at each
ep. Instead, one saves the basis vectors of the subspace K,, in secondary storage
and forms the solution as a combination of these vectors only at the end of the process.
A simple formula provides, at no extra cost, the residual norm at each step, thus
determining when to stop. This implementation of the method is indirect in that the
solution is not directly formed. It requires less core memory and computational work
than its counterparts based on direct updating of the solution at every step, but has
the disadvantage of using secondary storage. The purpose of this paper is to develop
an equivalent version of the IOM that does not require secondary storage, while
keeping the stability properties of the original version.

The principle of our approach is similar to that adopted by Paige and Saunders
[10] which led to the successful SYMMLQ algorithm for solving symmetric indefinite
problems. Let us recall that SYMMLQ was based upon the stable LQ factorization
of a tridiagonal matrix representing the section A,, of A in K,,. For IOM, this
representation becomes a banded Hessenberg matrix, which we will factor by resorting
to the LU factorization with partial pivoting. Note that such a factorization can also
be applied to tridiagonal matrices and therefore when the matrix A is symmetric, we
obtain an alternative of the SYMMLQ algorithm which, incidentally, is slightly more
economical than SYMMLQ. As a consequence, the new algorithm has the attractive
feature that the same code can be used for any linear system regardless of symmetry
or definiteness. However, it should be pointed out that when the skew-symmetric part
of A is large and its symmetric part has the origin well inside the spectrum, the Krylov
subspace methods are not recommended. The Krylov subspace methods are most
effective in those cases where A is either nearly symmetric or nearly positive real or
both.

We will compare our method with other Krylov subspace methods and will prove
in particular that DIOM (k) is equivalent to Jea and Young’s ORTHORES (k)
algorithm.

In 2 we will briefly recall the Incomplete Orthogonalization Method in its
original form [14]. Section 3 describes an alternative version of the same algorithm,
which will be called the Direct Incomplete Orthogonalization Method (DIOM). Then,
in 4, we will briefly indicate how similar techniques can be derived for Krylov
subspace methods other than the IOM. A few practical considerations and heuristics
will be presented in 5 and some numerical experiments will be reported in the last
section.

2. Krylov subspace methods.
2.1. The full orthogonalization method. Given a set of rn linearly independent

vectors
span V], is by definition a method which obtains an approximate solution to (1) of
the form

(2) x,, x0 +
for which the residual r,, b-Ax,, is orthogonal to the subspace K,,. This Galerkin
condition gives

(3) V(b-Ax,.)=O
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and therefore
T T(4) y,,=[V,AV,,]- Vmro.

In the basic full orthogonalization method (or Arnoldi’s method) presented in
[14], one first constructs an orthonormal sequence V, =[Vl, v,..., v,,] from the
recurrence:

(5) hi+a,ivi+ Avi- , hiil)i
i=1

starting with the vector v ro/[[ro[I. In (5), the coefficients hii, 1,...,/" + 1 are
chosen such that the vector vi+ is orthogonal to all the previous vi’s and ][vi+a[[ 1.

The system V,, constitutes an orthonormal basis of the Krylov subspace K,
span {r0, Aro,..., A m-lro}. An important property is that the matrix VAV,, in (4)
is precisely the m m upper Hessenberg matrix whose nonzero entries are the hii’s
defined in the algorithm. Furthermore, the vector Vro in (4) is equal to lifo[lea, with
e (1, 0, 0, , 0)7", by the definition of v . Therefore the solution y,, of (4) simplifies
into

(6) y H, (/3e )

where we have denoted by/3 the scalar Ilroll for convenience.
An algorithm based upon the above considerations can be briefly described as

follows:

AIGOrITHM 1.
1. Compute r0 := b -Axo, take vl := ro/(3 := IIr011) and choose an integer m.
2. For/" 1, 2,. ., m compute the vectors vi and the coefficient hg,i by (5).
3. Compute the approximate solution Xm from (2) and (6).

This will be referred to as the full orthogonalization method.

2.2. The incomplete orthogonalization method. A serious drawback of
Algorithm 1 is that as/" increases the process becomes intolerably expensive and
requires the storage of the whole set of previous vectors vg since these are used at
every step. A remedy to this is to orthogonalize the current vector Avi against k
previous vectors instead of all the previous vectors. We will assume throughout that
k >_-2. The derived algorithm has been proposed in [14], and is called the Incomplete
Orthogonalization Method (IOM). The only difference with the above algorithm of
full orthogonalization lies in the definition of vi/l, which now becomes"

1,, Av- hv(7) vi+l hi’+l,i i=]-k +1

In the above summation ]- k + 1 is to be replaced by 1 whenever ] -<_ k 1. Here
the coefficients hid are chosen such as to make Vi+l of norm one and orthogonal to
the vectors vi, ]- k + 1,. , ], that is"

(8) hi.i (Avi, Vi), ] k + 1,. , f,

(9) hi+l,i [[Av; Y, hgivil[.
i=i-k+l

The method can also be defined for k 1, and corresponds to the method of steepest descent in the

symmetric positive definite case. We want to avoid this trivial case.
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The new Hessenberg matrix which will still be denoted by H, has the following
banded structure when, for example, m 9, k 4"

-x
x

x x
x x x

x x x x
x x x x x

x x x x
x x x

x x
x

x
x x
x x

x x

x x-

(11)

A simplistic version of the IOM algorithm can be described as follows.

ALGORITHM 2.
1. Compute r0 := b axo, take v := ro/( := Ilroll) and choose an integer m.
2. Compute V,, =Iv1, v2,"’, v,,] and H,, by using (7) and (8) and (9), for

f=l,...,m.
3. Compute

y,. := flHreel
and form the approximate solution

(12) x,, := Xo + V,,ym.

We will refer to the above algorithm as IOM (k) or simply IOM if there is no
ambiguity. It is clear that when the number of steps m does not exceed k, the above
algorithm is equivalent to the full orthogonalization method. For this reason we will
denote by IOM (oo) the full orthogonalization method, since full orthogonalization
corresponds to taking k larger than any step number rn in the above algorithm.

One of the important details not made clear in the above implementation concerns
the choice of the number of steps m. If the algorithm were to be applied with an
arbitrarily chosen m, we would certainly have to restart the algorithm whenever m is
so small that the accuracy of x, is insufficient. In other words we would have to restart
the above algorithm with the initial vector x0 replaced by the latest computed approxi-
mate solution x,,, and this would be repeated until convergence. But it is also possible
that m might be too large and that convergence would occur for some m0 < m. This
means that we must be able to test for convergence anywhere between/" 1 and ] rn.
In fact all we need is a formula for computing the residual norm of the intermediate
approximation xi without forming xi. Fortunately such a formula exists and is given
by (see e.g. [14])

(13) lib Axm h,+1,m le mYml.r
As will be seen later, updating (13) requires only 2 multiplications per step provided
that the factorization of/-/i is updated at each step (this fact will be shown in the next
section). Since the final factorization of H, is needed for the solution of the m x m
system involved in (11), it is not more costly to factor H,, by updating the factorization
at each step, and hence the computation of the estimate (13) is virtually free. It should
be added that (13) gives a quite accurate approximation of the residual norm in practice.
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The above remarks suggest an efficient implementation of IOM which we briefly
outline here (see 14] for more details). First choose an initial vector Xo, the parameter
k and a maximum number of steps m max. Compute ro, and V ro/llroll. Then for
f 1, 2,..., compute hi.i and Vi/l by (5). Write in secondary storage every vector
vi/l thus generated, one by one. At each step /’, simultaneously update the LU
factorization of H and the residual norm (13). If at step/" the residual norm is small
enough, recall the vi’s from secondary storage one by one and form the approximate
solution xi by (11) and (12). If f reaches m max and the residual norm is still
unsatisfactory, form x, and restart the algorithm with this as initial vector.

We must emphasize that the central idea of the algorithm lies in the fact that it
is possible to update at each step the factorization Hi LiUi with L unitary lower
triangular, Ui upper triangular. Even more interesting is the fact that LU factorization
with partial pivoting can also be updated at each step together with the estimate (13)
of the residual norm. These observations have already been exploited in the previous
paper [14]. The algorithm given above will be referred to as the indirect version of
IOM as the approximate solution x, is not updated at every step. We now show how
to derive a few direct versions which are theoretically equivalent.

3. Incomplete orthogonalization method: direct versions. In all of the algorithms
proposed by Axelsson [1], Eisenstat, Elman and Schulz [3], Elman [5], Young and
Jea [8] and Vinsome [18], the approximate solution x,, is updated at every step in a
conjugate-gradient-like algorithm. We show here that it is also possible to write similar
versions for the IOM algorithm. The algorithms we are about to describe are based
upon updating the LU factorization of H,, at each step. For the sake of clarity we
first present a version that does not use partial pivoting. The more stable algorithm
using partial pivoting will be the object of 3.2.

3.1. Derivation of the algorithm. At each step m of IOM, the approximate
solution x, is given by the formula

(14) x., Xo + VmH-le
where Ilroll has been replaced by/3 for convenience.

Let H, be factored as

(15) H,, =L,,U

where L,, is an m m lower bidiagonal matrix with diagonal elements equal to one,
and U,, is a banded upper triangular matrix with k diagonals. That is:

X X

X X

X X

X

nm
x
x x
x x
x x
x x

x

x

x x
x x x
x x x

x x x

x x

x x

1

12 1
1

From (14) and (15) the solution x, satisfies x,,,

-X X X

X X

X

Xo + VmunlLn (Oe 1).

x
x x
x x
x x

x

x
x x
x x
x x

x

x
x
x
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(16)

and

(17)

Following Paige and Saunders [10] let us set

W VmU

Z L,,le 1.

We will denote by wi the ith column of the N m matrix W,,.
The key observation here is that we pass from the (m- 1)-dimensional vector

z,-i to the m -dimensional vector Z,n by just appending one component. In other words"

(8) z.

The last element :,,, of the vector z,. satisfies the recurrence

(19) ., --l,,,m--1, rn 2, 3,’.’,

starting with c =/3 Ilroll. Recall that we denote by lm the element in position rn, m 1
of the matrix L.. It is then clear that Xm can be updated at every step through the
formula"

(20) Xm=Xm-l+mWm.

The vectors wm can in turn be updated quite simply since we have from their
definition (16)

Um--Ei=m-k+l UimWi
(21) w.

Our first direct version of IOM (k) can therefore be summarized as follows:

ALGORITHM 3.
1. Start. Choose an initial vector x0 and compute ro b-Axo.
2. Iterate. For m 1, 2,. until convergence do:

Compute h,, rn -k + 1,. , m + 1, and v,,+l by formulas (7), (8) and (9).
Update the LU factorization of H,, i.e. obtain the last column of U, and
the last row of L,,. Then compute ,, from (19).
Compute

/)m --Em-1i=m-k + UimWi

I/lmm

Compute

Xm Xm-1 + rnWrn.
We have intentionally skipped some of the details concerning in particular the

way the LU factorization of H,, is updated. An important remark here is that (13)
can easily be updated because the last element of y,, is just /um, hence

(22) lib -Ax,ll hm+l,m

which requires only two arithmetic operations per step.
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Note that the division by U,,n in (21) can be avoided by simply using the vectors
w uiiwj in place of w. and by keeping track of the scaling factors uii. With this, the
cost per step of the above algorithm is approximately (3k + 2)N additions/multiplica-
tions plus one matrix by vector multiplication, and we need (2k + 1) vectors of storage
(these are: x,,, k 1 vectors wi, k vectors vi, plus an extra vector for Arm).

The above algorithm breaks down whenever Urn,, vanishes. In fact even if u,,,,
does not vanish it is not recommended to use the above algorithm as it is based upon
the potentially unstable LU factorization of H, and can result in an unstable algorithm
for solving Ax b. This brings up the use of partial pivoting.

3.2. Using the LU factorization with partial pivoting. Instead of the straightfor-
ward factorization (15) we now introduce the following LU factorization with partial
pivoting of the matrix

(23) Hm P2E2P3E3
where each Pi is an elementary permutation matrix, and Ei is an elementary transforma-
tion [19] having the structure"

1
1

1

1

0
0

0

0 jth row.

1

(/’ 1)st column

The elementary permutation matrix Pi+l is the one used to permute the rows /
and/" + 1 if needed, i.e., if the element hi+l.i is larger in absolute value than the element
u#.. The matrix U,, is again a banded upper triangular matrix, this time with k + 1
diagonals instead of k due to the permutations. The LU factorization with partial
pivoting is a very stable process when the matrix H,, is tridiagonal since the elements
obtained at any step r of the factorization, r <= m, are no longer than 2 max {Ih01,
1, m;] 1, m} (see Wilkinson [19, p. 219]). For banded Hessenberg matrices of
bandwidth k + 1, it is easy to generalize the above bound and show that the elements
obtained at any step of the factorization do not exceed k max {Ihl, 1, m;/" 1, m }.

As before the approximation x,, is defined by (14). Letting again

(24) W,. V.,U-
we get

X Xo "de" WmZ

where z,, is now defined as
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Note that the vectors wi can be updated in the same way as before by use of
(21), except that the summation is now from m -k to m 1. We claim that there are
formulas similar to (19), (20) for updating the vectors z,.. This is because we have

(25)

with

(26)

Equations (25) and (26) show that there are two cases, depending on whether
interchange has or has not been performed at the previous step:

1. either rows m- 1 and m have not been interchanged, in which case the vector

Zm is defined as before by (18) and (19);
2. or there has been an interchange of rows (m- 1) and m, in which case

(27)

where m-1 is the last element of Zm-1.
Practically, the use of the above observations is particularly simple. If interchange

has not been performed at step m- 1, then the approximate solution x. is updated
from x.,-1 as before by (20) and (19). If, on the other hand, rows m- 1 and m have
been permuted, then the expression (27) of z,. shows that the only difference with
the previous case is that the approximation x. is now defined by x, x.-2 + ,-1 w,..
In other words x.,-1 could be redefined as equal to x.,-2 and the scalar ., as equal
to c.,_1 in the formula (20). In other words if a permutation occurs all we have to do
is skip the application of the updating formulas (20), (19) at the next step. In a practical
implementation we must look ahead at the current step m and check whether
permutation will or will not be necessary in the next step m + 1. This is fortunately
possible because the element h.,/l,. is available at the ruth step as well as the element
u.,.,, since the factorization is updated at each step.

Concerning the updating of the factorization of H., at the mth step we can proceed
as follows. First, using the k + 1 previous pivots 1.,-k, Im-k+l,’’’, 1. transform the
column {him}i= 1,., into the column {ui,.}/= 1,.,. In order for this to be possible we must
save these k + 1 pivots. Note that the ruth column of H., (resp. U.) has at most k
(resp. k + 1) nonzero elements. Second, compare the element u,.,. thus obtained with
h,.+l,,, to determine if interchange is needed. If lu,..l < h.,+l,,., permute the elements
h,.+l,,, and u,.,. and compute the next pivot 1./1. Clearly the matrices H.,, E., U.
need not be saved. All we need is the previous k + 1 pivots lj, the logical information
perm (j + 1), j m k,. , m, defined as perm (/" + 1) true if rows j and/" + 1 are
permuted, and the k + 1 nonzero elements of the ruth column of H.,, which is
transformed into the m th column of U,.. This constitutes little storage as k is small
in general (typically k < 10). We describe below the Direct Incomplete Orthogonaliz-
ation Method (DIOM (k)) algorithm derived from the above suggestions.
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(28)

ALGORITHM 4. DIOM (k).
1. Start. Pick an iniital vector Xo, define ro := b-Axo, po :=
2. Iterate. For m 1)2). do"

Compute v,,+l and the ruth column of Hm by (7)) (8)) and (9).
Update the LU factorization with partial pivoting of H,, i.e. find the ruth
column of U, and compute p,, := ,,+llG,/u,,,,I. Then interchange U,,m and
h,, + 1,,, if necessary, and get the pivotal information to be used in the next step.
Compute

/3m - m--1
i=m-k UimWi

Wm ?--
blmm

If perm (m + 1) true and p, > e then:

m :--" m--l Xm := Xm-1.

Else compute

Xm :--- Xm--1 q- mWm"

If p,, _-< e stop.

Once again DIOM (oo) refers to the case of full orthogonalization, that is, to the
case where the summations in (7) and (28) start from 1. In the above algorithm
represents the residual norm that would be obtained if we stop at step m. Thus the
process is stopped when p, is smaller than the tolerance e. We should stress that Umm
in item 3 of iterate is the one obtained after interchange while the one used for
computing p, in item 2 is before interchange.

Notice that we force the application of formulas (19) and (20) when it is known
from the residual norm p,, that the process will stop at the current step. Indeed, the
algorithm artificially defines x, to be equal to x,-i whenever it is known that
interchange will be necessary at the next step. When it is known from ta,n that
convergence is achieved, i.e. that the current step is the last one, we must imperatively
define x,, by (20) and (19), regardless of the value of perm (m + 1). This is the reason
for the more complicated test in item 4 of iterate. Another, perhaps simpler, way of
correcting this is to always define perm (m + 1) as false if m is known to be the last step.

Because of the artifice used to define x,, when interchange occurs, the vectors
x,, defined here are not the same as the vectors x,, of Algorithm 3 except when
interchange is not performed. Thus, while the final solutions delivered by Algorithms
3 and 4 are identical, the intermediate vectors xj are not necessarily the same. When
interchange occurs, the approximation xj defined by (14) is not computed but is defined
as being equal to the previous approximation. For example, if interchange is needed
at every step, the new sequence of approximations x. obtained from Algorithm 4 is
stationary until the final step is reached, i.e. until p,, <_-e. The residual estimate
corresponds to the actual approximate solution that would have been obtained if we
had had to stop at the current step. Clearly, this may be infinite in case ui (before
interchange) is zero, which reflects the fact that the approximate solution xi defined
by (14) does not exist when H is singular. But, while Algorithm 3 will break
down in this situation, Algorithm 4 is able to construct the next approximations
X]+ l) Xj+2)

The amount of work is essentially the same as required for Algorithm 3. Indeed,
when a permutation takes place we save one vector update of the form (20); i.e., we
save N additions/multiplications. But then the permutation introduces an extra
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nonzero element in the triangular matrix U,,+k, which means N extra additions/multi-
plications when updating the vectors W,,/k at step m + k, and this compensates exactly
the savings made at the current step. Concerning the storage, we need one more
vector of storage, as the sum defining w, is now from m- k to m- 1; i.e., we need
a total of 2k + 2 vectors of storage instead of the 2k + 1 of Algorithm 3.

One might question the need for using Algorithm 4 instead of Algorithm 3 in
some cases. In particular, is pivoting necessary at all if the original matrix A is positive
real? Our numerical experiments show that interchange will indeed occur even in
those cases. The fact that some pivots are quite small even when A is almost positive
real suggests that it is in general better to use the more stable version of Algorithm
4, instead of Algorithm 3. Moreover, as shown above, it is not more costly to use
pivoting except for one additional vector of storage required.

3.3. Using the QR faetorization. The SYMMLQ algorithm described by Paige
and Saunders in 10] uses the LQ factorization H,, L,,Q,,. A similar algorithm using
the stable QR factorization can also be developed for the incomplete orthogonalization
method. Consider the orthogonal QR factorization

(29) Hm =OmUm
where U, is, as in 3.1, an m m upper triangular matrix and O,, is a unitary

,,O, L A remark which is essential is that since H,, isorthogonal matrix, i.e O 7"

banded upper Hessenberg, U,, will be banded upper triangular.
The reason we prefer the OR factorization to the LO faetorization is that the

implementation with OR is quite simple and resembles that of Algorithm 4. The only
difference is that instead of the elementary matrices Ej we now use elementary rotation
matrices F. of the form

cj -sj

s cj

1
<-" row

where c. cos (0.), s sin (0j). It will be shown below that Q,, in (29) is the product
of m 1 such rotation matrices; more precisely,

(31) W, V,,U1,
(32) Zm O,l (fie1) Q’m (el),
we observe that the approximate solution x,, is again defined by

(33) Xm=Xo+Wmzm
and that the updating of the vectors wj is essentially the same as in the previous
algorithms, since U, is banded upper triangular.

Letting as previously

(30) Q,, F2F3" "F,..
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Next we would like to show how to update the factorization (29) and the vector
z, at every step. Suppose that at a given step we have the factorization (29) and let
us assume that one more step is performed in the sequence giving the vi’s, such that
we now have the (m + 1)st column of H,,/I available. We want to compute the next
orthogonal matrix Ore+l, or according to (30) the next rotation Fro+l, and the next
last column of U,/I. Let us denote by Q the (m + 1)x (m + 1) matrix obtained by
completing the ] x/" matrix Q by adding zeros in all nondiagonal positions and ones
in the diagonal positions. We will define in the same way the matrix F.

Then we have

(34) tTmnm+l

x x x
x x x x 0

X X X X

x U,
0 x x

X

X

X X

X X

X X

Umm

0
0

0

0
0

X

X

X

Om+l

where we have denoted for convenience by m+l and am+l the elements hm+l.m and
h,,/1,,,/1 respectively. The elements of the last column of the above matrix are obtained
by multiplying the last column of H,,/ by the successive rotations F], ] 2, 3, , m.
In order to eliminate the element/3,,/1 in position (m + 1, m) it is clear that we need
to premultiply the above matrix by the plane rotation F+I with c,+1 and s,,/l defined
by

Umm m+l(35) c,,+1 )1/., s+ (u +t )/,(u,.. + 3-,+ +

which determines the next plane rotation. Note that the last column of Um/x is now
entirely available by premultiplying the last column of the matrix (34) by the rotation
TF,/I. Since the elements hi,m+1 are zeros for 1, 2,...,/’-k, only the previous k

plane rotations are needed. The upper triangular matrix U,,-1 will have k + 1 diagonals
as the premultiplication by the plane rotations will introduce an extra diagonal.

Consider now the vector Z,n+l which we would like to update from z,. This is
possible because z,,/ F,,/xzT,, where

Hence

Zm+l
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where so,, =c.+1,,, m+l "-Sm+lrn. In the above, scj denotes the last element of z..
Hence the approximate solution may be updated from the equation

(36) X,+I X,n_I + CSmWm
Clearly, such an updating formula is not the most economical, because in the

computation of x,,/l, each wi is accumulated twice with different coefficients as is
seen from (36). However, a more efficient accumulation can be used. Consider instead
of x. the vector g., defined by the recurrence g. =3rn-1 +mWm. Unlike Xm+l, this
can be accumulated with N multiplications per step instead of 2N. It is only at the
last step that we need to compute x.+l, which can be obtained from x.,+
g. +.+1 w.,+l. Just as pointed out in 3.3, at the ruth step we have all the information
necessary to obtain the next plane rotation. Hence, we should look ahead at step m
and obtain the rotation F.+. In this manner we have not only z. but also the element., in position m of Zm+l. Since this will not be changed by the subsequent rotations,
we see that the updating formula passing from ._ to ,. can be performed. Notice
that similar arguments have been used in [10].

An algorithm based on the above developments can easily be implemented, but
our experience contradicted the expectation, formulated in [14], that this approach
is superior. Indeed, we found that it is needlessly more expensive and complicated
than the version DIOM(k) of Algorithm 4. In effect, each step now requires N more
operations than the equivalent method DIOM(k). This would not have been a high
price to pay if it resulted in a substantial improvement. Such is not the case, however,
as a number of numerical experiments show (see 6.1). We think that the reason for
this is that the main source of errors is not in the factorization of H. and the formation
of the solution as defined by (14), but rather mainly in the construction of the vectors
vj. Solving a banded Hessenberg system by Gaussian elimination with partial pivoting
is a very stable process, as was seen in 3.2. However, there might exist particularly
difficult cases where the more stable OR factorization would be more effective, and
although we prefer Algorithm 4, the technique outlined in this subsection should not
be completely discarded.

3.4. Properties of the Incomplete Orthogonalization Method. In this subsection
we wish to show a number of properties of Algorithm 4 assuming exact arithmetic.
We would like first to establish a sufficient condition under which Algorithm 4 does
not break down. Similar sufficient conditions for the symmetric Lanczos algorithm
are expressed in terms of the minimal polynomial of the initial vector v (or r0). We
will call minimal polynomial of a vector v with respect to the matrix A the polynomial
Ps of smallest degree s such that ps(A)v 0 (cf. [19]).

PROPOSITION 1. Assume that the minimal degree of ro is not less than m and that
the ruth approximate solution x, as defined by (14) exists, i.e. that H,, is nonsingular.
Then x,, can be computed by Algorithm 4.

Proof. To prove this property consider the polynomial defined by the recurrence

(37) hi+,ipi+(A Ap.(A)- hjpg(A ), ] 1, 2,. ., m,
i=j-k+l

starting with p(A)= 1. Denote by/+ the polynomial on the right-hand side of (37).
This is a polynomial of degree/’ such that h+l, [I/+(A)vll, i= 1, 2,. . If at step
/" we had h+, 0, this would mean that/5+(A)v 0. Since/+ is of degree j, and
because the minimal polynomial of v is of degree larger than f, we conclude that
h.+, cannot be equal to zero. This means that the algorithm does not break down at
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step /’, because firstly the next vector vi+l can be computed, and secondly since
max {hi+l,i, [uiil} is nonzero, the factorization of H does not breakdown and hence the
vector wi+l can be computed. The only difficulty may be encountered at the final step
m where u,,, can be equal to zero. But this is excluded by the assumption that
is nonsingular. I3

If at the fth step, the Hessenberg matrix H is singular, then the fth approximation
xi as defined by (14) does not exist. Thus Algorithm 3 fails because it attempts to
explicitly compute xi for all f, while the key advantage of Algorithm 4 is that it does
not need xi to obtain the subsequent approximations. Note that when h,/a,,. 0 and
u.. 0, the algorithm produces the exact solution at step m. This uncommon situation
is a consequence of (13) and is often referred to as a "happy breakdown".

Next we would like to prove some orthogonality relations characterizing the
residual vectors r. and the directions w. produced by the algorithm. In the symmetric
case it is known that the residual of the approximate solution produced by the conjugate
gradient algorithm is orthogonal to all the previous residuals and that the directions
wi, are conjugate with respect to A, i.e. (Awi, wi)= 0 if f. The situation is not as
simple in the nonsymmetric case. For the residual vectors, it was shown in [14] that
at each step/" the residual r is orthogonal to the previous k residuals. This fact is a
simple consequence of the following lemroa:

LEMMA 2. The residual vectors r,. produced by m steps of either Algorithm 3 or
Algorithm 4 satis)Cy the relation

T(38) r.,

where y, is defined by (11).
Proo]. The lemma is a consequence of the following important relation derived

from the definition of the vectors vj"

T(39) A V,. V,.H. + hm+l,mVm+le

where V. [Vl, D2," ", Urn]. The residual r, is such that

r. b -Ax. b -A[xo + V,.y,. ro-A V.y.
v-[V.,H. + h.,+,,.v.+leT"]y.,..

The result (39) follows from the fact that
Among other things, the lemma asserts that the residual vectors are equal to the

vi except for length. Since the coefficients hi,i are chosen such that (v.,+, vi)=0,
m -k + 1,. ., m, it follows from (38) that ([14]):
PROPOSITION 3. The residual vectors produced by Algorithm 3 or 4 satisfy the

orthogonality relation:

(r.,,ri)=O, i=m-k,m-k+l,. .,m-1.

In other words the current residual is orthogonal to the previous k residuals.
Note that the above lemma also proves the result (13).

An important consequence of the above proposition is that when A is symmetric
then the algorithm DIOM (2) is theoretically equivalent to the conjugate gradient
method (A positive definite) or the SYMMLQ algorithm (A symmetric indefinite),
for which it is known that the residuals satisfy the same property. In the symmetric
case it is not necessary to take k > 2, because all of the algorithms DIOM (k) with
k->2 are equivalent to DIOM (2) (see [14]). The matrix H., is then tridiagonal
symmetric and the process of building the vi’s is nothing but the usual symmetric
Lanczos process.
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Concerning the directions wi, it is natural to ask whether a conjugacy relation
similar to that of the conjugate gradient method holds. Consider first the case of full
orthogonalization. For the remainder of this subsection we will assume that no pivoting
is performed throughout the process, i.e. we assume Algorithm 3 is used instead of
Algorithm 4.

PROPOSITION 4. For the direct version of the Full Orthogonalization Method
(DIOM (o)) with no pivoting, the following semiconjugacy relation is satisfied by the
vectors wi"

(Aw#w)=O ]:ori<f, f=l, 2,....

Proof. Multiplying (39) on the right by U gives

(40) AW,, VmLm Om+le mUl.T
k-Umm

Multiplying the above equation by W on the left, and letting hm+l.m/Umm, we
obtain

TWAW Ur[VV]L+UrVmm+le

The last term in the above equation is a null vector because V+l is orthogonal to all
previous vectors (full orthogonalization). Also because of the orthogonality of the
vi’s, the m x m matrix VV] is the identity matrix. Finally we get

TWAW U2,
which is a lower triangular matrix. This completes the proof.

From the above proof it is easily seen that the proposition does not extend to
the case of incomplete orthogonalization. A somehow weaker result is, however,
proved below.

PROPOSItiON 5. The following orthogonality relations hold for DIOM (k with no
pivoting"

(Aw,vi)=O forf-k+l<i<], [=2,3,....

Proof. Let us start with.equation (40), which is still valid, and multiply both sides
on the left by V to get

T T(41) VAW VVL+Vv+e,
with/z defined in the proof of the previous proposition. Careful matrix interpretation
of (41) shows that VAW,, has the following structure"

-1 x
1 x

0 x

X X

x 0
X

x 1

tm
1
x 1

X

X

X

0 X

0 x-
0 x

X

0 X

0
0

0 0

row m- k + 1.
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Hence

VAW,,,

1 x

x xx

x 0 x x

X X

_. x x 1

The upper part of the above matrix has zero elements in position i,/" whenever
]- k + 1 < < ] (post multiplication of V V,, by L,, introduces an extra diagonal).
The proof is complete. [3

3.5. Comparison with other methods. In this section we will compare the Incom-
plete Orthogonalization Methods with other Krylov subspace methods and will in
particular prove that DIOM (k) is theoretically equivalent to Young and Jea’s
ORTHORES (k) algorithm. The class of Krylov subspace methods includes the
ORTHOMIN (k) algorithm [18], [3], [5], Young and Jea’s ORTHODIR(k) and
ORTHORES (k) algorithms and Axelsson’s method [1]. A comparison of the work
per step for each of the above methods must take into account the fact that the
parameter k does not always have the same meaning. Thus ORTHOMIN (1) is
equivalent to the conjugate residual method in the symmetric case while our DIOM (2)
would be equivalent to the conjugate gradient method.2 It is therefore more meaningful
to compare ORTHOMIN (k) with DIOM (k + 1). With this in mind, the next table
compares the work and storage requirements for a few representative Krylov subspace
methods.

TABLE

Method Mult./step Storage

IOM (k + 1)* (2k + 5)N (k + 2)N
DIOM (k + 1) (3k + 5)N (2k +4)N
ORTHOMIN (k) (3k +4)N (2k + 3)N
ORTHODIR (k) (3k +4)N (2k +3)N
ORTHORES (k + 1) (3k +6)N (2k + 3)N
Axelsson (k) (3k +4)N (2k +3)N

* This method uses secondary storage. The table reports core
memory requirement only.

Note that the number of multiplications in DIOM (k) can be reduced to roughly
(3k + 4)N by normalizing the vectors vi only when their norms become large (or small).
Thus one might say that the number of multiplications for DIOM(k+I),
ORTHOMIN (k) and ORTHODIR (k) is nearly the same. The slight difference in
storage is not significant. The indirect method IOM (k) is attractive in computing
environments in which the I/O with disks is inexpensive, but this may vary significantly
from one site to another.

It is assumed in this discussion that the auxiliary matrix Z used in Young and Jea’s notation [8] is
the identity matrix.
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Various experiments have been conducted to compare the above methods, in
particular by Elman [4], [5]. The nontruncated versions (k ) are impractical since
one has to keep all the previous vectors in core memory. The truncated versions
(k < ), on the other hand, are more suitable computationally but more difficult to
study theoretically. The comparisons show that, in most cases, none of the above
methods is superior by a large margin. The ORTHOMIN (k) methods, however, have
a better theoretical foundation since proofs of convergence have been established for
them [3], [5]. Some examples exhibited in [5] also show that ORTHODIR (k) may
diverge. We know that this may happen for DIOM (k) as well when the symmetric
part of A is not positive definite. It is not known whether this can occur in the positive
real case, but all the numerical experiments conducted thus far have yielded conver-
gence in such cases. It seems likely that for k sufficiently large the process will converge
in the general case but this has not been proved so far.

Besides convergence, an important comparison criterion is the risk of breakdown
presented by the different methods. In this respect, DIOM (k) is reliable, as shown
by Proposition 1. ORTHOMIN (k) is known to be feasible when A is positive real
and can breakdown otherwise. There is no proof that ORTHORES (k) does not break
down for positive real problems, but examples showing that it does break down for
nonpositive real problems are easy to construct [8].

It will be shown below that ORTHORES (k) is in fact equivalent to IOM (k)-
DIOM (k). The result that ORTHORES () is equivalent to IOM () is straightfor-
ward and was mentioned in [5]. That the truncated versions are also equivalent does
not seem to have been noticed.

We begin by briefly recalling the ORTHORES (k) methods and a few of its
properties. For more details see [8].

(42)

ALGORITHM ORTHORES (k).
1. Start. Choose Xo, and compute ro b-Axo.
2. Iterate. For 0, 1,... until convergence do:

(Ari, r)/(rj, rj),j =i, i-l,..., i-k +1,

bi aj
/’=i-/+1

(i) (i)c =bic ,]=i-k + l, ,i,

Xi+l biri q- c )xi,
]=i-k+l

(i).ri+l -biAri + c ’h
]=i-k+l

(i)The scalars c are determined so that the residual ri+l is orthogonal to the
previous k residuals. The nontruncated version of the above algorithm, named
ORTHORES (c), consists in starting the above sums from 1 instead of i- k + 1. The
process may break down at any step because a division by zero can occur in computing
bi. It is not difficult to exhibit an example for which this happens at the first step [8].

The nontruncated version ORTHORES () is equivalent to IOM () (or
DIOM ()) because for both algorithms and residuals satisfy the same orthogonality
relation. Note that the truncated versions DIOM (k) and ORTHORES (k) also satisfy
the same orthogonality relation, namely (ri, r])--0, for i- k + 1 </" < i. This is a hint
that the truncated versions are also equivalent, but a more careful proof is needed.
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Let us recall that by Lemma 2 the residual vector rn obtained at the nth step of
DIOM (k) is equal to a scalar times the vector vn/l of thetruncated Arnoldi process.
The residual vectors rn obtained from any Krylov subspace method are known to
satisfy rn p, (A)r0 where p, is a polynomial of degree n, normalized so that p, (0)= 1.

We will need the following lemma.
LEMMA 6. Let the residual vectors ri and r produced by two Krylov subspace

methods be such that ri ---oir, O, 1,. ., n, where Og is a scalar with Co 1. Assume
that the degree o[ the minimal polynomial [or the initial residual vector ro is not less
than n. Then rj rj, f O, 1, , n.

In other words, two Krylov subspace methods that start with the same initial
vector and which produce proportional residual vectors will in fact produce identical
iterates.

Prooj:. For the first method we have ri =pi(A)ro and for the second r =p(A)ro
where the two polynomials p, and p’, are such that

(43) p, (0) p’,,(0) 1.

Since the degree of the minimal polynomial of r0 is not less than n, the relation

(44) li oir, 0, 1, , n,

yields

’(A), i=0 1 n.(45) pi(A )=otipi

From (45) and (43) we get O 1, 0, 1, , n, which completes the proof.
Prol’osIrIoN 7. Assume that n steps o] both ORTHORES (k) and DIOM (k)

with no pivoting can be achieved starting with the same initial vector Xo and that the
degree of the minimal polynomial o ro is not less than n. Then the iterates xi, f O, 1,.., n, produced by both algorithms are identical.

Proo]’. Let ri be the residual vectors for ORTHORES (k). According to the lemma
all we have to show is that this is proportional to the residual vector produced by
DIOM (k), or, equivalently, to the vector vi/l produced by the incomplete Arnoldi
process. Note that (42) can be written:

(46) ri+=-bi Ari- a
/=i-/+1

which is of the same form as (7). Using the fact that the sequences {ri}i=o,1,... and
{vi}/=x,2,... are generated by the similar formulas (7) and (46), and that for both
sequences the current vector is orthogonal to the previous k vectors, it is easy to show
by induction that ri differs from Vi+l only by a multiplicative factor. This completes
the proof.

Clearly, this result can be extended to DIOM (k) with pivoting (Algorithm 4),
by considering only the iterates corresponding to the steps where pivoting has not
occurred. Though theoretically equivalent, the two methods are quite different in their
implementation. ORTHORES (k) is slightly more expensive than DIOM (k) and
IOM (k), as shown in Table 1, but requires less storage than DIOM (k). However,
these differences are not significant because they represent a small fraction of the
total work and storage in general. The computation of b in ORTHORES (k) may
cause the algorithm to break down, and no result explaining when this may happen
seems to exist. Implicitly, the ORTHORES (k) process attempts, like Algorithm 3,
to compute the approximate solutions xi defined by (14) for all j. When one of the
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intermediate Hessenberg matrices Hi is singular, this solution does not exist and the
process breaks down. Algorithm 4, on the other hand, discards x. in this situation by
defining it as being equal to x.-a and computes xi/l instead (or some x.+i, -> 1).

4. Application to other Krylov subspace methods. As indicated in [15], many
algorithms using Krylov subspaces can be described with equations similar to those
of IOM. A sequence of vectors v., respesenting the residuals rescaled as in Lemma
2, is generated by requiring some orthogonality conditions. Then the solution is
obtained by (11) and (12). The only difference between the various methods resides
in the orthogonality conditions forced upon the residual vectors r., or equivalently the
v.’s. An interesting question is whether the algorithms described earlier can also be
adapted to other Krylov subspace methods. The main reason why such versions are
sought is that when the matrix A is not positive real, then the regular versions may
break down or become unstable, because they implicitly solve an upper Hessenberg
system with the potentially unstable Gaussian elimination with no pivoting.

The use of pivoting will be very helpful in particular for the Lanczos algorithm,
considered next, as the original direct version, called the biconjugate gradient
algorithm, faces serious risks of instability and breakdown (see [15]).

4.1. The Lanczos biorthogonalization algorithm. For the following discussion we
recall the essential of the Lanczos algorithm for solving a linear system of the form
Ax b. See [6], [9], [15].

At.GORITHM 5 (Lanczos).
1. Choose an initial

V :-- U :-’- ro/( := IIr011).
2. For/’=l,2,...,mdo"

vector Xo and compute ro=b-Axo. Define

(47)

(48)

(49)

tT.+a := Avi -oqvi--iVi-.1,

b//’/ :"- A 7"u aiu

(]+1 :’--I(//’+l, t’+a)l 1/2,

with a. := (Avi, ui),

/3’/a := sign

(5O) O/’+l L//’+I
Uj+IV/’+I

(i+l [/’+

3. Form the approximate solution

(51)

(52)

(53)

x,. := x0 +

in which V, [Vl, v2,""", Vm] and

y,. H (/3e a)

where H, is the tridiagonal matrix defined by

2
O2
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A direct version of this algorithm exists and was due to Lanczos himself. The
algorithm was neglected for a long time because it faces serious stability problems;
see [6], [15].

The similarity of part 3 of this algorithm with part 3 of Algorithm 2 indicates
that a direct version which uses the LU factorization with partial pivoting can easily
be formulated. The development of the new algorithm is identical with that of
DIOM (k) described in 3, and we will omit the details. This does not, however,
overcome all of the difficulties associated with this algorithm, because the process of
building the sequence {/2i}i=1,2,..- can itself be troublesome. The problem of building
the Lanczos vectors in the nonsymmetric case was addressed by Parlett and Taylor
[13], who suggest an alternative algorithm which handles the breakdowns associated
with the construction of the sequence vi. This a combination of Parlett and Taylors’
"look-ahead" Lanczos [13] process for constructing the Lanczos vectors vj and our
technique of obtaining the approximation x,, as implemented in Algorithm 4 constitute
a more reliable version of Algorithm 5.

4.2. Krylov subspace methods based on conjugate residuals. In the context of
symmetric indefinite problems, Paige and Saunders 10] proposed an algorithm, named
MINRES, which at each step minimizes the residual norm of the residual vector over
the Krylov subspace K,. MINRES uses the same LQ factorization of the matrix
as SYMMLQ. The algorithm proposed in 3.3 can also be extended in a similar way
to yield a generalization of Paige and Saunders’s MINRES to nonsymmetric problems.
The details of the algorithm and its properties are beyond the scope of this paper.
However, we would like to make an important remark. The nontruncated version of
the resulting MINRES algorithm is equivalent to the ORTHOMIN () algorithm
[18], [5] which has the property that its residual vectors are semiconjugate, i.e.
(Arj, ri) 0, </’. One might then think that, if we truncate the process as is done for
the SYMMLQ-like method of 3.3, we will find an equivalent (and hopefully better)
version of ORTHOMIN (k), the truncated version of ORTHOMIN (o). A more
careful analysis shows that this is not the case, i.e., that the nonsymmetric truncated
MINRES-like extension of the method described in 3.3 is not equivalent to
ORTHOMIN (k).

An alternative is to generate a direct version by imposing on the vi’s the orthogon-
ality condition known to be satisfied by the residual vectors of the original algorithm.
In our case we would like the residual vectors to be semiconjugate [3], which means
that the vi’s should satisfy

(54) (Avj, l.)i) O, 1, 2,. , ] 1.

The above sequence of vectors would lead to the generalized conjugate residual
method, or ORTHOMIN (oo) [3]. Again the computation of the system of vectors
satisfying (54) becomes uneconomical as/" increases, and a natural idea is to replace
such a condition by an incomplete orthogonality condition. Note that the incomplete
version of the algorithm thus obtained is equivalent neither to the truncated version
ORTHOMIN (k) of ORTHOMIN nor to the truncated version of MINRES.

Computing the sequence of vectors vi by the recurrence (7) in which the vi’s
satisfy the new orthogonality conditions (Avi,vi) O, k + 1, f k + 2, , f 1,
and IIAv+ll- 1, may break down or become unstable. The reason for this is that we
are attempting to orthonormalize a sequence of vectors with respect to an indefinite
inner product; i.e., we can have (Av, v)= 0 for v 0. A process similar to the one
suggested by Parlett and Taylor can be applied to the sequence of vi’s because in both
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cases we implicilty deal with the same problem of constructing a sequence of orthogonal
polynomials with respect to some indefinite inner product; see [15], [7]. The combina-
tion of such a process and the technique using partial pivoting for forming the
approximate solution of Algorithm 4 can again be combined to yield a more robust
algorithm.

5. Practical considerations.
5.1. General comments. As mentioned in the introduction, one attractive feature

of DIOM (k) is its ability to deal with symmetric indefinite systems and nonsymmetric
systems. A comparison with SYMMLQ would indeed show that DIOM (2) requires
one more vector of storage than SYMMLQ, while computationally each step of
DIOM (2) requires 7N multiplications against 9N for SYMMLQ (see Table 2.) Note
that according to the comments following Algorithm 4, each step of DIOM (k) would
cost (3k +2)N, which for k 2 gives 8N operations instead of the 7N claimed.
However, because of the symmetry of the problem, we save one inner product in the
formation of/)i+1, which explains the result.

There exist other methods which are also less expensive than SYMMLQ. For
example Chandra’s SYMMBK version [2] based upon the use of 2 2 pivots in the
LU factorization of H, also requires 7N multiplications per step. However, the Bunch
and Kaufman factorization is still potentially unstable while the LU factorization with
partial pivoting is always stable for tridiagonal matrices, as is well known [19, p. 219].
Table 2 shows the work and storage required for several methods dealing with
symmetric indefinite problems, including SYMMLQ [10], SYMMBK [2], MCR [2],
Stoer and Freund’s method 17]. The indirect Lanczos method, equivalent to IOM (2),
was described by Parlett [11], who observed that it can be competitive in some
environments where the I/O can be realized inexpensively. See also [16].

TABLE 2
Work and storage ofsome methodsfor solving symmetric

indefinite systems.

Method

DIOM (2)
SYMMLQ
SYMMBK
MCR
Stoer & Freund
Parlett (*)

Mult./step

7N
9N
7N

7N-9N
8N
6N

Storage

6N
5N
6N
7N
7N
3N

*This method uses secondary storage. The table
reports core memory requirement only.

These methods deal with symmetric problems, but most of them can easily be
generalized to nonsymmetric problems, although this does not seem to have been
considered so far in the literature.

Consider the four classes of problems enumerated in the introduction. For the
class of symmetric positive definite linear systems, there are many effective methods.
It seems that a common way of dealing with symmetric indefinite problems is the
SYMMLQ algorithm. The third class of problems, dealing with nonsymmetric systems
with indefinite symmetric parts, can be effectively handled by several methods including
ORTHOMIN (k), IOM (k), DIOM (k), Chebyshev iteration, Concus, Golub and
Widlund’s generalized conjugate gradient method, etc.
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The last class of problems, i.e. the class of nonpositive real problems, is more
difficult. Our algorithm DIOM (k) can be applied especially in the cases where the
nonsymmetric part (A -A r)/2 is small compared with the symmetric part. When this
is not the case, we observe that in order for the process to converge, the parameter
k must be quite large, thus rendering the method uneconomical. The process may
diverge or be very slow if k is too small.

These observations suggest that the Krylov subspace methods may not be suitable
for nonpositive real systems with large nonsymmetric parts or such that the origin is
well inside their spectra. In fact since k must be large (e.g. k > 9) for convergence to
hold, one might find it preferable to solve the normal equations using e.g. the conjugate
gradient method. Moreover, note that in the extreme case where A is unitary, the
eigenvalues are on the unit circle, and, as suggested by the theory [14], the convergence
of Krylov subspace methods can become very slow. However, the normal equations
are clearly trivial to solve since ArA is the identity matrix. This suggests that the
choice between solving the normal equations and using a Krylov subspace method is
not always an easy one to make.

5.2. Heuristics. In order to enhance the efficiency of a code based upon IOM (k)
or DIOM (k), a number of heuristics are needed. The most important of them are
described below.

Dynamic choice of the parameter k. In an efficient implementation of IOM (k),
or DIOM (k), we must include a process which chooses automatically the parameter
k. Indeed, the user does not in general have any idea of a reasonable choice for k.
The possibility of choosing k in a dynamical way is based on the fact that k can be
reduced during the algorithm without changing the orthogonality relation of Proposi-
tion 5. Note, however, that k cannot be reincreased. What this means is that we can
start the algorithm with some large k (in our code k starts with the value 9) and then
reduce it progressively according to some criterion. The criterion that we use is related
to the fact that when the matrix is almost symmetric (or skew-symmetric), then the
elements hi,j Of the/’th column of H,, with </"- 2 are small, and can therefore be
neglected. This suggests that at a given step/" we should subtract from k the number
of small elements h0, where is between/"- 2 and/"- k + 1. Specifically we redefine
k from

k := k -max /x s.t. Y. Ihii[ < tOll Ihii
=j-k+ =]-k +

where tOll is some tolerance parameter (In our code tOll was set to 1.e-03.). The
formula above should be modified so as not to yield k less than 2.

With this empirical formula, symmetry or near-symmetry is easily detected, and
as a consequence the computational work may be significantly reduced.

Restarting. In IOM (k), the version using secondary storage, it is a necessity to
restart the algorithm because of storage. It is also often more effective to include a
restarting strategy even for the direct version DIOM (k). Such a strategy would restart
the algorithm whenever the convergence becomes unsatisfactory. More precisely the
following heuristics have been found to be effective"

If >to12 then restart
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where p is some fixed integer (e.g. 5 as in our code), and to12 is some positive tolerance
parameter. The above criterion for restarting has the following interpretation: restart
if the residual norms do not decrease by a sufficient amount in p steps. For IOM (k)
we can restart with the vector x._p which has a smaller residual, but this cannot be
done for DIOM (k) unless we save the vector xj_p. The restarting strategy was found
to be quite effective for some difficult cases (see 6.3), but does not change much
when convergence is fast enough.

Preconditioning. The efficiency of the incomplete orthogonalization methods can
be improved by using preconditioning techniques. One difficulty, however, is that
most of the known preconditions assume (directly or indirectly) that (A +AT)/2 is
positive definite. A very simple remedy is to add c1 to the original matrix, where c
is a scalar such that B =A +c! is positive real, and use as preconditioning the
preconditioning associated with B. This can be effective in case a is not too large.

6. Numerical experiments. All the numerical experiments have been performed
on a DEC-20 computer. Single precision (unit roundoff 3.7 10-9) is used in the
first experiment while double precision (unit roundoff 10-9) is used elsewhere.

6.1. Symmetric indefinite problems. We begin with an experiment illustrating
the behaviors of DIOM (2), SYMMLQ and the regular conjugate gradient (CG)
method on a symmetric indefinite problem. Note that the regular conjugate gradient
method may break down if A is indefinite, and is therefore not recommended in
general for indefinite problems. It is applied here for the sole purpose of illustration.
We choose to take an example from [10], in which the matrix A is of the form
A =B2-II, where B is the tridiagonal matrix with typical nonzero row elements
(-1, 2,-1) and /z x/. Note that /z is not an eigenvalue of A, and that it is not
near either extremity of the spectrum. In order to demonstrate the fact that IOM (2)
and SYMMLQ have similar behavior on this example, we use single precision arith-
metic. The problem solved is Ax b, where b Ae, e (1, 1, 1,. ., 1). The initial
vector is a random vector, the same for the three methods DIOM (2), SYMMLQ,
CG. Figure 6.1 compares the behaviors of the three methods for the steps m 38,
39,..., 65. The first 37 steps yield almost identical residual norms for the three
algorithms and have not been reproduced.

The figure shows that both SYMMLQ and DIOM (2) are superior to the regular
conjugate gradient ,method, but SYMMLQ is not superior to DIOM (2). In fact
DIOM (2) is slightly better on this example through the difference is not significant.
More significant is the difference obtained when a less efficient way of generating the
Lanczos vectors vi is utilized. Indeed, in our first experiments with the above example
we found DIOM (2) significantly more accurate than SYMMLQ. A careful analysis
showed that the reason for this superiority was due to the fact that the original code
of SYMMLQ was not using the best formula for generating the Lanczos vectors. As
mentioned in 12], it is more accurate to generate the Lanczos vectors by the recurrence

q := Avj 13v,

ci := (q, vi),

q := q oljt)j,

Vj+I :--
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rather than by

q := Avi,

% := (q, vi),

q := q civ -/3ivi,

/)1+1 :’--
(i+l :=

DIBM [2 SYMML RND C.G.
5. OE+OI

5. OE+O0

o: 5. OE-CrS

5. OE-04

5.0-05

5.0E-06

5. OE-07
38. O0 45. I:)13 52. O0 .O0 66.013

NUMBER IZlF STEPS

DIIM2}
+ SYMML0
3 CG

FIG. 6.1. Comparison of DIOM (2), SYMMLQ, CG on a symmetric indefinite problem ofdimension 50.

Remarks. 1. The plot of Fig. 6.1 reports the numerical results corresponding to
the first (best) of the above formulations for both SYMMLQ and DIOM (2).

2. Similar observations are made when double precision is used.
3. The residual norms in Fig. 6.1 are obtained for DIOM (2) by the formula (13)

and for SYMMLQ by an equivalent formula. Both formulas have been checked to
produce accurate result in the final step. Note that after step 65, these formulas
deteriorate slowly as the maximum possible accuracy given the norm of A and the
unit roundoff is being reached, so the estimates of the residual norms become mean-
ingless.

All this demonstrates the important fact mentioned earlier that the main source
of error lies in the computation of the vi’s rather than in the formation of the
approximate solution by formulas (11) and (12).
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6.2. Nonsymmetric problems with positive real matrices. In this test we compare
the direct version DIOM (k) with the indirect version IOM (k) on the following model
problem:

B -I
-I B

with B

4

t2 4

tl

t2 4

and dim(A)=N=200, dim(B)=n =10, t1=-1+6, t2=-1-6, where 6 is some
parameter. The above example originates from the centered difference discretization
of the operator -A +cO/Ox, where c is a constant.

The performances of IOM (4) and DIOM (4) have been compared on the above
example with 8 0.5, b Ae, e (1, 1,. ., 1)r. This test was performed in double
precision. For simplicity none of the heuristics has been used, i.e. the algorithm is not
restarted and k is constantly equal to 4. The process is stopped as soon as the residual
is less than 10-5. This has required 57 steps. As expected, the residual norms and the
final iterates produced by both algorithms are identical. The run times on the DEC-20
are approximately as follows"

IOM (4)" 5.60 sec, DIOM (4)" 3.60 sec.

Note that IOM (4) requires 5N vectors of core memory storage while DIOM (4)
requires 9N. It is interesting to decompose the run times for IOM (4) into I/O time
and computing time. The time for writing the vectors vi’s into disk memory and reading
them back when forming the solution is about 2.50 sec, i.e. 47% of the overall CPU
time. The I/O time can be further decomposed into write time 1.39 sec and read
time 0.91 sec. This distribution is obviously very much machine dependent, and the
comparison may change completely for other architectures. It may even happen that
IOM becomes faster than DIOM in cases where the I/O time can be masked by
performing much of the computation and the I/O in parallel.

6.3. Indefinite and nonsymmetric problems. In this example we test DIOM (k)
on the matrix B (A-/I), where A is defined as in the previous experiment, with
8 set again to 0.5 and where t is chosen equal to 0.25. This is a nonsymmetric and
indefinite problem.

The right-hand side is defined as previously, and the initial vector is again a
random vector with an initial residual norm of 19.08 The process is stopped as
soon as the residual norm is below 10-5. A straightforward application of DIOM (4),
with a fixed k and no restarting, converged in 89 steps. Then we used a preconditioning
matrix M the incomplete Choleski factorization associated with the Laplace operator,
i.e. the incomplete Choleski factorization of (A +A r)/2. The system M- Ax M-b
was then solved by a call to DIOM (2). This preconditioned DIOM produced a
generalized residual vector M-lr,, of norm less than 10.5 in 31 steps, thus significantly
improving the previous performance. Note that, surprisingly, DIOM (k) with k > 2
did not perform better than with k 2 since it took 41 steps for DIOM (3) to converge
and 48 steps for DIOM (4).
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As/ increases, the problem becomes more difficult to solve. When tz 0.5, for
example, DIOM (k) either diverges (e.g.. for k 2) or showed signs of very slow
convergence. Using the same preconditioning as above, IOM (7) converged in 125
steps. The restarting strategy used was the one described in 5.2 with tol 2 1. The
criterion for restarting was tested every p 5 steps and, at a minimum, 10 steps were
taken at each iteration. With this strategy the process was restarted at steps 20, 30,
70, and 110. Note that we took tol 1 0, which means that k was constantly equal
to 7.

When/x becomes even larger, the above preconditioning does not improve the
convergence, which can become very poor. It seems more appropriate to use the
conjugate gradient method applied to the normal equations in those cases.

Acknowledgments. The mathematical equivalence between ORTHORES (k)
and IOM (k) ( 3.5) was established after a suggestive question was raised by one of
the referees. The author is indebted to both referees for their instructive and helpful
comments.
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AN EFFICIENT ALGORITHM FOR THE REGULARIZATION OF
ILL-CONDITIONED LEAST SQUARES PROBLEMS WITH

TRIANGULAR TOEPLITZ MATRIX*

LARS ELDtNt

Abstract. Ill-conditioned least squares problems, where the matrix is triangular and has Toeplitz
structure, arise when certain Volterra integral equations with stationary kernel are discretized. Tikhonov-
Phillips regularization can be used to stabilize the solution. An efficient algorithm for computing regularized
solutions of such problems is described. The number of arithmetic operations required is O(n:), where n
is the dimension of the matrix. A numerical example is given, where an inverse heat conduction problem
is solved.

Key words, least squares, ill-conditioned, triangular, Toeplitz, regularization, inverse problem, heat
conduction

1. Introduction. Consider the linear system of equations

(1.1) Kf =g,

where K is an n x n upper triangular matrix with Toeplitz structure, i.e.

kl k2 k3 k,_l kn
k k2 k3 k,_

(1.2) K= ".. ".. "..
"kl "k2 "k3

0 kl k2

Such systems arise when convolution type Volterra integral equations of the first kind,

(1.3) k(t-s)[(s) ds g(t), 0_-<t _-< To,

are discretized; see [9], [13]. (Actually the discretization of (1.3) leads to a lower
triangular system of equations [9], [13], but this can be put in upper triangular form
simply by reordering the unknowns; it turns out that our algorithm is more conveniently
described if we assume that the matrix is upper triangular.)

In many cases the linear system (1.1) arising from the discretization of (1.3) is
relatively well conditioned; see [9], [2, p. 896tt.]. Then (1.1) can be solved simply by
backward substitution.

However, there are important applications, where the discrete system (1.1) is so
ill conditioned that a straightforward solution is impossible. This happens e.g. when
the kernel function k(t) in (1.3) is smooth and k(0) is equal to zero, or is very small.
Examples of such problems are inverse heat transfer problems [7] [16, p. 88], and
deconvolution of time series [13]. In this case it is not meaningful to try to satisfy
(1.1) exactly, because small perturbations of the right-hand side can cause very large
perturbations of the solution. Note that (1.1) is equivalent to the least squares problem

min Ilgf- gll,

* Received by the editors March 10, 1982, and in revised form November 26, 1982. This work was
supported by the Swedish Natural Science Research Council (NFR).

f Department of Mathematics, University of Link6ping, S-581 83 Link6ping, Sweden.
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where the norm is the Euclidean vector norm. To alleviate ill-conditioning it is necessary
to stabilize the problem. This can be done using the regularization method of Tikhonov
16], Phillips 14]. Then we solve

(1.4) min {IIKZ g 2 +

where L is a discretization of some differentiation operator, e.g.

1 -1
1 -1 0

(1.5) L 1/h 1. -1. L is (n 1) n,

"1

and h is a steplength parameter The value of the regularization parameter lz controls
the degree of smoothness of the solution.

For a discussion of regularization and related methods we refer to [16], [11],
[12]. Regularization in connection with Volterra equations of the first kind is con-
sidered in [15]. Surveys on numerical algorithms are given in [3], [17].

In 2 of this paper we develop an efficient algorithm for solving (1.4), in the case
when both K and L are upper triangular Toeplitz matrices. Note that discretizations
of differentiation operators often lead to Toeplitz matrices; see (1.5). The algorithm
is based on the computation of a QR-decomposition of the matrix

using plane rotations. Therefore the algorithm has good stability properties.
The T0eplitz structure of the matrices is exploited so that the algorithm requires

O(n 2) operations. The implementation of the algorithm is briefly discussed in 3.
There we also compare it to alternative algorithms for problems with Toeplitz structure
[10], [5], [13], [4]. The results of timing experiments are given, verifying the O(n 2)
behavior.

In 4 we apply the new algorithm to an inverse heat conduction problem.

2. Description of the algorithm. The regularized least squares problem (1.4) is
equivalent to

(2.1) min

which can be solved as follows.
Determine an orthogonal matrix Q, such that

T( K ) (Ko) (go)(2.2) Q g =Or

tzL g2
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where K, is upper triangular. The solution of (2.1) can now be obtained by solving

(2.3) K,f =l.

This is the QR-decomposition method [8].
In our algorithm the matrix Q is a product of plane rotations. It is not necessary

to form Q explicitly.
We now describe how the decomposition (2.2) can be computed. The algorithm

is conveniently developed in terms of a small example (n 5). Consider the augmented
matrix

kl kz k3 k4 k5
k k2 k3 k4

ka k2 k3
ka k2

kl
ll 12 13

11 12 13
ll 12

gl

g2

g3

g4

g5

15 0

14 0

131 0

1211 0

l 0

where li is equal to/x times a component of L.
Usually the matrix L is a band matrix, but it turns out not to be possible to

exploit the band structure (cf. 3). For the description of the algorithm we therefore
assume that L is a full upper triangular matrix. It is not necessary to assume that L
is a square matrix (cf. (1.5.)). For definiteness we here make that assumption.

In the first step of the algorithm we zero all diagonal elements in L. This is done
by n rotations in the planes (1, n + 1), (2, n + 2), , (n, 2n). Because of the Toeplitz
structure all rotations involve the same angle of rotation. The result of these transfor-
mations is

k[ k; k;
k[ k’2

g-
g
g
g

k g
l g
1 g-
l g

0

Note that the Toeplitz structure is not destroyed. However, the zeros in the lower
part of the right-hand side are filled in. Obviously only 4n elements need be computed,
namely the elements in rows 1 and n + 1, and the right-hand side.
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The first superdiagonal of the (transformed) L matrix is zeroed in the second
step. We apply n 1 rotations in the planes (2, n + 1), (3, n + 2), ., (n, 2n 1). Again
the same angle of rotation can be used in all transformations. The result is

-k’ k. k’3 k’ k’’,g’-
k k’ k k
k k"2 k
k k
k

0 13
0 0 13

0 0
0

0 0
0

g
g
g
g5

g
g
g
g
go_

In this step 4(n 1) elements in the argumented matrix must be computed. Note that
rows 2 to n of the upper block, and the whole lower block, still have Toeplitz structure.
After n steps of this algorithm we have computed the matrix K, and the right-hand
side 1 in the decomposition (2.2).

It is now seen that in step of the algorithm, 4(n- + 1) matrix elements must
be computed. If we use standard plane (Givens) rotations each transformed element
requires two multiplications to be performed. Therefore the total count is

2. 4(n -i + 1)4n 2

i=1

multiplications. In addition to that approximately n2/2 operations are needed for
solving (2.3).

The algorithm can be modified to handle the case where K and L are almost
triangular. Assume, e.g., that K and L are upper Hessenberg matrices. This structure
may arise when we discretize (1.3) using piecewise linear polynomials and collocation
on an equidistant grid. Then we can partition

(2.4)
tzL Z"

/zL1 h2J

where K1 and L are upper triangular Toeplitz matrices of dimension n 1, ci, hi,
1, 2, are (n 1)-vectors, and tr and z are scalars.

Using the above algorithm we can transform (2.4) into

rK

T cr

Then by 3n 2 plane rotations (or 2n 2 plane rotations and a Householder transfor-
mation) we can put all elements below the main diagonal equal to zero. Thus the
total operation count is O(n2).
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3. Implementation and efficiency considerations. The algorithm developed in 2
needs 4n memory locations for storing the right-hand side and one row in K and L
respectively. Since K, does not have Toeplitz structure its n (n + 1)/2 elements must
also be stored, preferably in a one-dimensional array. From the derivation of the
algorithm we see that once a row of K,, say the ith row, has been computed, it is not
needed again until the back substitution, when/’ is to be computed. This means that
the algorithm will perform well on a computer with virtual storage, since no unnecessary
page faults will occur (note that this is usually not true if K is stored in a two-
dimensional Fortran array).

Further, the algorithm can be efficiently implemented on a computer with limited
fast memory, if it has a direct access auxiliary store. Once a row of K, has been
computed it can be written out on auxiliary store. Only 4n memory locations are
needed in fast memory for storing matrix elements and vectors. This may be important
in applications, where the problems are very large; see [13], where a time series
problem with n 512 is solved.

Other algorithms have been suggested for ill-conditioned problems with Toeplitz
structure. In [5] a method based on eigenvector expansion is described. The operation
count is O(n 3). An algorithm for solving the normal equations

2LTL f KT(KrK + tz g,

where K and L have Toeplitz structure, is given in [10]. The number of multiplications
is Cn 2, where C is fairly large: approximately 20 (S. Ljung, private communication).
It may be possible to reduce the value of C somewhat, by utilizing the triangular
structure. Thus our algorithm is faster. Further, it has the advantage that it is based
on orthogonal transformations.

The algorithms of O’Leary [13] and BjiSrck [4] are both based on Lanczos
bidiagonalization. In 13] it is shown how they can be adapted for the efficient solution
of problems with Toeplitz structure. If n is a power of two, then the number of
multiplications is approximately

1 lnk+ 4nk log2 n,

where k denotes the number of Lanczos steps (k is assumed to be relatively small
compared to n).

To compare the operation count for these algorithms to that of ours we assume
that k an and solve the equation

(3.1) c (lln2+4n 2 log2 n) 4.5n 2

for a couple of values of a. The results are given in Table 3.1. The table shows that
if k is taken as large as 0.15n then our algorithm is faster for all n larger than 27.
On the other hand, if k is equal to 0. ln, then the Lanczos based algorithms are faster
for most problems that can be solved without using auxiliary storage.

TABLE 3.1
Approximate solution of (3.1) for different values of

0.05 0.1 0.15

Sol. of (3.1) 8.8" 105 362 27
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It is seen that the comparison depends very critically on k (the number of Lanczos
steps). The problem of choosing a good value of k is nontrivial; see [13], [4].

Note that the above arguments on efficiency are based on operation counts only.
A fair comparison should also take into account storage, accuracy, ease of use, and
actual timing experiments.

To verify the O(n 2) behavior of our algorithm we ran a number of tests with
different values of n. The program was written in Fortran and run on a DEC-10
computer. Only the timing of the in-core version was recorded. The results are given
in Table 3.2.

In some cases bothK andL have band structure. It is not possible to modify the new
algorithm to take advantage of band structure to obtain an O(n) operation count. The
reason is that even if only one of the identical rotations need be applied to the matrix
elements, all rotations must be applied to the right-hand side components.

TABLE 3.2
CPU-time in seconds for our algorithm. * The average over 10

runs; ** The average over 5 runs.

n 25 50 100

CPU-time 0.013" 0.062* 0.249**

Algorithms for problems with band structure are given in [6] (this issue, pp.
237-254). The number of operations is O(n).

4. A numerical example. To illustrate the use of the new algorithm we apply it
to an inverse heat conduction problem. This application will be described in more
detail in [7].

Consider the parabolic equation

u=ux,, O-<_x-<l, O<_-t<-l,

u(O, t)- g(t), O-<_t-<_l,

ux(O, t)=O, O<_-t-<l,

u(x, O) O, O_-<x_-<l,

u (1, t) f(t), 0_-< _-< 1, unknown.

This Cauchy problem for a parabolic equation is ill posed. It can be formulated as a
Volterra integral equation of the first kind,

(4.1a) k(t-s)f(s) ds g(t), O<=t <- 1,

where

(4.1b) k(t) "rr (-1)"(2n + 1)exp -(2n + 1)2"rr----t
n=O
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(4.1) was discretized using the midpoint method [9]. With a prescribed solution f(t)
we computed the data function g(t) by solving the well-posed problem

ut Kuxx, 0<-x =< 1,

ux(0, t) 0, 0=<t-<l,

u(1, t) f(t), 0-<t<-l.

u(x, 0)=0, 0_-<x _-< 1,

O__<t_-<l,

using the Crank-Nicolson method. The steplengths in time and in space were both
taken equal to 0.02. The dimension of K was equal to 50. We used K 0.5.

In Fig. 4.1 the function k (t) is plotted.

0.2 0.4 0.6 0.8 e.O

FIG. 4.1. The function k(t) given by (4.1b). K =0.5.

The discretized problem was solved using regularization with L as in (1.5). The
results are plotted in Fig. 4.2.

"|

0,2 0.4 0.6 0.8!0.0 0.4 0

(a) tz 10-6 (b) =3.10-4

FIG. 4.2. The numerical solution of (4.1) is illustrated. Correct solution f(t) (solid), approximate solution
(dashed), and data function g(t) (dotted). In (b) the data were perturbed, 116g[l/llgll= 6.3.10-3.
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In Fig. 4.2(b) the data were perturbed:

i g +
where the r/ were pseudorandom numbers, taken from a normal distribution with
mean zero and standard deviation equal to 10-3.
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AN ALGORITHM FOR THE REGULARIZATION OF
ILL-CONDITIONED, BANDED LEAST SQUARES PROBLEMS*

LARS ELDINf

Abstract. An efficient and stable algorithm for solving least squares problems

rnn {ILK/-gll + 211Lfl12},

where the matrix K is ill conditioned, and K and L have band structure, is studied. The algorithm, which
is a variant of an algorithm given by George and Heath, is based on QR-decomposition by plane rotations.
The amount of work depends linearly on the dimension. It is shown that the algorithm does not introduce
any unnecessary fill-in. The efficiency and stability of the new algorithm are compared to those of the
algorithm based on normal equations.

The algorithm can also be used for computing smoothing splines.

Key words, least squares, regularization, band structure, QR-decomposition, plane rotations, ill-
conditioned, numerical stability, fill-in, smoothing spline

1. Introduction. Extremely ill-conditioned least squares problems,

(1.1) min IIg- gI1=,

where K is an m x n matrix, m => n, arise when Fredholm integral equations of the
first kind,

(1.2) k(x, y)f(y) dy g(x), c -x

with smooth kernel k, are discretized (see e.g. [17, pp. 175-188]). If

k(x, y)-O for

then the discretization can be performed so that the matrix K has band structure.
For the preliminary discussion it is sutticient to define a matrix to have band structure
if all elements in the upper right and the lower left corners are zero. Note that we
allow m > n. Such problems arise e.g. in image restoration; see [2], [10].

Usually K is so ill conditioned that the straightforward solution of (1.1) using
any standard method will give a completely meaningless result. Typically such a
solution oscillates very rapidly. The ill-conditioning can be alleviated, and the solution
can be forced to be smooth, if (1.1) is replaced by

(1.3) min {}lKf gll +

where L is a p x n matrix, which is usually chosen equal to the identity matrix or
some discretization of a differentiation operator. Typically L is a band matrix with
small band width; see [15], [9].

This is the regularization method of Tikhonov and Phillips [20], [18]. The degree
of smoothness of the solution can be controlled by choosing a suitable value of the
regularization parameter ix. In many cases a good value in some sense (see [17, p.
182]) is not known a priori, and it is desirable to solve (1.3) for several different ix.
Usually ix is chosen rather small.

* Received by the editors October 28, 1981, and in final revised form January 3, 1983.

" Department of Mathematics, University of LinkSping, S-581 83 LinkSping, Sweden.
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A related way of dealing with the ill-conditioning is to impose a bound on the
solution of (1.1) and consider the least squares problem with a quadratic constraint

(1.4) min I[Kf- gl122, /3 {f: I[Lfl[2 <- o }.

Using the method of Lagrange multipliers, (1.4) can be reduced to solving iteratively
a nonlinear equation, where in each iteration a least squares problem (1.3) must be
solved; see [9], [1 1].

Banded least squares problems of the type (1.3) also occur in connection with
smoothing splines [6].

Algorithms for the solution of (1.3) in the case when K is a dense matrix have
been given by several authors; see e.g. [9], [11], [14], [15], [4], [21], and the papers
cited there. George and Heath [12] have recently developed a general algorithm for
the solution of sparse least squares problems using Givens (plane) rotations. In this
paper we study how their algorithm can be used for the efficient solution of (1.3),
where we have band structure.

The algorithm, which we shall call the G2B algorithm (Givens rotations on a
dotble band matrix), is described in 2. We show that the number of operations
needed for the solution of (1.3) is approximately 2n(w+ w22), where wl and w2 are
the band widths of K and L respectively. In [12] a "suboptimal heuristic" row ordering
is proposed. We show that when applied to our problem this ordering is indeed optimal
in the sense that no unnecessary fill-in is introduced.

An alternative to the G2B algorithm for solving (1.3) is to form the normal
equations and solve these by Cholesky decomposition. The band structure can easily
be utilized, and, in fact, the normal equations algorithm is faster. However, the G2B
algorithm has better stability properties. In 3 we discuss the drawbacks of the normal
equation algorithm and compare it to the G2B algorithm.

In 4 we present some computer tests where we compare the efficiency of the
G2B algorithm and the normal equation method. We also give a numerical example,
which shows that the G2B algorithm has much better stability properties.

2. Description of the G2B algorithm. Since our algorithm is based on a QR-
decomposition, it is natural to write (1.3) in the form

(2.1) m}n

This can be reduced as follows:
Determine an orthogonal matrix Q1 such that

o1Tg=
g2 m-n

where R is an upper triangular band matrix. We now assume that r0 0, if f > b 1,

i.e. the band width of R is equal to w b + 1.
The decomposition (2.2) can be computed by a sequence of plane rotations or

Householder transformations. A detailed description of an algorithm for computing
the QR-decomposition of a band matrix is given in [16, p. 212]. More generally
(2.2) can be computed efficiently using the algorithm in [12]. It is not necessary to
form O1 explicitly or store the transformations that make up Q.
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In many cases the matrix L is originally an upper triangular band matrix. If not
so, it can be reduced to upper triangular form by an orthogonal transformation

(2.3) OL=RE,
where R2 is an upper triangular band matrix with band width w2 bE + 1; for simplicity
we assume that L (and Ra) has full row rank, i.e. rank (L)=p. In the following we
also assume that wE -< w 1. This is no restriction, as will be seen below.

Since the Euclidean norm is invariant under orthogonal transformations, we may
introduce the orthogonal matrix

0
0

of dimension m +p in (2.1). Using (2.2) and (2.3) we now see that (2.1) is equivalent
to

(2.4) m)n

Starting out from (2.4) we can solve (2.1) efficiently for different values of . By a
sequence of plane rotations, the matrix in (2.4) is reduced to upper triangular form

Q
\/xRE

The solution of (2.1) is now computed from

(2.6) Ruf ff, 1.

In the computation of (2.5) we use a variant of the algorithm of George and Heath [12].
We first note that the algorithm given in [12] is designed for the solution of very

general sparse least squares problems. Thus the determination of a data structure for
storing the upper triangular matrix corresponding to R, is an important part of the
algorithm. In our problem this part is trivial" it is sufficient to note that the matrix
R, in (2.5) has the same band width as R 1.

We then have only one remaining step of the algorithm as formulated in [12, p.
72]:

[
Compute R, by processing the rows of / } one by one, using Givens rotations.

/zR2\ /

The order in which the rows are processed is very critical for the efficiency of the
algorithm as reported in [12]. George and Heath suggest the following "suboptimal
heuristic" row ordering [12, p. 79]:

Sort the rows into increasing order with respect to the maximum column subscript.

These two rules form the basis of the G2B algorithm, which we shall now describe
in some more detail. First we illustrate the algorithm using a small example; then we
discuss the general case and make an operation count. Finally we show that the above
row ordering is optimal for our problem.

In our description of the algorithm we implicitly assume that all transformations
are also applied to the right-hand side; cf. [12].
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2.1. A small example. Below we describe the G2B algorithm for computing (2.5)
in terms of a small example with n 9, bl 4, p 7, and b2 2"

(2.7)
/xR2

-X X

X

X X X

X X X X

X X X X X

X X X X x
X X X X X

X X X X

X X X

X X

X

X

X X

X X

X

X

X X

X X

X

X

X x

We denote the nonzero elements by x. An element annihilated in the present
transformation is represented by (C), and new nonzero elements by +.

Since we shall process the rows in the order determined by their maximum column
subscript (for nonzero elements), we see that we can immediately move the first three
rows from Ra to R, without doing any computations"

-X

We then have to process the first row in R 1:

X X X

X X X

X X

X X X X
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By a sequence of rotations in the (1, 4), (2, 4), and (3, 4) planes we can annihilate the
first three elements in the fourth row of R,"

X x x + +
x x x +

X X X

0 0 0 x x

Now we shall process the fourth row of R2 and the second row of R 1"

X X X X

X X X X

X X X

X X

X X

X X X X

By a sequence of rotations in the (4, 5), (2, 6), (3, 6), (4, 6), and (5, 6) planes we can
now zero five elements in rows 5 and 6 of R,. The result is

X X X X

X X X X

X X X

X -I-

0 x x
0 0 0 0 x

Note that no more fill-in is created in the first row.
In the next step we shall process the fifth row of R2 and the third row of R 1.

x X

X

X X X

X X X X

X X X X

X X X

X X

X

X X

X X X X
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After we have zeroed two elements of the seventh row we have the picture
X X x X X

X x
X X

X X

X

X X

X

X X

X

X

X +
X +
0 x
x x

We now see that all the elements in the eighth row can be annihilated. The result is

X X

x X

X X

x X

X

0 0 0

X X

X X

X

(C) O_

It is now obvious how the algorithm proceeds. In every step (apart from the last few)
two rows are processed’ one makes up a new row in R,, and one is completely
annihilated.

The last few steps are somewhat different, mainly because there, no more fill-in
is created, and all rows processed are completely annihilated.

2.2. The general case. Here we shall briefly consider the general case and count
the number of rotations and operations in the G2B algorithm. From the preceding
discussion it is now apparent that before we have performed the rotations in a step
of the algorithm, the problem has the structure

(2.8)

W1.
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The shorter row at the bottom comes from R2 and has W2 nonzero elements. The
longer row comes from Ra and has wa nonzero elements. Using plane rotations we
annihilate all elements but one in the shorter row, and all elements in the longer row
in (2.8). Thus a typical step involves w + w2-1 rotations. At the end of a step we
have the picture

The first and last few steps of the algorithm are somewhat different. For the operation
count we can ignore these special cases, if we assume that w and w2 are small
compared to n and p.

We shall not make a detailed operation count, but shall show that the number
of multiplications is O(n (w / w2)) and ignore lower order terms. This may be inaccur-
ate if w and w2 are very small. In that case the work for setting up a rotation will
be significant, and the operation count itself may be dubious. Also, we shall assume
that standard Givens rotations are used, involving two multiplications per element
changed; cf. [12, p. 78]. We emphasize that operation counts should not be taken as
the only measure of efficiency, but should be supplemented by timing experiments.

When we zero W2--1 (-" b2) elements in the shorter row in (2.8) we use a b2 x bE
upper triangular submatrix:

b2 b2 + 1

It is easily seen that the number of multiplications is approximately 2w22. By an
analogous argument we find that the number of multiplications needed for annihilating
the longer bottom row in (2.8) is 2w approximately.

The whole algorithm consists of n steps, and thus we obtain the following
approximate total counts’

n(wl / w2-1) rotations,

and
2n (wZ + w) multiplications.
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The G2B algorithm can easily be generalized for solving problems involving three
band matrices (cf. [20])

min 2 R2 f- g2

3 R3 g3
2

where R1, R2 and R3 are upper triangular band matrices with band widths Wl,

and w3 respectively. The number of rotations is then approximately
rl(Wl + WE + W3--1).

Lawson and Hanson [16, pp. 212-219] (see also [19]) give an algorithm for the
solution of banded least squares problems using Householder transformations. They
also discuss the solution of (2.1), but they do not describe the row ordering in detail.

An algorithm given in [9] can be considered as a special case of the G2B algorithm.

2.3. The G2B algorithm creates no unnecessary fill-in. We here show that the
G2B algorithm is optimal in the sense that it does not introduce any additional nonzero
elements, which must be annihilated in subsequent steps. Further, all other row
orderings (except some, which differ only trivially from the G2B ordering) lead to the
creation of fill-in. The column ordering is assumed to be fixed (to keep the band width
of R, equal to w 1).

We only consider the case when the rows are processed one by one as described
earlier. This restriction is made for definiteness, since it is possible to formulate
algorithms which look different (e.g. using implicit row orderings), but which are
equivalent to a row-oriented algorithm as far as fill-in is concerned. It is easily seen
that such a row-oriented algorithm is equivalent to a column-oriented algorithm,
which can be formulated as follows"

Write out the matrix with the rows in the order that they are to be processed.
Annihilate the elements below the main diagonal, column by column, in the order
of increasing column subscripts. In column j, annihilate the elements in the order
of increasing row subscripts, using the (/’,/’) element as pivot element.

The column-oriented version of the G2B algorithms applied to the example in 2.1
starts out from the matrix

X

X X

X X

X X

X X

X

X X

X X

-X X X

X X

X

X X X

X X

X

X

X X

X X

X X

X X

X X

X X

X
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After six columns have been processed we have the picture

X X X X X

X X X X

X X X

X X

X

X

X X

X X X

X X X X

X X X X

X

X

X X

X X

X X X

X X X

X X X

X X X

X X

X

We shall now annihilate the elements in the seventh column using the seventh row
as pivot row. Due to our row ordering, fill-in will be created in the seventh row only,
above the main diagonal. Also, any nontrivial reordering of the rows will lead to the
introduction of fill-in below the main diagonal. (An interchange of rows 9 and 10 is
an example of a trivial reordering.) If we examine the first steps of the G2B algorithm
we see that some rows can be reordered there without producing fill-in.

3. The normal equations and G2B algorithms---efficiency and numerical stabil-
ity. One obvious alternative to the G2B algorithm described in 2 is to form the
normal equations of (2.1)

(3.1) (KTK + Ix2LTL)f KTg.

The matrix of coefficients is symmetric and positive definite, and therefore (3.1) can
be solved by Cholesky decomposition. It is easily seen that the upper triangular matrix
R, in (2.5) is the Cholesky factor

T 2LTL.R,R, KTK +t
This means that the storage requirements are the same for both methods.

The band Cholesky algorithm is described in [8]. The number of operations for
solving (3.1) is approximately nw/2, so that this algorithm is always faster than the
G2B algorithm. Note that if (3.1) is to be solved for several different values of the
regularization parameter, KTK need only be formed once.

However, the algorithm based on the normal equations has several important
drawbacks. Firstly, unless the (3.1) is formed and solved in double precision, numerical
information is lost due to rounding errors; see e.g. [13]. Secondly, the condition
number of (3.1) is essentially the square of that of (2.1) [3], and therefore the normal
equation algorithm is much more sensitive to data and rounding errors. This is clearly
seen in the numerical example given in 4.
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Thirdly, if/x is taken very small then it may happen that the additionKrK + 2LTL
cannot be represented in (single precision) computer arithmetic. In that case, instead
of solving (3.1) we effectively solve

K’Kf KTg,

which means that no regularization is applied. The G2B algorithm solves the problem
essentially in the form (2.1) using plane rotations, and provided that the rotations are
computed as in [16] or LINPACK [8], similar problems will not occur until much
smaller values of tz are taken. Note that when the data vector g has errors of very
small magnitude, it is essential to choose tz small; see 4.

For most problems Givens transformations are stable independently of the row
ordering. However, if we are solving a weighted least squares problem with widely
disparate weights, instability may occur in certain cases [5]. Consider the following
example, where w >> 1:

1 1 2
w 0 0

If we annihilate the (2, 1) and (3, 1) elements in that order the transformations are
unstable. If we interchange rows 1 and 3 and then annihilate the (2, 1) and (3, 1) the
transformations are stable.

In the applications we are interested in, the diagonal elements of R1 are much
larger than those in/xR2; cf. 4. If we examine the G2B algorithm, we can see that
in this case the unstable situation will not occur.

4. Numerical tests. Operation counts show that the G2B algorithm is about four
times slower than the normal equation algorithm. Since the G2B algorithm uses plane
rotations, which are applied to relatively few matrix elements, the time for constructing
the rotations may be significant compared to the time for applying the rotations. In
view of this one might suspect that actual timings would be even more in favor of the
normal equation algorithm. It turned out not to be so.

The G2B algorithm was programmed in FORTRAN and run on a DEC-10
computer. It was compared to the subroutine FO4ACF from the NAG library, which
solves positive definite, banded systems. We measured the time to compute the
decomposition (2.5) and solve (2.6). The NAG subroutine solved the normal equations
(3.1).

The system subroutine, which measures CPU time on the DEC-10 computer,
also includes some system overhead in the times reported. Thus timings of different
runs of the same program may differ, especially when the problem is small. To reduce
the.arbitrariness we report mean values of 5-25 runs.

In Table 4.1 we give the timings of the G2B algorithm and the normal equation
algorithm.

The tables show clearly that in both algorithms the amount of work depends
linearly on the dimension n. For the values of Wl that we have used, the timings do
not show a typical O(wf) behavior, probably for the reason explained at the beginning
of this section. A least squares estimate based on the timings of Table 4.1 indicates
that the normal equation algorithm is 3.3-3.4 times faster than the G2B algorithm.
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3
5
9
17

TABLE 4.1
CPU-time in seconds for the two algorithms. L is bidiagonal. The figures are mean values.

(a) The G2B algorithm. (b) The normal equation algorithm.

25 50 100 200

0.013 0.029 0.051 0.10
0.024 0.048 0.097 0.20
0.046 0.11 0.22 0.46
0.099 0.27 0.61 1.3

3
5
9
17

25 50 100 200

0.007 0.007 0.022 0.041
0.009 0.019 0.036 0.072
0.017 0.037 0.075 0.15
0.032 0.085 0.19 0.39

We then solved numerically a problem with the 50 50 matrix

where

0
(K)ij k(0.15, X --Xj)

if Ii-Yl > 8,
otherwise,

4i
xi =-2+51, 1,2, ,50,

1
exp(4.1) k(r, t)

2x/ r
The integral equation (1.2) with kernel function (4.1) is a prototype equation in many
image restoration contexts [1, p. 63], [2], [7]. The condition number of the matrix K
is approximately 8.38.105. K was transformed to upper triangular form by a series
of rotations (which were also applied to the right-hand side). The value of W was
equal to 17.

The solution vector was taken to be f (fl, f2," fn) T, where
fi --f(xi),

f(x)=O.5k(O.l,x + 0.9) + k (0.05, x 0.8).

The right-hand side vector g was computed by multiplying f by K. These computations
were performed in double precision so that g was very accurate.

In Fig. 4.1 we have plotted the solution f and the right-hand side g. Note that g
is a smoothed version of fi To simulate measurement errors we perturbed the right-
hand side

=g+e,
where the components of e were taken from a normal distribution with mean zero
and standard deviation s. We then solved the perturbed problems

(4.2) min {ILK/- / 211/[12},2
f

for several values of the regularization parameter Ix. The solution of (4.2) is denoted
1,. The error in the computed solution was measured as

(0 ((l’)i--fi)2) 1/2’
i=1

which can be considered as an approximation of an L2-norm of the error.
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C3 2

FIG. 4.1. The solution f (solid line) and the right-hand side (dotted).

The problem (4.2) was solved using the G2B and the normal equations algorithms.
The errors obtained with different values of the regularization parameter tx are plotted
in Fig. 4.2. The G2B algorithm produced better solutions than the normal equations
algorithm in all test cases, and the difference between the two algorithms was larger
for small perturbations of the data.

The fiat parts of the error curves for the normal equations algorithm show where
K’K +I2LTL is represented as K’K in the computer arithmetic (on the DEC-10
computer the smallest value of e for which 1 / e > 1 is approximately 1.5 10-8). We
also tested the algorithms on an ill-conditioned problem with large residual. Not
unexpectedly, it was here necessary to take a large value of the regularization parameter
in order to stabilize the solution, and the two algorithms produced results of approxi-
mately the same accuracy.

Our numerical tests indicate that the G2B algorithm has better stability properties
than the normal equations algorithm; when applied to ill-conditioned problems with
relatively accurate data, the G2B algorithm is superior.
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FIG. 4.2. Error obtained for different values of the regularization parameter Ix using the normal equations
algorithm (solid line) and the G2B algorithm (dotted). The value o.f the standard deviation s is given in the
plot.
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Note added in proof. The algorithm of this paper can be implemented in a systolic
array. This will be discussed in a forthcoming report.
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AN ITERATIVE ALGORITHM FOR SOLVING INVERSE PROBLEMS
OF TWO-DIMENSIONAL DIFFUSION EQUATIONS*

J. Q. LIUt AND Y. M. CHEN

Abstract. The applicability of the iterative numerical algorithm of the pulse-spectrum technique (PST)
to solve inverse problems of two-dimensional linear diffusion equations is demonstrated. Numerical
simulations are carried out to test the feasibility and to study the general characteristics of this technique
without the real measurement data. It is found that PST also gives excellent results and is as robust as for
solving the inverse problem of the one-dimensional linear diffusion equation.

Key words, iterative algorithm, inverse problem, two-dimensional diffusion equation

Introduction. The problem of determining the diffusion coefficient of the diffusion
equation from known data or the solution and its first order derivatives either on the
boundary or in the interior of a bounded space domain can be formulated as an
ill-posed inverse problem for the diffusion equation. Usually the solution of an inverse
problem is not unique and does not depend continuously on the given data. Applica-
tions can be found in remote sensing of the thermal conductivity of a nonhomogeneous
solid, inferring the transmissivity or permeability from known data of the pressure
and pressure gradient in oil reservoir and aquifer simulation, etc.

Many numerical and analytic methods for constructing approximate solutions of
this type of inverse problem have been developed by researchers in the past and
present. In particular, the questions of existence and uniqueness of the solution, and
techniques for constructing approximate solutions of the inverse problem of the
one-dimensional diffusion equation, have been treated by Jones [1], Douglas and
Jones [2], Cannon [3], [4], and Cannon and DuChateau [5]-[8]. Recently, a much
superior numerical algorithm the "pulse-spectrum technique" (PST), has been intro-
duced and developed by Chen and Liu [9] to determine the approximate diffusion
coefficient of the one-dimensional diffusion equation. For two-dimensional cases,
history matching techniques based on the minimization of functionals of the differences
between the observations and the computed solutions of the diffusion equation have
been developed by Chen, Gavalas, Seinfeld and Wasserman [10], Chavent, DuPay and
Lemonnier [11], Chang and Yeh [12]. On the other hand, various other techniques
have been used to solve this type of inverse problems under steady state conditions
by Frind and Pinder [13], Nutbrown [14], and Richter [15].

The basic idea of the pulse-spectrum technique (PST) is that data are measured
in the time domain as any arbitrary functions which are Laplace transformable, and
the synthesis of the unknown diffusion coefficient is carried out numerically in the
complex frequency domain by a special iterative algorithm. The PST was first intro-
duced by Tsien and Chen [16] for solving an idealized one-dimensional velocity
inversion problem in fluid dynamics; then it was further developed by Chen and Tsien
[17] to have the capability of handling noisy, poorly distributed and inadequately
measured data. Later it was used to solve a one-dimensional inverse problem in
electromagnetic wave propagation by Tsien and Chen [18]. Next, it was extended
successfully by Hatcher and Chen [19] to solve inverse problems of a one-dimensional

* Received by the editors August 16, 1982, and in revised form January 24, 1983.
f Department of Applied Mathematics, Harbin Institute of Technology, Harbin, People’s Republic of

China., Department of Applied Mathematics and Statistics, State University of New York, Stony Brook,
New York 11794.
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nonlinear acoustic wave equation. In a different direction, the PST has also been
modified with great success [9] to solve an inverse problem of a one-dimensional
diffusion equation. Moreover, the discretized version of this iterative algorithm under
idealized conditions has been proved to converge quadratically [20], which is quite
efficient from the numerical computation point of view.

In this paper, PST is presented and extended for solving this type of inverse
problem for the two-dimensional diffusion equation. It is found that PST fares very
well in regard to the following four practical criteria for the evaluation of any numerical
method:

(a) Universality criterion. Can a numerical method which is effective in problems
in one space dimension be extended with similar success into higher space-dimensional
applications? Can a solution method which is effective for solving inverse problems
for one type of equation, e.g., hyperbolic or parabolic type, be extended to solve
inverse problems for the other type of partial differential equation with similar success
and minimum effort?

(b) Economy of data acquisition criterion. The numerical method should be able
to keep to a minimum the difficulties and the cost expenditure of acquiring or measuring
the necessary data for a successful calculation.

(c) Economy of programming effort criterion. The numerical method should be
as close to a nondedicated program as possible, for existing methods of programming
new dedicated numerical methods for every special type of problem can be unaccep-
tably costly in many practical circumstances. Furthermore, the computer code should
as far as possible use modules based on canned subroutines.

(d) Economy of computing cost criterion. The numerical method should keep the
cost of I/O and CPU time and memory storage to a minimum.

For simplicity in the next section the formulation of the inverse problem of a
linear two-dimensional diffusion equation is presented and the basic numerical
algorithm of PST is given. Then numerical simulations are carried out to test the
feasibility and to study the intrinsic characteristics of this numerical algorithm with
artificially generated data. Finally, a comprehensive discussion is given of the numerical
results, their implication in actual implementing this computational algorithm, and
the merits of PST.

Numerical algorithm (PST). Consider the following initial-boundary value prob-
lem for a two-dimensional linear diffusion equation"

d(k (x, y)u/y duO(k(x,y)Ou/Ox)+ -p(x, y) =0, (x, y) f, 0<t <o,
Ox Oy --(1)

u(x, y, 0)la= 0, u(x, y, t) f(x, y, t) for (x, y) F,

where f is a bounded region in x-y space and F is the boundary of f. For solving
the inverse problem, in addition to the initial and boundary conditions in (1) one
needs at least one more condition either on Ou/On at a subinterval of F or on u in a
subregion of . Here for convenience we adopt

(2)
0u

h (x, y, t) for (x, y)an
where is a section of F. Here the inverse problem is to determine the unknown
diffusion coefficient k (x, y) from known p (x, y), [(x, y, t) and h (x, y, t) where [(x, y, t)
and h (x, y, t) are Laplace transformable.
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PST calls for the Laplace transformation of (1) and (2) so that the entire system
is transformed from the time domain to the complex frequency domain, the corre-
sponding system is

(3)

o(k (x, y)ov/Ox) o(k (x, y)ov/oy)
+ -p(x, y)sv =0, (x, y) f,

Ox Oy

v(x, y, s)=F(x, y, s) for (x, y) F,

(4) =:-- H(x, y, s) for (x, y)
On

where v(x, y, s), F(x, y, s) and H(x, y, s) are the Laplace transforms of u(x, y, t),
f(x, y, t) and h (x, y, t) respectively. Now the inverse problem is to determine k(x, y)
from p (x, y), F(x, y, s) and H(x, y, s).

The iterative numerical algorithm begins by setting

(5) v,,+l v. + 6v., k,,+ k. + 6k., n 0, 1, 2, 3, ,
where ko(x, y) is the initial guess for the unknown coefficient k (x, y), IIk.II > IIk.ll and
IIvll > IIvll, and kolr kit. Upon substituting (5) into (3), neglecting terms of order
82 and higher, one obtains a system for v.,

(6)

c3(k.Ov./Ox) O(k,,c3v./Oy)
+ -soy. =0, (x, y) f,

Ox Oy

v,,li,=F(x, y, s),

and a system for 6v.,

(7)
av.lr= O.

By using a Green’s function, the partial differential equation (7) can be changed
to a Fredholm integral equation of the first kind which relates 8k. (x, y) to 6v. (x, y, s):

IIn { O(6k. Ov./Ox ’) O(6k. Ov./Oy ’),}+ dx’ dy’ -6v,, (x, y, s),(8) G x y x y s
Ox "y -;

where G.(x, y, x’, y’, s) is the Green’s function of the differential operator in (7). For
the particular auxiliary condition in (4), a more useful expression of (8) can be derived
by taking the normal derivative of (8) and setting (x, y) at F to obtain

(9) , -n r I. Ox’
+ -; dx’ dy’ =-On r"

For the purpose of accelerating the rate of convergence, ,gv,+/Onlr on the right side
of (9) can be replaced by Ov/Onlr. With the help of (4), (9) can be written as

IInOG O(kOv./Ox’) O(kOv/Oy’)}(10)
r( Ox’

+
Oy’

dx’ dy’=-Hlr+n r

which is a Fredholm integral equation of the first kind for 8k, (x, y).
Equations (5), (6) and (10) form the basic structure for each iteration in the

iterative numerical algorithm of PST. First, a numerical integration subroutine is used
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to evaluate the Laplace transformsF(x, y, s) andH(x, y, s) at s s=, r 1, 2, 3, , Y_..
Then these discrete values will be used to solve (6) and (10) numerically.

The boundary value problem (6) and the Green’s function of (7) can be solved
numerically by simply using the following first order finite difference method. Assume
that fl can be approximated by a collection of small quadrilaterals or triangles and
each computational grid point is denoted by a pair of numbers (x, y). The finite
difference approximation at an interior point (xi, yj) is derived by considering the area
integration of an element area centered at (i, ])(Fig. 1) as

(11)
O(k,,Ov,,/Ox) + -s,v,, dx dy =0.

FIG 1. Computational grid of the finite difference method at an interior point (i, ]).

By Green’s formula, (11) becomes

(12)
ii! ii

The line integral of (12) can be approximated by

k.i,j+k,,+,,i{ 12ni+l,]--12ni,] v"’+ -v"i’i-l sin O} yl,
2 cos 01 y(,)(+,) 2 /i

(13)
It"

OVn

k ni,j "4- k nid+l 12 ni,j+l 12ni,]

2 cos 02 ’Y (id+ 1)(id)

k,i.j + k,i_1. v ,_1.i v
2 cos 03 / Y(i-1,])(i,])

12 ni- l,] --12 ni +1,] sin 02t T2,
2T2

v,i.- -v,.,]+ sin 03 "Y3,
2"y3

2 cos 84 ’(i,]-1)(i,]) 2 4

and the area integral of (12) can be approximated by

(14) f ln, s,v,, dx dy s,.v,,o
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where the 0’s are the angles between the normal vectors and the local axes of the
computational grid measured counterclockwise (Fig. 1), the coordinates of the corner
point of fl, are the arithmetic mean of those of its surrounding grid points, the y’s
are the lengths of Fij’s, Y,.i)(p.q) is the distance between (i,/’) and (p, q) and A is the
area of the small quadrilateral Ilia. It is assumed that the 0’s are not too large, say,

With the help of (12), (13) and (14), the boundary value problem (6) is
discretized and becomes a linear algebraic system,

(5) A_(k,s). V_,(s)=n_ (s),

where A_, (k,, s) is a known pentadiagonal matrix, _V, (s) is the vector with all v,.j(s)’s
as its components and the known vector _B (s) corresponds to the boundary condition.

The Green’s function of (7) satisfies (11) also except that the right-hand side
contains an additional term

IIa dxdy {1 for (i, /’) (p, q ),
,,8{,/(.i)(p.q} 0 for (i, j) # (p, q).

Hence the discretized Green’s function satisfies the similar linear algebraic system,

(16) _A,,(k,, s). _G,(xo, y, s) _C(x, y),

where the components of the unknown vector _G, (x, y, s) are all G, (x, y, x , y, s)
for fixed x, y and s, and the known vector _C(x, y) corresponds to the boundary
condition and the nonhomogeneous term.

At the boundary, the normal derivatives in the integral equation (10) are approxi-
mated by a more accurate finite difference scheme. Assuming that p 1 corresponds
to the boundary (Fig. 2), the approximations are

(17) n
and

[" ’(1,q)(2,q) q- ’’(2,q)(3,q)

4 t)n2,q 3F(Xl, yq, s l)n3,q
COS 19 +

G,
(8)

On

F(x1, Yq+l, s)-F(Xl, Yq-1, s,.)
sn 0

’(1,q)(1,q+ 1) "[" ’)/(1,q-- 1)(1,q)

s)-Gn(x3 yq, X’ s)4G,(x2, yq, xi, y, , y,
[" /(1,q)(2,q) -" ’(2,q)(3,q)

cos 19.

Q-I

P:2 P=3

FIG. 2. Computational grid for the finite difference approximation o[ the normal derivative at a boundary
point (1, q).
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In view of (18), one only needs to compute G,(x2, yq, xi, yi, s() and
Gn(x3, yq, xi, yi, s) for solving the inverse problem. Hence for computational
efficiency, one solves the combination of (15) and (16),

(19) A_,(k,,s). {_V,(s), G_,(x2, yq, s,,), G,(x3, yq, s)} {_B(s), _C(x2, yq), _C(x3, yq)}.

The Fredholm integral equation of the first kind (10) can be discretized by simply
using the rectangle rule and the derivatives in the integrand are approximated by the
following finite difference approximation,

(20)

06k._ l{(kni+lj-tk,i_ldsin&i 6k.i.l+l-tk.i.i_l sin,il}0x’ sin ((ij--lil) Y(i+lj)(i,j) "l-’(i,j)(i-l,D Y(i,]+I)(i,/’) d-Y(i,j)(i,j-1)

cos i},
where (bii and Oii are the average angles of the local computational grid coordinates
with respect to the x-axis (Fig. 3).

(I,J+l)
I-1,J) \ I,,,@ IJ

(I+1 J)

’ (l,d-1)

FIG. 3. Definitions of @(i and Oii in the finite difference approximation of derivatives in the integrand
o[ the integral equation at (i, ]).

In a similar way the partial derivatives Ov,/Ox’, Ov,/Oy’, oav,/Ox ,2 and 02Dn/Oy ,2

are approximated by the same center difference scheme. Hence the integral equation
(10) is reduced into a linear algebraic system,

(21) M_.(v., G., s,) 6K_.(x, y)= _S. (s),

where the known matrix _M, (v,, G,, s) comes from the discretization of the integral.
It is an ill-conditioned full matrix with each row containing a different s. The unknown
vector 6_K,(x, y) consists of all 8k,i.. as its components, and the known vector _S,(s)
comes from the discretization of the right-hand side of (10) with components containing
the corresponding complex frequency parameter s,

Since A_, is a symmetric, positive-definite, narrow banded, and well-conditioned
matrix, (19 can be solved by any modern efficient sparse matrix technique. However,
_M, is either a rectangular matrix or an ill-conditioned square matrix; therefore
"ikhonov’s regularization method with second-order stabilizers [21] is used to solve
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(21). The essence of the first cycle of iteration is given in the accompanying diagram
and the procedure for other cycles is exactly the same.

Initial guess: ko(x, y)

By the finite difference method (12), (13) and (14),
one solves the boundary value problem (6) and the Green’s
function of (7) for different values of s,, tr 1, 2, 3, ,
E, to obtain {Vo(X, y, s,,)} and {Go(X, y, x’, y’, s,,)}, tr 1, 2," ", E.

OVo(S)/Onlr- and OGo(s)/onlr,
tr 1, 2, 3, , E, are computed by
the finite difference
approximations (17) and (18).

By using Tikhonov’s regularization method, one
solves (21), the discrete version of the Fredholm integral
equation of the first kind (10) with discrete values of s,
{s,,}, tr 1, 2, 3,. ", E, to obtain 8ko(x, y).

From (5), one obtains kl(x, Y)"

It is important to notice that each cycle of iteration consists basically of first
solving the direct boundary value problem (6) and the Green’s function of (7) E times
and then solving the Fredholm integral equation of the first kind (10) once.

Numerical simulation. In order tO test the feasibility and to study the general
characteristics of the PST computational algorithm lor solving two-dimensional inverse
problems for the linear diffusion equation without real measurement data, the following
numerical simulation procedure is carried out. A direct problem is solved for a given
coefficient k*(x, y), and the PST algorithm is used to see whether k* is recovered or
not. First, one chooses a k*(x, y) which represents the correct diffusion coefficient,
and also one chooses the boundary condition f(x, y, t) which represents a part of the
measured data. Its Laplace transform F(x, y, s) is numerically computed for a chosen
discrete set of s s, tr 1, 2, 3, , E. Then the boundary value problem (3) is solved
by the finite difference method (12), (13) and (14); thus one generates the rest of the
data H(x, y,s), -1, 2, 3,... ,, for the PST algorithm by the finite difference
approximation (17). Next, ko(x, y) is chosen. Hence upon solving (5), (6) and (10)
numerically, kl(x, y) is obtained, kE(X, y) can be obtained in a similar manner. One
continues this procedure until finally a numerical limit kr(x, y) is reached. Other than
the truncation, round-off, numerical integration and finite difference approximation
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errors in both generating the numerical data and computing kN(x, y), any norm
IIk*(x, y)-k,,(x, y)ll can be used as a criterion for evaluating the performance of the
computational algorithm of PST.

The numerical simulation here is carried out for a general class of k*(x, y) and
ko(x, y), e.g., constants, piecewise-linear continuous functions and oscillatory func-
tions. Previous experiences have shown that the interchange of the functions for
k*(x, y) and ko(x, y) results in no significant differences in kN(x, y)’s except in some
of the fine details. Hence for avoiding the expense in generating numerical data, a
single constant k*(x, y) and various different ko(x, y)’s are used for most of the
numerical examples here. Also, for simplicity, only rectangles, quadrilaterals and
triangles are used for the domain . Furthermore, to avoid the expense of performing
the numerical Laplace transformation f(x, y,t)=l-e on F is used. Hence
F(x, y, s) 1/s (s + 1) on F. Here s tr, tr 1, 2, 3," , 11, are chosen in our compu-
tation.

The numerical results are plotted in Figs. 4-13. The maximum norms of k*(x, y)-
kn(x, y) and k*(x, y)- ko(x, y) for all cases can be estimated from the graphs in these
figures. The L2 norms, I, IIk*(x, y)ll=, n 0, N, and IIk*ll= for all cases are
tabula[ed in Table 1.

TABLE 1

Fig. # 4 5 6 7 8 9 10 11 12 13

N 10 5 13 10 2 2 9 12 10 19
Io 1.60 3.19 0.97 2.52 6.71 5.00 2.50 0.74 1.60 2.50
IN 0.19 0.37 0.19 0.50 2.75 3.43 0.25 0.07 0.21 0.26
I/llk*ll2 0.019 0.025 0.019 0.037 0.239 0.295 0.028 0.007 0.021 0.026

Discussion. Although only a small number of computational zones are used in
the numerical simulation here, the numerical results in Figs. 4-13 have demonstrated
that the PST iterative numerical algorithm does give excellent results in solving
two-dimensional inverse problems for the linear diffusion equation and it is as robust
as for the one-dimensional case [9]. The accuracy of the numerical algorithm can be
improved greatly if a larger number of computational zones are used; more effort is
made in computing each individual step and in discretization of the partial differential
and integral equations in the numerical algorithm; and more of s’s are used and their
values are properly chosen according to either the minimum error criterion [22] or
the well-conditioned matrix criterion [23] in solving the Fredholm integral equation
of the first kind.

Mathematically, the inverse problem is a nonlinear problem regardless whether
the original partial differential equation is linear. Hence in general the solution
of an inverse problem with a minimum number of constraints is not unique. To be
sure, the PST iterative numerical algorithm is not a method for settling the question
of the uniqueness of the solution of an inverse problem. Rather, it is a constructive
method for constructing one of the approximate solutions of the inverse problem.
This approximate solution is unique in the sense of being the closest one to the initial
guess in the L2 norm. Moreover, it is clear from our numerical simulation that for
different initial guess ko(x, y) the iterations converge to slightly different kn(x, y)’s.
However, if this numerical algorithm is reasonably robust, then any one of the approx-
imate solutions will be an acceptable approximation. This numerical computation
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FIG. 4. Comparison of the calculated k lo(X, y) and the exact k*(x, y)-- with the initial guess
ko(x, y) Ax Ay 1.67 and the auxiliary data h (x, y, t) measured at the boundary y O.

10 i0,I0)

0 /5 10 X

FIG. 5. Comparison of the calculated ks(x, y) and the exact k*(x, y)-- with the initial guess
ko(x, y) Ax Ay 1.67 and the auxiliary data h(x, y, t) measured at the boundary y =0.
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FIG. 6. Comparison of the calculated k 13(x, y) and the exact k*(x, y)
ko(x, y)

(10,10)

with the initial guess
Ax Ay 1.67 and the auxiliary data h(x, y, t) measured at the boundary y =0.

(10,10)

(10,5)

K(X,Y)

0 /5 10 X

FIG. 7. Comparison of the calculated k lo(x, y) and the exact k*(x, y) with the initial guess
ko(X, y) Ax Ay 1.67 and the auxiliary data h(x, y, t) measured at the boundary y =0.
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(i0,i0)

5 10,5)
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1,1
0 /5 i0 X

/

FIG. 8. Comparison of the calculated k2(x, y) and the exact k*(x, y) with the initial guess
ko(x, y) Ax Ay 1.67 and the auxiliary data h(x, y, t) measured at the boundary y =0.

10,10)

,K(X, Y)

1,0
0 /5 i0 X

FIG. 9. Comparison of the calculated k2(x, y) and the exact k*(x, y) with the initial guess
ko(x, y) Ax Ay and the auxiliary data h (x, y, t) measured at the boundary y O.
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FIG. 10. Comparison of the calculated k9(x y) and the exact k*(x, y) with the initial guess
ko( x, y) each side of the quadrilateral being divided into 6 equal-distance subintervals and the auxiliary
data h( x, y, t) measured at the boundary x O.

Y (9,11)
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5 (9,5,5)
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o 5 o "-X

i0, -I)

FIG. 11. Comparison of the calculated k12(x, y) and the exact k*(x, y) with the initial guess
ko(x, y) each side of the quadrilateral being divided into 6 equal-distance subintervals and the auxiliary
data h( x, y, t) measured at the boundary x O.



ITERATIVE ALGORITHM FOR INVERSE PROBLEMS 267

2.0

1,5

,K(X,Y)

i0 (I0,i0)

1,0
0 5 X

FIG. 12. Comparison o[ the calculated klo(x, y) and the exact k*(x, y) with the initial guess
ko(x, y) Ax Ay 1.67 and the auxiliary data h (x, y, t) measured at the boundary x 0, 10 _-< y <= 20.
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FIG. 13. Comparison of the calculated k19(x y) and the exact k*(x, y) with the initial guess
ko(x, y) Ax Ay 1.67 and the auxiliary data h(x, y, t) measured at the boundary x 0, 10 _-< y =< 20.
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phenomenon can be attributed to the accumulation of the nonnegligible errors in
computing each iterate. Here, most of these computational errors come from the
regularization procedure in solving the ill-posed Fredholm integral equation of the
first kind.

The PST iterative numerical algorithm can be extended to solve three-dimensional
inverse problems in a straightforward manner, because the finite difference method
or the finite element method is just as adaptable to solve any three-dimensional
boundary value problem with arbitrary finite domain as to solve the two-dimensional
boundary value problem, and the Tikhonov’s regularization method is also as adaptable
to solve the three-dimensional Fredholm integral equation of the first kind as to solve
the two-dimensional case. Moreover, since the synthesis procedure is carried out in
the frequency domain where the governing equation is an elliptic partial differential
equation coming either from the Laplace transformed hyperbolic equation or the
Laplace transformed parabolic equation as is the case here, the PST iterative numerical
algorithm can be used to solve inverse problems of both hyperbolic and parabolic
partial differential equations with trivial changes in the computer code of PST. Hence
PST fares very well in regard to the universality criterion.

As has been demonstrated in the previous sections, measurement data are needed
only at a portion of the boundary to solve two-dimensional inverse problems of the
linear diffusion equation successfully. Hence the PST fares very well in regard to the
economy of data acquisition criterion in comparison with the history matching tech-
niques [10]-[12] where additional data must be measured in the interior.

The programming for the PST is basically nondedicated, because the changeover
from solving the inverse problem for a class of hyperbolic partial differential equations
to solving the inverse problems for a class of parabolic partial differential equations
is simply a matter of changing a few coefficients (changing a card) in the elliptic
equation solver. Moreover, one does not have to program a subroutine for the elliptic
equation solver, for there are many finite difference and finite element computer codes
available in the public domain for solving two-dimensional and three-dimensional
elliptic partial differential equations. Hence the PST again fares very well in regard
to the economy of programming effort criterion.

Finally, it also fares rather well in regard to the economy of computing cost
criterion, mainly because there are relatively few data measured at sparse locations
on the boundary to be processed, in comparison with the history matching techniques
where many additional interior data are needed. However, the actual computing costs
depend very much on the particular computer hardware and software and one cannot
be sure of this until a benchmark comparison test is performed.

Efforts to carry out the generalization of the PST iterative numerical algorithm
to solve two-dimensional inverse problems for the wave equation and three-
dimensional inverse problems for the diffusion equation are underway, and their
results will be reported in the near future. It is also important to point out that the
PST iterative numerical algorithm also can be generalized to determine several
unknown coefficients of a system of partial differential equations simultaneously and
similar efforts have been started.
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DESIGN FEATURES OF A FRONTAL CODE FOR SOLVING
SPARSE UNSYMMETRIC LINEAR SYSTEMS OUT-OF-CORE*

I. s. DUFFS-

Abstract. We discuss design features of a code which solves sparse unsymmetric systems of linear
equations using a frontal method. We consider in particular the user interface, the internal data structures,
the pivoting strategy, and the isolation of machine dependencies. We illustrate the performance of our
code on a variety of test problems on both the IBM 3033 and the CRAY-1.

Key words, sparse unsymmetric linear equations, unsymmetric frontal methods, out-of-core solver,
vectorization, Gaussian elimination, finite-element equations, finite-difference equations.

1. Introduction. In this paper we discuss the design of a code for the solution
of sets of n unsymmetric linear equations by the frontal method. A code implementing
this method was first produced by Hood (1976) and our software is based on work
of Clitie, Jackson et al. (1978) who developed a version of Hood’s code for the solution
of finite-element problems in flow modelling. It is our belief that ours is the first
unsymmetric frontal code which meets the standards required for incorporation in a
general mathematical software library.

We summarize the frontal algorithm in 2 and show how it can be extended to
handle any unsymmetric system. Pivoting strategies are examined in 3. In 4, we
consider the design of the user interface and the isolation of machine dependencies.
We examine some of the data structures employed and their efficient manipulation
in 5. Finally, in 6, we look briefly at the performance of our code on the IBM
3033 and the CRAY-1 and discuss related work.

The reader more interested in the finer details of the code should consult Duff
(1981) which is essentially a user’s guide and incorporates the specification sheets as an
appendix.

The software described in this report is in the Harwell Subroutine Library under
the generic name MA32. A card deck or magnetic tape of the source code for this
subroutine can be obtained by writing to S. Marlow, Harwell Subroutine Library,
Building 8.9, A.E.R.E. Harwell, Oxon OXll 0RA. A version for the CRAY-1
computer is also available on request.

2. The frontal method and its extension to nonelement problems. The basis for
all frontal schemes is Gaussian elimination. That is, we perform the LU decomposition
of a permutation of A which we can write as

(2.1) A PL. UQ,

where P, O are permutation matrices and L and U are lower and upper triangular
matrices respectively. We permit problems that are so large that PL and UQ need
to be held on an auxiliary storage device. An important observation is that only the
factors PL and UQ are used during the solution process and, in frontal schemes, we
make use of this by never storing (or indeed generating) the whole of A at one time.

Although frontal schemes were originally developed (Irons (1970)) for the solution
of finite element discretizations in structural analysis where the resulting assembled
stiffness matrix is positive definite, they are applicable to a far wider class of problems
and can be modified to work when the resulting matrix is indefinite or even unsym-

* Received by the editors December 7, 1981, and in revised form December 14, 1982. This paper was
written by an employee of the United Kingdom Atomic Energy Authority. (C) UKAEA.

f Computer Science and Systems Division, A.E.R.E. Harwell, Oxfordshire, England OX11 0RA.
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metric. Indeed the software we will describe in this paper can be used to solve any
general unsymmetric set of linear equations although it will not always be the most
efficient method.

It is easiest to describe the frontal method by reference to its application in the
solution of a finite-element problem. Here the matrix A is a sum

(2.2) A =B),

where each B) has nonzeros in only a few rows and columns and corresponds to
contributions to the matrix from finite element l. It is normal to hold B) in packed
form as a small full matrix together with an indexing vector to identify where the
nonzeros belong in A. The basic "assembly" operation when forming A is thus of
the form

(2.3) au - ai + b (l)
i].

It is evident that the basic operation in Gaussian elimination

(2.4) aij au aik[akk]-laki
may be performed before all assemblies (2.3) are completed, provided only that the
terms in the triple product in (2.4) are all fully summed (that is, have no more sums
of the form (2.3) to come) before execution of the elimination operation (2.4).

Since variables can only be eliminated after they are fully summed, the assembly
order (which we discuss further in 6) will determine, to a large extent, the order of
elimination. At any stage during the assembly and elimination, the fully- or partially-
summed variables are held in an in-core frontal matrix. If we permute all the fully-
summed variables to the first rows and columns of this matrix, it will have the form
shown in Fig. 2.1.

Fully- \

\summed
Xcolumns N

More cssemblies
to come

FIG. 2.1. Frontal matrix.

Pivots can be chosen from within the doubly-shaded region. For positive-definite
systems, they can be taken from the diagonal in order but for indefinite systems
numerical pivoting is required for stability. A suitable scheme, discussed by Duff and
Reid (1982), would be to use block pivots from the diagonal of order 1 or 2 (Bunch
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and Parlett (1971)). In the unsymmetric case, pivots can be chosen from anywhere
within the block subject to satisfying some numerical tolerance. We discuss this further
in the following section.

A judicious choice of assembly order, dependent on the geometry and connectivity
of the underlying problem, will keep the size of this frontal matrix small thus reducing
arithmetic operations and storage requirements. For example, if we assemble the
elements shown in Fig. 2.2 in the order indicated by the numbering in that figure,
then the size of the partially-assembled matrix (which we call the frontal matrix) need
never exceed the number of variables in two elements. The problem of obtaining a
good assembly order for an arbitrary system is a difficult one which we discuss further
in6.

3 5 7 9 11

2 4 6 8 10 12

FIG. 2.2. Assembly order in a finite-element problem.

Many finite-element formulations include variables which are internal to the
element and can thus be eliminated without reference to any other elements. It is
much more efficient to perform these "static condensations" within the element itself
rather than after assembling the element into the frontal matrix since the work involved
will be a function of element rather than front size. Thus, in most problems, such
eliminations are obtained almost for free and we have found cases (Cliffe, private
communication) where savings of over 30% in execution time have been obtained.

The summation (2.2) is not restricted to a finite-element application. Each B(

could represent a substructure, a low rank change to the matrix, or indeed a single
row of the assembled matrix. We have made our code efficient in the latter case so
that it can be used to solve systems arising from finite-difference discretizations. To
our knowledge, this is the only unsymmetric frontal code to offer this facility. In
principle, we could use our code to solve any unsymmetric system. We discuss this
further in 6.

For nonelement problems, the rows (equations) are added to the frontal matrix
in turn and a variable is regarded as fully summed whenever the equation in which
it last appears is added. This situation is illustrated in Fig. 2.3(b) where we show the
frontal matrix after the input of equation 3 from the five-point discretization of the
Laplacian operator on a 2 4 grid, as shown in Figure 2.3(a). At this stage no further
equations will cause any nonzero entries to appear in the first column of Fig. 2.3(b),
so this column is effectively fully summed and any entry in it (subject perhaps to a
numerical criterion) can be chosen as pivot.

2 4 6 8

3 5 7

--4
-4 0
0 -l.

(a) (b)

FIG. 2.3. Illustration o,f equation input in frontal schemes. (a) 2 x 4 grid. (b) First three rows o1’ matrix
(entries to the right are zero).
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Fully
summed

rows

Fully sum m ed
columns

FIG. 2.4. Frontal matrix (equation entry).

The frontal matrix will, in this case, be rectangular and the counterpart to Fig.
2.1 is shown in Fig. 2.4 where, as in Fig. 2.1, pivots can be chosen from anywhere
within the doubly-shaded region.

The user interface (see 4) has been designed so that input by elements or by
equations is equally easy and the equation entry has been used very successfully to
solve equations arising from the dynamics of rapidly rotating gases. We include, in
the illustration of the performance of our code in 6, systems which arise from
finite-difference discretizations.

The nonelement scheme just described is a generalization of variable band
methods (Jennings (1966)) and will be superior to band schemes on most problems
(for example, Hood (1976)).

3. Pivoting strategies. Hood (1976) uses two parameters, MAXFRT and
MINFRT, to control the size of the frontal matrix. He performs assemblies until the
front size reaches MAXFRT and then performs eliminations using the largest entry
in the fully-summed block (double-shaded region in Figs. 2.1 and 2.4) as pivot until
the front size reaches MINFRT.

We do not like this approach for two reasons. The first is that arithmetic may be
performed on a very much larger frontal matrix than is necessary or desirable (the
parameters are static and are set on entry). The second is that it is not so much pivot
size as the size of the pivot relative to other entries in its row and column which is
important in maintaining stability. The largest entry in the fully-summed block need
not be large compared to the largest entry in its row or column.

From our past experience with general sparse codes, we have found a threshold
criterion of the form

(3.1) lall >= u maxi lail,

where u is a user set parameter in the range (0, 1], to be a satisfactory test for a pivot
ask. Note that partial pivoting corresponds to a u value of 1.0. It is possible to
incorporate threshold pivoting in an unsymmetric frontal scheme. We refer to Fig.
2.1. Pivots can only be chosen from within the doubly-shaded region although the
maximum in the stability test (3.1) must be over all rows of the frontal matrix. This
is a legitimate test because all columns from which pivots can be chosen are fully-
summed. We search the fully-summed columns for a pivot and the first entry in the
doubly-shaded region to satisfy the threshold criterion is used as the next pivot. If
we search several columns before finding a suitable pivot, we look for the next pivot
starting from the first unsearched fully-summed column since it is quite likely that
the previously searched columns will still not yield a pivot. Although this strategy
shows little overall effect compared to that of searching from the first column each
time, it is marginally beneficial and is very easy to implement.
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It is possible that we cannot choose pivots from all the fully-summed columns
because of large entries in the singly-shaded region of the fully-summed columns. In
this case we leave the corresponding columns (and rows) in the frontal matrix and
continue with further assemblies. It is always possible to complete the factorization
using this pivoting strategy since eventually all rows and columns become fully summed
and hence the largest element in the entire column can be used as pivot. Naturally,
if many eliminations were delayed because of the test (3.1), the worry is that the order
of the frontal matrix might be noticeably larger than it would have been without
numerical pivoting. In practice, we have found that such an increase is slight and
indeed, since pivots are chosen as soon as the test (3.1) is satisfied, the front size is
not much greater than dictated by the underlying geometry. In particular, although
our code requires the input of a maximum order for the frontal matrix, we do not
require Hood’s parameters and may often do much less work than he would.

We note that the pivoting strategy simplifies when we are inputting the matrix
by equations. Here there are no non-fully-summed rows in the fully-summed columns
(see Fig. 2.4) and so partial pivoting can be used without any possibility of delaying
eliminations.

On Jackson’s advice, we allow the user to limit the pivot search to a specified
number of fully-summed rows and columns and to force eliminations to keep the
number of fully-summed rows and columns under a preset level. Even in this case,
candidates which come closest to satisfying (3.1) are chosen in preference to those
which are numerically largest. In addition to enabling the solution of problems whose
size forbids more exhaustive searching, these controls permit pivoting down the
diagonal to be forced when such pivoting is known, a priori, to be stable.

4. Some software considerations. In this section we discuss some aspects of our
user interface and briefly touch on the isolation of machine dependencies.

Input to the frontal solver will be by elements (the B t) of 2) in a finite-element
calculation but, as we have discussed previously, it is desirable that the interface also
allows input by rows (equations). Communication between the user and the package
in the earlier codes was through calls by the factorization routine to a user-written
subroutine whose parameter list was necessarily fixed. To avoid this limitation and in
order that the equation and element entries can be handled with equal ease, we have
chosen to use "reverse communication" in our user interface. A similar interface is
used by SPARSPAK (George et al., (1980)). This means that control is returned to
the user after each assembly. Thus, the call structure is of the form shown in Fig. 4.1.
An added advantage of this way of working is that additional information can be
easily passed to the user’s program which can monitor

for ech element or equation do
begin
input or generate element or equation;
call subroutine:

FI. 4.1. Use of reverse communication with the [fontal solver.

the progress of the elimination. For instance, it is possible that the user may terminate
the sequence of calls early and we discuss this further below.

In addition to the numerical values, the user must provide integer information
on the position of these nonzeros in the assembled matrix. As we saw in 2, the
frontal solver also requires information on when variables become fully summed. One
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way of providing this (adopted by Hood (1976) and Clitte et al. (1978)) is to negate
the integer information for variables appearing for the last time. We reject this
approach since it imposes an onus on the user to store or generate the flags. Instead
we perform a prepass, on the integer information only, which generates a single integer
array of length n which records, for each variable, the call at which it appears for the
last time. This array, which can be set directly by the user if the geometry is known,
provides the necessary information on fully-summed variables to the main solve routine
and can additionally be used within the main routine for temporary work space. We
allow the user to solve for a specified number of right-hand sides since, if the application
allows the solution of more than one system at a time, the I/O costs are less of an
overhead.

For the calls to the frontal solver, the user must provide values for the maximum
size of the frontal matrix and must allocate auxiliary storage for the matrix factors.
If the problem is complicated or unfamiliar it may be hard to choose appropriate
values, so we feel it is very important to return useful information should the run fail
due to insufficient space. For computing systems which require the auxiliary storage
to be allocated a priori (for example, IBM), if such an allocation is exceeded, we
simply continue the decomposition throwing away the factors and calculating the space
required for subsequent runs. If insufficient space is allocated to the frontal matrix,
the situation is slightly more complicated. In this case, we continue with a symbolic
factorization only, whose space requirements are linear rather than quadratic in the
front size. We can thus continue as long as the front size does not exceed the square
of the order of the frontal matrix and can return the size of frontal matrix required.
Although the storage so determined will be sufficient for subsequent runs without
pivoting, the user may wish to increase it slightly to allow for numerical pivoting. In
both cases, a flag is set so that the run can be optionally terminated immediately if
the allocated space is exceeded. This flexibility is greatly facilitated by our use of
reverse communication.

We provide a separate entry for the solution of subsequent systems with the same
coefficient matrix. This is just a single call with the assembled right-hand side(s)
supplied as an argument. Again we allow more than one right-hand side to be input.

We have isolated all communication with auxiliary storage to a single short
subroutine. The factors of PL and UQ (2.1) are blocked in in-core buffers before
being passed to this I/O subroutine. It is normally better to reduce actual I/O requests
by buffering and we allow the user to choose the size of these buffers to optimize for
system characteristics.

Since the rows of UQ must be read in the opposite order to which they are
written, it is advantageous on some machines (for example, the IBM 3033) to use
direct access because the cost of the backspace operation is very high. We have chosen
to do this in our current IBM version and also use nonstandard Fortran in the CRAY-1
version. With the exception of this well isolated I/O, we have written our code in the
subset of ANSI-66 Fortran supported by the PFORT verifier (Ryder (1974)).

Since it is not possible to allocate data sets dynamically using Fortran on an IBM
3033, we have written an initialization routine for the IBM version of our code which
calls assembly-coded routines to perform this allocation. We feel this option is very
desirable in a library environment particularly when the user does not wish to preserve
the factors and so does not need even to know of the existence of data sets on backing
store.

The threshold parameter (u in (3.1)) and other pivoting controls mentioned in
3 together with the stream number for output messages are all in a single named



276 I.s. DUFF

common block. On the basis of fairly extensive testing we have chosen default values
for these parameters and have set the defaults in a block data subprogram (for the
CRAY-1 version the defaults are set within the main subroutine in a DATA statement).
In spite of this minor portability difficulty we use this approach to setting default
values because we believe that these parameters will not be of concern to the average
user and so should not need to be referenced in his code.

In summary, our interface with the user is particularly simple and flexible. The
four routines which the user calls directly also check the input data and subdivide
workspace thus screening the user from the complexities of 16 subroutines (in a 4
level hierarchical structure) and 1785 statements in the complete package. A much
fuller discussion of the structure of the package is given by Duff (1981).

5. Data structures employed. A discussion of the data structures used in frontal
codes divides naturally into three, corresponding to input, structures internal to the
package, and output. The user is screened from all of the data structures except those
relating to input. We present only a very brief discussion of data structures in this
paper and refer the interested reader to Duff (1981) for full details.

The user need only input the reals corresponding to each B t) of equation (2.2)
together with an integer indexing array denoting the columns of ,4 in which the entries
lie. The user is not required to flag when variables are fully summed. A sequence of
calls to a prepass routine (see 4) where only the integer indexing arrays need be
supplied generates an array which indicates, for each variable, the assembly at which
it becomes fully summed. If the user can generate the fully-summed information in
other ways, then the calls to the prepass routine can be avoided.

After any static condensations (see 2), the input element or equation is loaded
into the frontal matrix which is held as a full rectangular array (square in the case of
element entries). All the subsequent pivoting and elimination operations take place
in this frontal matrix. In addition to the frontal matrix, we need indexing information
to relate positions within this matrix to the overall coefficient matrix. We follow Hood
by holding two integer arrays which, for each row and column of the frontal matrix,
indicate the corresponding row and column of the coefficient matrix. Two are necessary
even with the element entry because pivoting from off the diagonal will destroy the
symmetry in the frontal matrix.

Our other data structures internal to the factorization routines are designed to
facilitate the assembly of incoming elements or equations, the identification of the
submatrix in A (2.2) corresponding to the current frontal matrix, and the access to
and identification of fully-summed rows and columns. Our data structures, described
in detail by Duff (1981), are different from earlier codes. In particular, it is possible
to tell immediately whether an incoming entry is in the frontal matrix without needing
to scan any array. The storage required is only four times the maximum number of
columns in the front plus twice the maximum number of rows. This storage could be
reduced slightly, since the sets of fully and non-fully-summed variables partition the
frontal variables, but would result in more opaque coding. In any case, the same
storage was required by the earlier codes.

As we mentioned in 4, the rows of UQ and columns of PL are buffered before
output to backing store. We do not allow a single row or column to span a buffer but
we have found empirically that this fragmentation incurs a storage overhead of only
about 2 to 3%. Since each variable enters and leaves the front once only, we need
only record the indices of each when it enters the front during forward elimination
or back substitution. By doing this an index list of variables in the current front can
be maintained during the solution process and there is no need to follow Hood in
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storing one index for every nonzero in the factors. A consequence of this sometimes
substantial saving in storage is that the storage for single rows and columns be-
comes more complicated. The resulting storage scheme is discussed in detail by Duff
(1981).

6. Comments on performance and related work. Although the principal advan-
tage of-frontal codes is that main storage requirements are low, another benefit arises
from the use of direct addressing in the inner loop of the factorization routine. This
benefit will be particularly evident on a machine like the CRAY-1. Naturally, a frontal
code cannot take so much advantage of sparsity as a general sparse code so the gleater
efficiency of the inner loop in frontal codes will be offset by the fact that more
operations must be performed.

Our frontal code will be most efficient when large finite elements are input in
which case most of the factorization time will be spent in the inner loop itself. However,
as we mentioned earlier, the code has been designed to accept equation input and
we would like it to be efficient in this case also. We have compared our code, MA32,
with two variable band codes on the model problem arising from 5-point discretizations
of the Laialacian operator on a regular grid. The two variable band codes assume the
matrix is .symmetric and do no numerical pivoting. We would thus expect both the
storage and factorization times to be half that of an unsymmetric code. The Harwell
code MA15 (Reid (1972)) stores the factors on auxiliary storage while the profile
solver from SPARSPAK (Georg et al. (1980)) uses a reverse Cuthill-McKee ordering
(RCM) and works entirely in main memory. Because SPARSPAK does not use
auxiliary storage, its solution times are noticeably faster. The results in Table 6.1
indicate that MA32 is competitive with established codes when used in its equation
entry mode. For the runs in this table, an RCM ordering was used to order the
equations prior to entry to both MA32 and MA15.

The frontal code, MA32, has recently been used on the CRAY-1 by Andrew
Cliffe of the Theoretical Physics Division at Harwell in the solution of problems in
buoyancy driven flow in a square cavity using finite elements. We show his results in

TABLE 6.1
Performance on a model problem on an m xn grid. Times in seconds on an IBM 3033.

m 10 10 16 32 50
Grid n 10 100 16 32 50

Factorization time
MA32 .053 .632 .194 1.332 6.038
MA15 .030 .244 .094 .744 3.481
SPARSPAK .019 .265 .072 .629 3.014
(RCM ordering)

Solution time
MA32 .008 .100 .027 .178 .635
MA15 .012 .060 .030 .156 .519
SPARSPAK .004 .048 .013 .079 .293
(RCM ordering)

Main storage in kbytes
MA32 40 45 45 60 90
MA15 5 20 5 20 40
SPARSPAK 10 110 30 200 740
(RCM ordering)
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Table 6.2 where the elements used for the runs in the first two columns were five
node rectangular elements with three variables at each corner and one at the centroid.
The element for the run in column three was a rectangle having nodes at the corners,
mid-points and centroid with three variables defined at each node. We have augmented
these results by runs on two artificial problems. The first (column 4) is a grid of ten
node elements similar to those used in the runs in column 3 but with five variables
at each node. The second (column 5) is a finite difference problem arising from the
five-point discretization of the Laplacian operator on a square grid. In every case the
elements or equations were assembled in a pagewise ordering along the side of shorter
dimension.

TABLE 6.2

Performance of MA32 on the CRAY-1

Dimensions of grid
of elements or

equations
Order (degrees of freedom)

28 28 36 36 20 32 16 16 64 64

3,023 5,039 9,480 5,445 4,096

Maximum front size 117 149
Total time in seconds for solution (including back 3.83 8.63
substitution)
Time in innermost loop (in seconds) 1.70 4.29
Number of static condensations 0 0
Number of flops in inner loop (in millions) 44.2 120.9
Inner-loop Megaflops 26 28.2
Total Megaflops 11.5 14.0

141 195 65
13.43 12.58 3.55

6.96 7.63 1.49
3346 1620 0
198.6 238.4 32.6
28.5 31.2 21.9
14.9 19.4 9.2

The results in Table 6.2 illustrate the performance of our frontal code on realistic
finite-element problems and furthermore indicate that the inner loop vectorizes on
the CRAY-1. All the MA32 code is written in Fortran and we might expect (Duff
(1982)) even faster times by CAL (CRAY assembly language) coding of the inner
loop. We see that, in the larger problems, the overall Megaflop rate (which includes
assembly, pivoting, output of factors and back substitution) exceeds half that of the
innermost loop. The two artificial cases have been run on the IBM 3033 at Harwell
and the times for the element and the equation input were 133.3 and 26.5 seconds
respectively. Thus the overall increase in speed due to the vectorizing capability of
the CRAY-1 was 10.6 and 7.5 with the inner loop running over 15 and 11 times
faster on the element and equation problem respectively. Since the scalar speed
differential of the CRAY-1 over the IBM 3033 is only about 2, the effect of vectoriz-
ation is evident.

As we explained earlier, it is possible to use our frontal code to solve any general
set of sparse equations. We compare it with a general purpose code for unsymmetric
sparse equations, MA28 (Duff (1977)), on a range of test problems in Table 6.3,
where the equations were input to MA32 in the natural order. Many numerical
experiments have been performed. A selection of these has been chosen to represent
a range of problem classes. The 1,176 case arose in electrical networking, the 113
case in statistical modelling, the 199 case in stress analysis, the 130 case in a laser
investigation, and the 577 case from a finite-element triangulation of an L-shaped
region. On very general systems (columns 2-4 of the table), MA32 is generally slower
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TABLE 6.3
A comparison with MA28. Times in seconds on an IBM 3033.

Order 1,176 113 199 130 577
Nonzeros 18,552 655 701 1,282 3,889

Factorization time
MA32 2.801 .081 .379 .134 1.311
MA28 (pivot order unknown) 4.143 .059 .105 .160 6.339
MA28 (pivot order given) 1.046 .013 .019 .035 .785

Solution time
MA32 .461 .016 .061 .025 .158
MA28 .049 .003 .005 .003 .044

Main storage in kbytes
MA32 160 45 140 60 90
MA28 310 15 25 20 260

than even the main MA28 entry (which finds a suitable pivotal sequence in addition
to factorizing the matrix) and the large front size means that MA32 requires even
more main storage than the in-core code. On systems with identifiable substructures
(column 1) or arising from finite-element discretizations (column 5), MA32 is notice-
ably more competitive and requires much less main storage than MA28. Since a
general sparse code like MA28 uses indirect addressing in the inner loop of the
factorization, it does not vectorize. Thus, we might expect MA32 to be even more
competitive on a machine like the CRAY-1. Indeed while the MA28 factorization
times on the CRAY-1 are typically half those for the IBM 3033, the MA32 times
are cut by a factor of around 4.

Naturally, because the assembly order to a large extent determines the pivot
order, the order in which the equations (or elements) are input to MA32 will have a
significant effect on its efficiency. The investigation of suitable orderings is a research
area in its own right and is outwith the scope of this paper. Because of the similarity
of our frontal scheme to variable band schemes, we might, however, expect that
orderings good in the variable band case would benefit our approach also. We therefore
used an RCM ordering generated by SPARSPAK to determine the order in which
equations (rows) are input to MA32. We show some results in Table 6.4, where the
113 and 130 cases are as before, the case of order 292 is a normal-equations matrix

TABLE 6.4
The effect of ordering on MA32. Times in seconds on an IBM 3033.

Order 113 292 130 443 1,561 503
Nonzeros 655 2,208 1,282 1,623 10,681 6,027

Ordering time .016 .022 .019 .024 .128 .068

Factorization time
With ordering .089 .271 .163 .543 3.738 1.046
Without ordering .081 .282 .134 1.046 7.645 4.181

Solution time
With ordering .014 .037 .032 .116 .357 .120
Without ordering .016 .040 .025 .214 .693 .214
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from a least-squares problem in surveying, the 443 case is from an electrical power
network problem, the 1,561 case from the triangulation of an L-shaped region, and
the 503 case from a structural analysis problem.

It is apparent that considerable savings are possible on element or structures
problems (columns 5 and 6 in the table) and on very sparse network problems (column
4) where the initial ordering produced a large frontal matrix. Unfortunately, the RCM
ordering is not always beneficial as we can see from the other columns in the table.
Of course, in many cases, for example in the fluid calculations at Harwell, a good
ordering is evident from the underlying geometry of the problem.

Duff and Reid (1982) are developing ordering and factorization routines based
on multifrontal techniques where the matrix is symmetric (but not necessarily positive
definite) and Reid is continuing his work (Reid (1978)) on a multifrontal solver (where
the frontal matrix may also be out-of-core) for large symmetric positive-definite
element problems.
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ADI AS A PRECONDITIONING FOR SOLVING THE
CONVECTION-DIFFUSION EQUATION*

RAYMOND C. Y. CHINf, THOMAS A. MANTEUFFEL AND JOHN DE PILLIS

Abstract. We examine a splitting of the operator obtained from a steady convection-diffusion equation
with variable coefficients in which the convection term dominates. The operator is split into a dominant
and a subdominant parts consistent with the inherent directional property of the partial differential equation.
The equations involving the dominant parts should be easily solved. We accelerate the convergence of this
splitting or the outer iteration by a Chebyshev semi-iterative method. When the dominant part has constant
coefficients, it can be easily solved using alternating direction implicit (ADI) methods. This is called the
inner iteration. The optimal parameters for a stationary two-parameter ADI method are obtained when
the eigenvalues become complex. This corresponds to either the horizontal or the vertical half-grid Reynolds
number larger than unity. The Chebyshev semi-iterative method is used to accelerate the convergence of
the inner ADI iteration. A two-fold increase in speed is obtained when the ADI iteration matrix has real
eigenvalues, and the increase is less significant when the eigenvalues are complex. If either the horizontal
or the vertical half-grid Reynolds number is equal to one, the spectral radius of the optimal ADI iterative
matrix is zero. However, a high degree of nilpotency impairs rapid convergence. This problem is removed
by introducing a more implicit iterative method called ADI/Gauss-Seidel (ADI/GS). ADI/GS resolves
the nilpotency and, thus, converges more rapidly for half-grid Reynolds number near 1. Finally, our methods
are compared with several well-known schemes on test problems.

Key words, boundary value problems, singular perturbation, convection-diffusion equation, iterative
methods, matrix splittings, acceleration techniques, optimal acceleration parameters

1. Introduction. Consider the steady convection-diffusion equation

(1.1) -eAu +a(x, y)ux +b(x, y)uy +c(x, y)u =f(x, y)

on a bounded convex domain D with appropriate boundary conditions. The functions
a, b, c, f are assumed to be in C, e and c > 0. Equation (1.1) is a model for the
Navier-Stokes equation and for the equations of mass and heat transfer.

If e << 1, then the boundary value problem is singularly perturbed. The solution
can have boundary layers. Singular perturbation problems for linear differential
equations of elliptic type such as (1.1) have been studied by Wasow [22], Levinson
[13], Vishik and Liusternik [21], Eckhaus and de Jager [4], O’Malley [18], Eckhaus
[3] and Howes [10]-[12].

Levinson has proved for a first boundary value problem with Dirichlet conditions
prescribed along the boundary that the solution u (x, y;e) is asymptotically a sum of
two contributions"

u(x, y; e)- V(x, y)+z(x, y; E)-[-O(E 1/2)
where V(x, y) is the solution of the reduced equation

OV OV+(1.2) a(x, y)-2-+b(x, y) c(x, y)V=f(x, y)
OX Oy
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contract W-7405-ENG-48 and by the Los Alamos National Laboratory under contract W-7405-ENG-36.
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which takes on the given boundary value u on a part $1 of the boundary OD, and
z (x, y, e) is a boundary layer correction called an exponential boundary layer having
the generic form

(1.3) z =e-g(x’Y)/eh(x, y)

and is important only near 82--OD- St (see Fig. 1.1). Here, it is assumed that a (x, y)
and b (x, y) do not vanish simultaneously in D. In other words, there are no turning
points of (1.1) in D.

boundary
layer
region

S S 2

FIG. 1.1

Equation (1.2) is hyperbolic and, therefore, the solution V(x, y) is oriented along
the characteristic curves given by the solution of

(1.4)
dx d___y___y

a(x, y) b(x, y)"

For well-posedness of the Cauchy problem for (1.2), S must be that segment of the
boundary along which the characteristic curves are incoming.

Furthermore, Eckhaus and de Jager [4] have shown that the boundary layer
correction has different behaviors depending on whether the boundary curve is a
characteristic curve. If the boundary curve is a characteristic curve, then the boundary
layer term has a parabolic boundary layer behavior whose solution satisfies a parabolic
equation

Oz O2z

where , rt are tangential and normal coordinates along the boundary curve. If the
boundary curve is not a characteristic curve, then the boundary layer correction has
the form (1.3).

The above discussion suggests that the solution of the convection-diffusion
equation for e small has a directional property over most of the domain. The lower
order partial derivative terms are mostly responsible for this behavior.

Motivated by the above discussion on the property of the solution, we generate
an iterative scheme for the numerical solution of the convection-diffusion equation
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as follows. Set

(1.5) M(u) =-eAu + au +bu +bur

and

N(u (a t )Ux + (b b )uy + (c ?, )u

where a, b and 6 are functions that make M(u)=f, with appropriate boundary
conditions, an easily solved boundary value problem. Here, the inclusion of the lower
order terms in M(u) is essential in developing an accurate and efficient numerical
algorithm. The functions a, b and should be chosen to approximate a, b, c as
closely as possible. In general M(u) will not be selfadjoint.

Thus (1.1) becomes

(1.6) M(u)=N(u)+f,

where N(u) represents a measure of the deviation from the coefficients a, b and c
over the domain D.

Let Mh and Nh be the discrete analogues of M and N in (1.6), and let v be the
discrete approximation to u and let g be a discrete analogue of f plus boundary value
information. The splitting

Ah Mh Nh

gives rises to the basic iterative scheme

(1.7) MhV (i+ l) NhV (i) + g

with a dominant part M, and a subdominant part Nh. The iterative matrix becomes

G =M-aNh.

This splitting is motivated by the behavior of the solution of the convection-diffusion
equation when convection dominates. In contrast, the splitting of the matrix into a
symmetric and a skew-symmetric parts only makes sense for problems when diffusion
dominates.

The basic scheme (1.7) may be accelerated by a number of methods, for example,
Chebyshev [14], two-part splitting [19], generalized conjugate gradient [2], orthomin
[20], etc. We use either Chebyshev or two-part splitting as follows. To initialize, set

MhO (a) NhV (o) + g,

r(O) O(a) v (o),
A(0)

frOr(O),
v (a) v (o) + A(O).

Then, for n > 1, we set

(1.8a) MhO(n+l) NhV (n) + g,

(1.8b) r(n+l) =/(n+l)_/2 (n),
(1.8c) A(.+ 1) a.r(.) +/3. A(n-l),
(1.8d) v ("+a) v(")+ A("),
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where the parameters ctn and fin are determined by the particular acceleration scheme
(Chebyshev or two-part). In fact, the parameters may be estimated adaptively using
Manteuttel’s procedure [15].

Note that M, will not, in general, be positive-definite symmetric due to the first
order terms aux and bu,. However, Mh inherits the directional properties of the reduced
(1.2). In solving (1.8a) for v ("/1) one should choose a method that exploits this
directional dependence.

One such method is an alternating direction implicit (ADI) iterative scheme.
Another method is a variant of ADI called the ADI/Gauss-Seidel (ADI/GS). This
variation performs better than ADI for a certain range of the parameters. Both
schemes may be accelerated by a Chebyshev semi-iterative method. Gourlay [5]-[6]
has proposed and analyzed a Chebyshev semi-iterative method accelerating an ADI
scheme when the matrix is symmetric and positive definite.

In 2, we discuss the matrix splitting and the computation of the optimal
parameters for the ADI method when M(u) in (1.5) has constant coefficients and is
defined on a rectangle. In 3, we consider the acceleration of the ADI splitting by
the Chebyshev semi-iterative method. In 4, the ADI/Gauss-Seidel splitting is
presented. Finally, we present in 5 numerical results for (1.1) with variable
coefficients. The results on optimal ADI parameters for a nonsymmetric matrix are
apparently new, as is the four-parameter Chebyshev acceleration method discussed
in 3. The splitting of the matrix Ah into an easily solved nonsymmetric dominant
part and subdominant part consistent with the directional properties of the solution
of (1.1) has not appeared previously.

2. Matrix splitting. To facilitate the solution of (1.8a), the operator M(u) in (1.5)
can be split into two parts that correspond to the derivatives in the x direction and
the y direction,

(2.1) M(u)=H(u)+ V(u).

A discrete analogue may be written

Mh =H+ V.

This splitting gives rise to the iterative scheme known as Alternating-Direction-Implicit
(ADI) (cf. Young [23]). We have

(2.2)
(pI +H)v +1/2 (pI V)v + g,

(p’I + V)v i/1 (p’I-H)v /1/2 + g.

Because of the structure of H and v, both equations in (2.2) are easily solved. The
iterative matrix is

(2.3) G’= (p’I + V)-(p’I-H)(pI +H)-(pI- V).

If M(u) has constant coefficients and D is rectangular, then H and V commute and
the eigenvalues of G, say A, may be found in terms of the eigenvalues of H and V.
We have

p’--ti p
(2.4) j

p+/x p’ + ,j

where/xi is an eigenvalue of H and , is an eigenvalue of V.
Suppose either Dirichlet or Neumann boundary conditions are prescribed. If (1.5)

is discretized using 5-point central differencing, then the eigenvalues i and , will be
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the eigenvalues of tridiagonal matrices of the form

where for H we have

h2

and for V we have

a=2+ 2--7’
If Neumann boundary conditions are used, then the first or last row may be altered,
but the eigenvalues are not significantly changed. In fact, it can be shown that

/,, 2(1+/3 + 3,/1 -R2), v, 2(1+B + o.,/1-R 2)

for some -1<3,<1,-l<a <1. Here/3 =gh2/4e, and Rx=ah/2e and Ry=b-h/2e
are the half-grid Reynolds numbers. The exact intervals of 3, and a depend upon
boundary conditions and h.

Four cases arise depending on Rx and Ry. If Rx > 1, R < 1, then txi is complex
with real part 2(1 +/3) and vi is real. IfR _<- 1, Ry > 1 the roles of/zi and vi are reversed.
Finally, if Rx > 1, Ry > 1, then both/z and v are complex with real part 2(1 +/3).

The optimal p, p’ for the first case are known and will be given below for
completeness. The optimal p and p’ for the second case is derived here. The third
case is found by reversing the roles of x and y. The final case is much more complicated
and is not analyzed here.

Suppose R < 1, Ry < 1. Then the eigenvalues of G are all real. Suppose the
eigenvalues of H and V are such that q-r<tz <q+r, s-t<v<s+t. Let S(G) be
the spectral radius of G. The values of p and p’ that minimize the spectral radius of
G can be found in terms of q, r, s, and (cf. Young [23, pp. 511-514]). The spectrum
of G is contained in the interval

(2.6) i/2 + < a < \,/24_ i]

where

8rtK=(I+O+/(I+O)2-1) and O= (q+s)2-(r+t)2"

The quantity K is closely related to the condition of the matrices H and v.
Suppose Ry < 1 <R. The eigenvalues of V are real while the eigenvalues of H

appear in complex conjugate pairs. Suppose the eigenvalues of H and V are contained
in the regions

tx =q +i, -r<<r,
V =S+r/, -t<rl<t.
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The relationship between the spectrum of G and the spectrum of H and V is given
by the map

(2.7) A (p, p’; sc, ’0) =Ix -p’ u -p

IX +p ,+p’"

We would like to find p, p’ to satisfy the minimax problem

(2.8) min max [A 12.p,p’
Inl_--<t

The M6bius transformation r =(ix _p,)/(ix +to) maps the vertical line Ix =q +i,
-az < < oo, in the complex ix-plane onto a circle centered at

q + (p -’)/2(2.9) Co q+p

and with radius

1 p +p’
(2.10) ro 2 q+o

in the ’-plane (cf. Kober [9]). Moreover as [ix[oo, ’ 1 (see Fig. 2.1). Note that

-plane "r-plane

FIG. 2.1

},-plane

FIG. 2.2

,-pl ne

FIG. 2.3 FIG. 2.4
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we must have p #-q or the radius is infinite. The portion of the circle with -r < c < r
is denoted by the heavier line. This arc is greater than a semicircle only if p < r- q.

The expression r (u-p)/(u +p’) maps the line segment u +s + i, -t < <t, in
the u-plane onto the real interval (see Fig. 2.2)

in the r-plane. Note that we must have p’>-(s- t) or this interval will be infinite.
The region containing the spectrum of G is the cross product of the arc in F.

2.1 and the interval in Fig. 2.2. By choosing various values of p and p’ many interesting
shapes can be formed (see Fig. 2.3).

Let us rewrite IX a as

(2.12, ]AIa=((-P’)a+’ar.(s+Bf:;)+O)2+r} s+n
It can be shown by taking partial derivatives with respect to and that the point
in the region with the largest modulus lies either on the midpoint or at the end of
one of the bounding arcs (see Fig. 2.3). It is the end of the arc if the circle corresponding
to Fig. 2.1 has radius less than 1, i.e. c0 > 0. Notice that Co 0 corresponds to

(2.13) p’=p+2a.

The bounding arc with largest modulus is determined by which end of the segment
(2.11) has largest absolute value. The interval is perfectly centered when

2 t2S SR(2.14) p
p--S

The equations (2.13) and (2.14) divide the p, p’ plane into four regions. The expression

max [A [2
I1r

has a unique expression in each region. Application of elementary calculus in each
region and along the boundaries of the regions yields the solution to the minimax
problem (2.8). If r2+ t< (q + s)2, then the solution lies along the curve (2.14) at the
intersection with curve

(2.15)

This yields

(q + 19)(q p’) + r2 0.

’((s + q )2 (r2+ t2))2 (s + q )2 (r2 + )
)2 +r2+P -q+

4(s+q 2(s+q)
(2.16)

./((s + q)2 (r2 + t2))2
+ r2

(s + q)2 (r2 + 2)p’ q +
4(s + q)2 2(s + q)

The curve (2.15) corresponds to the end of the arc in Fig. 2.1 having real part equal
to zero. The curve (2.14) implies a symmetry around the imaginary axis. The spectrum
of G is contained in a lens shaped region (see Fig. 2.4). The spectral radius is the
height along the imaginary axis and is given by

(2.17) S(G) ( /.)1/2p’+s p+q
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S(G)

.8

.6

.4

.2

I. 2. 3. 4. 5.

Rx

.26646

FIG. 2.5

If r2+ t> (s +q)2, then the solution is the intersection between the curves (2.13)
and (2.14). We have

(2.18) p =-q +/(s +q)Z- t2, p’=q +/(s +q)2-tz
and the spectral radius is

(2.19) S(G) [--(1- /1-(s-q)Z)]l/2= (p,t+s)
1/2

In this case the region is a circle centered at the origin.
Suppose we fix Ry 0 and let Rx vary. Figure 2.5 shows the spectral radius of

G, S(G), with the optimal p, O’ as a function of Rx. Notice that for Rx 1, that is,
r=0 in (2.6) and (2.19), we have S(G)=-O. However, A =0 is an eigenvalue with
nonlinear elementary divisors of high degree. This will be shown to be important
later. Notice that for r2-t2>(s +q)2, that is for R large, S(G) is independent of R
(see Fig. 2.5). Figure 2.6 shows the optimal values of p and p’ as functions of R.

3. Acceleration of the ADI splitting. Consider the operator I- G. Since H and
V commute, a bit of algebra yields

(I-G) (p +0’)(0I +n)-(O’I + V)-I(H + V)
(3.1)

(p +p’)(pI +H)-l(p’I + V)-IMh.
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FIG. 2.6

We see that ADI as a preconditioning can be organized much as can other precondition-
ings such as SSOR [1], SIC [14], and MIC [7].

The ADI splitting can be accelerated by a Chebyshev iteration as described in
(1.8). The parameters a,,/3, are functions of two parameters d, e which are determined
by the eigenvalues of the operator I-G (cf. Manteuffel [14]). If the optimal p and
p’ for ADI iteration alone have been chosen, the spectrum of G, and thus I-G, can
be calculated. Optimum d and e for this spectrum can be calculated as described in
Manteuttel [15]. However, since it is the convergence of the total iteration (ADI
accelerated by a Chebyshev iteration) that is of interest, we must consider choosing
the four parameters p, p’, d and r simultaneously. After some analysis to reduce the
possible range of p, p’, an optimization routine can be used to calculate the four-
parameter optimum.

If Ry < 1, Rx < 1, that is, if H and V have real spectra, then the four-parameter
optimal yields the same p, p’ as in the ADI analysis. The optimal d, e are

(3.2) d 1.0, e / +
and the convergence factor, the asymptotic factor of error reduction per step, is given
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by

-1/2)1/2 21/2
cf

(to 1/2 +/(
(/(1/2 +/ -1/2)1/2 _[_ 21/2

Notice that for K---1, cf---z1-S(G). For large K, the number of iterations required to
reduce the error by a factor of 10-N is approximately (N/4)t 1/2 for ADI alone, but
is approximately (N/2) 1/4 for the combined iteration.

If Ry < 1 < Rx, then the four-parameter optimum yields p, p’ that are not the same
as those found for ADI alone. The spectrum of G for optimal ADI is shown in Fig.
2.4 to be a lens shape which becomes a circle as Rx increases. The spectrum of G
produced by using the p, p’ from the four-parameter optimum is shown in Fig. 3.1.
Here as in Fig. 2.4 we have Rx 1.4, Ry 0 and/3 0. Notice that the ends are
slightly crossed.

>,-plane

FIG. 3.1

The four-parameter optimal values for p, p’ differ very little from the ADI optimal
p, p’ for the class of problems of interest here. Using the ADI optimal p, p’ and then
choosing the optimal d, e for these values gives a convergence factor that is slightly
larger for Rx in the region of interest, that is, 0<R <2. Figure 3.2 shows the
convergence factor of the combined iteration and the spectral radius of ADI as a
function of R. Here Ry =0. Near R 1, cf---1/2 S(G). For large R, say R 3,
cf -.-s(a).

4. ADl/Gauss-Seidei splitting. The ADI splitting can be made more implicit by
further splittingH and V. Let us divideH and V into lower triangular, upper triangular
and diagonal parts,

H=L+D+U, V=L’+D’+U’.

As in (2.2) we may write

(pI +H + L’)v (i+ 1/2) [[JI (D’ + U’)]v (i) ..[_ g,
(4.1)

(p’I + V+L)v(i+a)=[p’I-(D + U)]v(i+l/2)+g.
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FIG. 3.2

Now we have

(4.2) G (p’I + V +L)-’[p’I-(D + U)](pI +H +L’)-’[pI-(D’+ U’)].

This splitting is very much like an alternating block SOR. Unfortunately, the terms
do not commute, even for constant coefficients. Thus, the spectral properties of G
defy analysis. Notice, however, that for Rx 1.0 we have U =0 (see (2.5)). Since
D 2/, we may set p’= 2 and then we have G 0. For Rx in the neighborhood of
1, G is nearly zero. Now for ADI and Rx 1 the spectral radius, S(G), is zero, but
G 0. There is a high degree of nilpotency. This is reflected in tests that show that
ADI requires one less iteration than the dimension ofH to converge, whereas ADI/GS
yields the exact solution in one iteration. The implicit L resolves the nilpotency of
G. Figure 4.1 shows the number of iterations required to reduce the initial error by
a factor of 10- for various values of Rx near 1.0 with Ry --0.

Since it is the second half of (4.1) that has nice properties (U---0) for R near 1
and Ry 0, one might consider making only the second step implicit. In Fig. 4.1, the
middle curve shows the results of applying ADI on the first half of (4.1) and ADI/GS
on the second half. As expected, the iteration is only slightly slower.

This splitting may also be accelerated by a Chebyshev iteration. It was found
experimentally that using the parameters computed for the ADI/Cheb iteration
worked well for the ADI/GS/Cheb iteration.

5. Numerical results with variable coefficients. In this section, we apply our
algorithm to the solution of the convection-diffusion equation with a variable coefficient
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FIG. 4.1

a (x, y) under the condition that

b(x, y) c(x, y) f(x, y)=0.

We consider two examples"
Case I.

Case II.

on a unit square.

a(x, y) By", 0<n < 1.

a(x, y) 6y(1-y),

The boundary conditions along y 0, x 0, and x 1 are given by

u(x,O)=O, u(0, y)=l and ux(1, y)=0.

Along the top boundary y 1, we have for Case I

(5.1) u(x, 1)= 1

and for Case II

(5.) u(x, ) o.
The solution for Case I with boundary condition (5.1) has a developing parabolic

boundary layer along y 0 and is, otherwise, nearly equal to unity. Lines parallel to
the x-axis are characteristic curves.

The solution for Case II with boundary condition (5.2) has developing parabolic
boundary layers along boundaries y 0 and y 1. The boundary layers can merge if
the boundary layer development distance is sufficiently short. The characteristic curves
of the reduced equations are once again lines parallel to the x-axis. Note that in both
Cases I and II, an exponential boundary will form at x 1 if a Dirichlet boundary
condition is imposed there.

The numerical calculations use second order difference approximations to the
partial derivatives to develop the discrete analogues Mh and Nh on a 32 32 grid with
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equal mesh widths. The dominant part of the splitting, Mh, uses an average coefficient
a"

We have for Case I

and for Case II

6
l+n

6

It is clearly seen for a (x, y)= 6y that as n decreases toward 0 the region on which
a is close to a (x, y) increases. Therefore, we expect our matrix splitting to be more
effective as n decreases. The computations are terminated when

[[r")l[z 0-a0]lr0)[[z
< 1

where r"= g-Av is the residual vector.
We perform our computations with

ah
.80 < Rx < .20.

The parameter ah/2e is the half-grid Reynolds number and measures the relative
importance of the convective to the diffusive effects. For this range of Rx the numerical
solution would be reasonably accurate and yet efficient with e small if a nonoutflow
boundary condition were imposed at the exit boundary (see Hedstrom and Osterheld
[8]). For a developing parabolic boundary layer solution for which the outflow boun-
dary condition is prescribed, Hedstrom and Osterheld find that the numerical solution
is well approximated by the following modified equation’

Ux eU +e(1 +-) Uxx.

In the parabolic boundary layer region, we have

eu, O(1), Ux =O(1) and Uxx =O(1).

It follows that the numerical solution is accurate even for sufficiently large half-grid
Reynolds number. Hedstrom and Osterheld find that small discernible differences
between the exact and the numerical solution occur for R 20.

In all of the calculations, one ADI/GS/Cheb inner iteration per outer iteration
is used. This is suggested by numerical experiments using more than one
ADI/GS/Cheb iteration per outer iteration. For example, it is found that a 10-15%
increase in convergence rate is obtained with three inner iterations per outer iteration.
However, the relative cost of an inner iteration negates the increase in speed of the
outer iteration.

To assess the effectiveness of splitting A (u) into a dominant part involving the
average of the coefficient and a subdominant part involving the deviation from the
average of the coefficient, we plot in Figs. 5.1-5.3 the convex hull of the approximate
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FIG. 5.2



296 RAYMOND C. Y. CHIN, THOMAS A. MANTEUFFEL AND JOHN DE PILLIS

a(x,y) dy(l-y)

0 2 4

R 0.90x

R 1.00x
CHEB

/
ADI-GS-CHEB \

/ \

2 4 6 8

4 6

R I.I0x

FIG. 5.3



ADI AS PRECONDITIONING FOR CONVECTION-DIFFUSION 297

spectrum of A, and M-1A, as computed by the TCHEB program (cf. Manteuffel
[15]) for a(x, y) (yl/7, a(x, y) By, and a(x, y) By(l-y) and for values of Rx near
1. In each case, the convex hull of the approximate spectrum using Mh as a precon-
ditioning is close to 1.0. This implies that the operator M-Ah provides a "good"
approximation to the identity operator.

This preconditioning is most effective when a (x, y) can be closely approximated
by a constant. In Fig. 5.4 the number of iterations required for convergence is plotted
for values of Rx for the three choices of a (x, y) listed above. The results confirm our
expectations that the better d approximates a, the more rapid the convergence
rate is.

a(x,y)

(syl/7 n

Sy 0

6y(l-y) x

8O

o 60

0

40

20

Oooo 0 o o0

xx
x x x x

x x x x x

o o o
0

00.0 00
0 0 0

8 .90 1.00 I0 1.20

R

FIG. 5.4

To compare with other presently used methods of preconditioning, we plot in
Figs. 5.5 and 5.6 the convergence rate in numbers of Chebyshev iterations versus R
for the SIC, SSOR and MIC methods. Each of these preconditionings has comparable
work requirements. It is seen that ADI preconditioning is most effective for a (x, y)=
(yl/7 and becomes less effective as the exponent increases. Common to all of these
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preconditioning methods is the retention of the directional property of the solution
by incorporating the skew-symmetric part into the preconditioning matrix.

Acknowledgments. We thank Gerald Hedstrom for helpful discussions and Vance
Faber for his proclivity for voluminous algebraic calculation.

REFERENCES

[1] O. AXELSSON, On preconditioning and convergence acceleration in sparse matrix problems, Report
CERN 74-10, Data Handling Division, Laboratory I, CERN European Organization for Nuclear
Research, 8 May 1974.

[2] P. CONCUS, G. H. GOLUB AND D. P. O’LEARY, A generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations, Publ. LBL-4604, Lawrence Berkeley
Laboratory, Berkeley, CA, 1975.

[3] W. ECKHALrS, Boundary layers in linear elliptic singular perturbation problems, SIAM Rev., 14 (1972),
pp. 225-270.

[4] W. ECKHAUS AND E. M. DEJAGER, Asymptotic solutions of singular perturbation problems ]:or linear
differential equations of elliptic type, Arch. Rational Mech. Anal., 23 (1966), pp. 26-86.

[5] A. R. GOURLAY, The acceleration of the Peaceman-Rachford method by Chebyshev polynomials,
Comput. J., 10 (1968), pp. 378-382.

[6], On Chebyshev acceleration procedure for alternating direction iterative methods, J. Inst. Math.
Appl., 6 (1970), pp. 1-11.

[7] I. GUSTAFSSON, A class o]first order factorizations, BIT, 18 (1978), pp. 142-156.
[8] G. W. HEDSTROM AND A. OSTERHELD, The effect of cell Reynolds number on the computation of

a boundary layer, J. Comput. Phys., 37 (1980), pp. 399-421.
[9] H. KOBER, Dictionary of Conformal Representations, Dover, New York, 1957.
10] F. A. HOWES, Singularly perturbed semilinear elliptic boundary value problems, Comm. Partial Differen-

tial Equations, 4 (1979), pp. 1-39.
11] Some singularly perturbed nonlinear boundary value problems of elliptic type, in Proc. Conference

on Nonlinear Partial Differential Equations in Applied Science and Engineering, Steinberg et al.,
eds., Marcel Dekker, New York, 1980.

[12], Perturbed boundary value problems whose reduced solutions are nonsmooth, Indiana Univ.
Math. J., 30 (1981), pp. 267-280.

13 N. LEVINSON, The first boundary value problem for e Au +A(x, y)Ux +B (x, y)uy + C. + (x, y)u D(x, y)
for small e, Ann. of Math., 51 (1950), pp. 428-445.

[14] T. A. MANTEUFFEL, The Tchebyschev iterations for nonsymmetric linear systems, Numer. Math., 28
(1977), pp. 307-327.

15],Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration, Numer.
Math., 31 (1978), pp. 183-208.

[16], An incomplete factorization technique for positive definite linear systems, Math. Comp., 34
(1980), pp. 473-497.

[17] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[18] R. E. O’MALLEY, JR., Topics in singular perturbations, Adv. in Math., 2 (1968), pp. 365-470.
[19] J. DE PILLIS, How to embrace your spectrum for faster iterative results, Linear Algebra Appl., 34

(1980), pp. 125-143.
[20] P. K. W. VINSOME, Orthomin, an iterative method for solving sparse sets of simultaneous linear

equations, in Proceedings of the Fourth Symposium on Reservoir Simulation, Society of Petroleum
Engineers of AIME, 1976, pp. 149-159.

[21] M. I. VISHIK AND L. A. LIUSTERNIK, Regular degeneration and boundary layers for linear differential
equations with small parameters, Amer. Math. Soc. Transl. Ser. 2, 20 (1961), pp. 239-364.

[22] W. WASOW, Asymptotic solution of boundary value problems for the differential equation AU +
A(OU/Ox)=Af(x, y), Duke Math. J., 11 (1944), pp. 405-415.

[23] D. M. YOUNG, Iterative Solution ofLarge Linear Systems, Academic Press, New York, 1971.



SIAM J. ScI. STAT. COMPUT.
Vol. 5, No. 2, June 1984

(C) 1984 Society for Industrial and Applied Mathematics
0O4

A METHOD FOR CONSTRUCTING LOCAL MONOTONE
PIECEWISE CUBIC INTERPOLANTS*

F. N. FRITSCH" AND J. BUTLAND*

Abstract. A method is described for producing monotone piecewise cubic interpolants to monotone
data which is completely local and which is extremely simple to implement.

1980 AMS mathematics subject classifications. Primary 65D05, secondary 65D07

Key words, monotone interpolation, cubic Hermite interpolation

In [4] Fritsch and Carlson gave necessary and sufficient conditions for a piecewise
cubic interpolant to monotone data to be monotonic. The algorithm which they
proposed for computing such an interpolant suffers from three defects: (1) it requires
two passes over the data; (2) the result is dependent upon the order in which the data
are processed; and (3) it is potentially nonlocal (i.e., a correction introduced in the
first interval might ripple through the entire interpolant).

The purpose of this note is to acquaint the mathematical community with a
technique proposed by Butland [2] for obtaining monotone piecewise cubic inter-
polants which avoids all of these problems. Before we describe Butland’s method, we
recallsome notation from [4]. Letxl <x2 <" "<xn (n > 2) andletfi -’f(xi) 1,. ., n
be the values of a monotone function at these points. Let p(x) be a piecewise cubic
function such that p(xi) =fi and p’(xi) di, 1," ", n. Let Ai (fi+l-fi)/ (Xi+l--
xi),i=l,. .,n-1.

A piecewise cubic interpolation scheme is a method for selecting the values of
the derivatives di. Butland’s idea is to construct a function G such that

(1) di=G(Ai_,Ai), =2,... ,n-l,

and p(x) is monotonic. Since di depends only on neighboring slopes, a method based
on formula (1) is necessarily one-pass and local. If G is a symmetric function of its
arguments, the result will also be independent of the direction of processing, as desired.

Sufficient conditions for an acceptable G-function are given in [2], where Butland
observes that the harmonic mean

(2)
if S1S2 > O,

otherwise

satisfies all of these conditions. Unfortunately, formula (2) tends to produce inter-
polants that are "too fiat", because the values (ai,/i)= (di/Ai, di+l/Ai) are restricted
to the small square [0, 2][0, 2], contained in the monotonicity region. We have
experimented with various G-functions that fill out the square [0, 3][0, 3] more
completely, thus producing more "reasonable" curves. One such family of functions

* Received by the editors February 25, 1983.
t Mathematics and Statistics Division, Lawrence Livermore National Laboratory, Livermore, California

94550. The work of this author was supported by the U.S. Department of Energy under contract
W-7405-Eng-48 and by its Office of Basic Energy Sciences, Applied Mathematical Sciences Program.

Computer Officer, Postgraduate School of Electrical and Electronic Engineering, University of
Bradford, England BD7 1DP.

This is the largest square contained in the monotonicity region.
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is described in [3], where the recommended formula is

(3)

0 if Sls2 O,

 ls lls21sign if IS21_-<lSll,

G(S2, S) otherwise.

One negative aspect of (1) is that it gives the same value for dg regardless of the
relative spacing of the surrounding x-values. One way to remedy this is to replace (1)
with

(4) di G(Ai_I, Ai, hi-l, hi), 1, n 1,

where hi x.+a -x., j 1, , n 1. The conditions for an acceptable G-function now
are that, for all S1, 6’2, and all positive ha and h2:

A. G(S2, Sl, h2, hi) G(Sa, S2, ha, h2).

[This makes the formula independent of the order of the data points.]

B. min (S1, S2) a(Sl, S2, h 1, h2) -< max (Sl, S2).

[Thus the slope of the curve lies between the slopes of the two adjacent data segments.
While not necessary for monotonicity, this condition seems intuitively reasonable.]

Co G(Sl, S2, hl, h2)---O if SlS2=<0.

[For S1S2 0, this is a necessary condition for monotonicity. For S1S2 < 0, this implies
that the curve stays within the limits of the data.]

D. IG(Sa, S2, hi, h2)l min (31S11, 3ls2l).
[This insures that (ag,/3g) (dg/Ag, dg/a/Ag) lies inside the square [0, 3] x[0, 3].]

When coupled with appropriate boundary conditions, (4) with any acceptable G-
function gives a monotone piecewise cubic interpolant to the given data which has all
the properties we desire.

In the discussion of [1], Brodlie proposed a formula which can be written in the
form of (4) with

(s)

where

SlS2
G(S1, S2, h 1, h2) S2 -[- 1 o )S

if 51S2 > O,

otherwise,

1( h2 ) h1+2h2a= l+hl+h2 =3(h1+h2)"

We observe that this G-function satisfies conditions A-D and it reduces to (2) when
ha =h2.

Much experimentation indicates that (4) and (5), when coupled with the boundary
conditions in either [2] or [4], generally produce interpolants that are at least as
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"visually pleasing" as (1) and (3). Furthermore, it can be shown that for uniformly
spaced data (5) gives an O(h 2) approximation to f’(xi), whereas (3) is only O(h).

In Figs. 1-4, we exhibit the curves produced by the four methods discussed here
when applied to the data set Akima 3 of [4]. We conclude that the technique described
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Method: Fritsch-Carlson method

FIG. 1. Result from the algorithm proposed in [4] when applied to the Akima 3 data. (This and all
following examples used boundary derivatives computed by the standard noncentral three-point formula.)
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Method: Original Butland formula

FIG. 2. Result of applying formulas (1) and (2) to the Akima 3 data.
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Method: Fritseh-Butland formula

FIG. 3. Result o[ applying.formulas (1) and (3) to the Akima 3 data.
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Method: New h-dependent formula

FIG. 4. Result of applying formulas (4) and (5) to the Akima 3 data.

here leads to a method for computing monotone piecewise cubic interpolants which
is simple, symmetrical, and completely local. We remark that the method also produces
reasonable results when applied to piecewise monotone data. Software implementing
this algorithm may be obtained by writing to the first author.
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QUASICONFORMAL MAPPINGS
AND GRID GENERATION*

C. W. MASTIN’ AND J. F. THOMPSONt

Abstract. A finite difference scheme is developed for constructing quasiconformal mappings for
arbitrary simply and doubly-connected regions of the plane. Computational grids are then generated to
reduce elliptic equations to canonical form. Examples of conformal mappings on two-dimensional surfaces
are also included.

Key words, quasiconformal mapping, grid generation, elliptic equation

1. Introduction. The motivation for constructing quasiconformal mappings lies
in their application to the generation of curvilinear coordinate systems for two-
dimensional regions. Quasiconformal mappings may be used to reduce any second
order linear elliptic partial differential equation to canonical form (i.e., the principal
part of the differential operator reduces to the Laplacian). Consequently, if one is
solving an elliptic boundary value problem, an appropriate quasiconformal mapping
could be used simultaneously to fit the boundary contours with coordinate lines and
simplify the original partial differential equation. The equation, in canonical form,
could possibly be solved more efficiently or by methods which would not be applicable
to the original equation in cartesian coordinates. A related application is in the
construction of conformal mappings on two-dimensional surfaces.

Quasiconformal mappings have been studied extensively by complex analysts and
even generalized to higher dimensions. However, very little work has been done on
the numerical construction of quasiconformal mappings. Of the methods which have
been proposed, that of Belinskii et al. [2] uses a fixed boundary correspondence which
determines the mapping parameters, and the method of Mastin and Thompson [4]
would be difficult to implement on arbitrary regions. A finite element version of the
latter method developed by Weisel [9] appears promising. However, the class of
mappings and the type of regions presented in the examples are very limited. In recent
years a finite-difference method for constructing conformal mappings developed by
Allen [1] has been used by Mobley and Stewart [5], Pope [6], and Yen and Lee [8]
in the construction of orthogonal coordinate systems. Although all of these authors
use essentially the same numerical method, there are differences in the way the
boundary values and the conformal module of the region are computed. This method
is not as accurate or efficient as other conformal mapping methods using integral
equations or series expansions, but it does have the advantage of simplicity since the
module of the region, the boundary correspondence, and the interior grid points are
determined in a single iterative procedure. Modeling this conformal mapping pro-
cedure, it will be shown how quasiconformal mappings can be constructed and applied
to the reduction of elliptic equations to canonical form and the construction of
conformal mappings on surfaces. Except for the method of Godunov and Prokopov
[3], this appears to be the only conformal mapping method which can be easily adapted
to handle the problem of constructing quasiconformal mappings.

* Received by the editors June 11, 1982, and in revised form January 11, 1983. This research was
sponsored by NASA Langley Research Center under grant NSG 1577.

" Department of Mathematics and Statistics, Mississippi State University, Mississippi State, Mississippi
39762.

Department of Aerospace Engineering, Mississippi State University, Mississippi State, Mississippi
39762.
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2. Boundary value problem for quasiconformal_mappings. Let D be a bounded
simply-connected region in the xy-plane whose boundary C is a simple closed contour.
Let zl, z,., z3 and z4 be distinct boundary points ordered by the orientation on C.
There exists a unique quasiconformal mapping of D onto the interior of a rectangle
such that the points zi map to the vertices which are also ordered by the orientation
of the rectangle. The ratio of the length to the width of the rectangle is a quasiconformal
invariant called the module of D and will be denoted by m. The quasiconformal
mapping of the region D onto a rectangular region can be obtained by constructing
the mapping of D onto a square region S which satisfies the linear system

(1)
x m (crty + b’Ox )’

y -m(art,, + brly),

where ac -b2= 1. On setting (, u) (so, mrt), it is obvious that/z and u, as functions
of x and y, satisfy the Beltrami system, and hence we arrive at the desired quasiconfor-
mal mapping (see [4] for further details).

It is easily shown that x and y, as functions of : and r/, satisfy

ax 2Bxe., + 3,x,, J2(ax +
(2)

where
2 2bx, y, + cx 2c =ayn ,,

ayy -b(xy +xny)+cxcx,,
2

3’ ay 2bxy, + cx,
J xy, xny.

At each boundary point of D, one of the functions, or rt, is constant while the
other satisfies an oblique derivative condition. This implies that the condition/3 0
must be satisfied by x and y at each boundary point of S (except for vertices). Note
that in the solution of (1) we would have/3 0 throughout S. Thus the computed
value of/3 can serve as a test of the accuracy of our solution. It also follows from (1)
that m= x/a/y. Therefore, the equations (2) can be written as

m x +xnn mJ(a,, + by),
(3)

rn ye + ynn mJ(bx +cy).

The same procedure is used for doubly-connected regions with a periodicity condition
applied on two opposite sides of S.

The system (2) or (3) may be solved using an iterative procedure with (i) the
right-hand sides of the equations, (ii) the boundary values of x and y, and (iii) either
ce,/3, y, or an approximation of m, re-evaluated at each iteration. As in the previously
discussed conformal mapping methods, both (2) and (3) have performed equally well
in numerical examples.

3. Reduction of elliptic equations to canonical form. The application of quasicon-
formal mappings in the solution of elliptic equations is well known. An elliptic equation
of the form

aUx,, + 2bu,,y + CUyy f(u, u,,, uy ), ac b 2 1
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transforms to an equation of the form
2m u + u.. g (u. uo u.)

under the transformation defined by (1). This transformation will make the solution
of many problems much easier. For example, if a, b, and c are constants and f 0,
then it can be shown that g 0 and we need only solve m2u + u,, 0 on a square
region. This is efficiently done by separation of variables or a direct numerical method.
Computational grids for solving this problem on a simply and doubly-connected region
are given in Fig. 1.

FIG. 1. Ouasiconformal grids for simply and doubly-connected regions, a 1, b 1/2, c 45-.

The practicality of using quasiconformal mappings in solving elliptic equations
will be further examined in the following example. The function u cos (x-y) is a
solution of the partial differential equation

(4) Uxx + uxy + uy + cos (x -y)= 0.

We will solve this equation numerically for 0=<x, y =<r with Dirichlet boundary
conditions prescribed by the known solution. In terms of curvilinear coordinates, this
equation can also be written as

2 2Jm
(5) m ue + unn +-- cos (x y) 0.

The quasiconformal grid for solving (5) is illustrated in Fig. 2. For the purpose of
assessing the influence of the error in the iterative solution of (2) on the error in the
solution of (5), the iteration was stopped occasionally and the solution of (5) was
computed. A comparison of a normalized value of fl with the error in the solution
of (5) is plotted in Fig. 3. Note that fl has been normalized so that for the construction

FIG. 2. Ouasiconformal grid for the solution of elliptic equation, a c 2//-, b 1//.
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FIG. 3. Effect of error in the quasiconformal mapping on error in the solution of the partial differential
equation.

of conformal mappings (a c 1, b 0), the values along the abscissa would represent
the degree of nonorthogonality. Equation (4) was also solved on a uniform rectangular
mesh with the same number of grid points. The error in this solution serves as an
approximation of the discretization error which would result in solving (5) with the
exact quasiconformal mapping. It also serves as a test of our method against the
traditional method for solving (4). Fig. 3 indicates a nearly linear relation between
the plotted variables. This is to be expected since the major part of the truncation
error for larger/3, is due to the omission of the mixed derivative term, which is a
linear function of/3.

A few remarks concerning the numerical solution of (2) and (5) will be made.
The system (2) was solved using point SOR in the same way one would construct a
conformal mapping (see [5]). For the condition /3 0 on the boundary, a form of
one-side "upwind" differencing was necessary to maintain convergence for the value
of b 1/x/g in this example. The elliptic equation (5) was solved using a direct elliptic
solver (see [7]). After 35 iterations of (2) the maximum error in the solution of (5)
was within 125% of what we estimated to be the maximum discretization error. At
this point the value of [/3[ was still decreasing, but at a very slow rate. The exact value
for m in this example is 1 due to symmetry. The computed estimate, which was the
root-mean-square value of x/-d/y, was 1.00006 after 35 iterations.

This example does not illustrate an efficient use of quasiconformal mappings. The
method would be very efficient when one had to solve an elliptic equation with many
different boundary conditions or inhomogeneous terms. In that case the quasiconfor-
mal mapping would only have to be constructed once.

4. Conformal mapping on surfaces. A second area of application of quasiconfor-
mal mappings is in the construction of conformal (isothermal) coordinates on a surface.
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Let M be a smooth bounded surface in xyz-space which is defined by the parametric
equations

x x(, o), y y(, o), z z(, o).

The parameter region in the b0-plane may be an arbitrarily shaped simply or doubly-
connected region but it is assumed that the boundary is composed of simple closed
contours and the mapping from the parameter region to the surface has a nonvanishing
Jacobian.

A conformal mapping of M onto a rectangular region can be constructed by
constructing a mapping from a square region of the rt-plane onto M which satisfies

Pc. P. 0 and rn Ieel Ie, I,
where P (x, y, z) and rn is the module of the surface M. If these equations are
written in terms of the parametric variables and 0, we conclude that and 0 satisfy

mO bO, c,, rnc& aOn b4,,

where

IP012a b
P4, Po

d d

c --, d Ie, Po I.
However, this is equivalent to (1) with (x, y) replaced by (b, 0). In this case the quantity
which corresponds to /x/oy would be the cosine of the angle between a s constant
and a r/= constant coordinate line on the surface M.

Conformal grids have been constructed for several simply-connected surfaces.
Three surfaces are listed below. In the first two cases, the parametric region was the
projection of the surface onto the xy-plane.

(i) paraboloid: z 1 X
2 y2, X 2 ..[_y

2 <__--1,’
(ii) bicubic" z xy 3, 1 < x, y < 1
(iii) torus: x (2 + sin b) cos O,

y 1-(24,/r
z (2+sin b) sin O,-r/2_-< 4,-<_ r/2, 0-<- 0-<_ r.

The plots of these surfaces appear in Fig. 4. It is difficult to visualize the orthogonality
from the plots, but the departure from orthogonality was less than one degree except
near vertices on the boundary where the orthogonality condition was not imposed.

The advantages of conformal coordinates are well known. Problems involving
heat conduction, ideal fluid flow, and electric fields can be solved as easily on the
surface as they can on a rectangular region in the cartesian plane.

5. Conclusions and discussion. A finite difference method, which has been widely
used for the construction of conformal mappirgs, has been generalized to construct
quasiconformal mappings. This development will increase the class of problems which
can be solved using the currently available fast elliptic solvers developed by
Swarztrauber and Sweet [7]. Even when iterative methods are required, the absence
of a mixed derivative and a rectangular region both would tend to give faster conver-
gence especially when optimal iteration parameters are known.

We will conclude this report with an open problem. It is known that if a c 1
and b 0, then the solution of (2) which satisfies/3 0 on the boundary of the square
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FIG. 4. Conformal grids on subsets of a paraboloid, torus, and bicubic surface.

S will also satisfy the system (1), and hence determines a conformal mapping. This
follows directly once it is noted that the quotient

is an analytic function. Here it has been assumed, and numerical results tend to verify,
that the same result holds for arbitrary quasiconformal mappings. However, no proof
has been found.
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CONDITION ESTIMATES*

WILLIAM W. HAGERf

Abstract. A new technique for estimating the 11 condition number of a matrix is developed and
compared to an earlier scheme.

Key word. condition number

1. Introduction. Given an n n matrix A and a vector be R", the condition
number measures the sensitivity of x A-lb to changes in A or b. If x+ 8x satisfies

A(x+x) b + b,
then it is well known [6, p. 285] that

l[,xll < II,bll
Ilxll =llmll IIe-ll I[bl]

where II, denotes both a vector norm and the corresponding matrix norm defined by

(1) [IAII max {llAzll: Ilzll }.

The parameter K IIAIIIIA-II is called the condition number. Similarly, if x + 6x satisfies

we have [6, p. 285]"

(A + $A)(x + $x) b,

In practice, the most common norms are the 11, 12, and loo norms given by
1/2

Ilxll Ixil, IIlla=(__ x) IIll=max{Ixl, lxl,...,
i=1

It is well known [5, p. 21-22] that the corresponding matrix norms (1) can be expressed
as follows"

IIAIl,=m.ax E laol, IIAII=o(AA), IIAIl=max la,l,
i=1 ]=1

where ai/is the element in row and column j or A, T denotes transpose, and p is
the spectral radius. Both Ilall= and IIa-ll= can be estimated by the power method [7,
Chapter 9] while IIAII and IIAII can be evaluated explicitly. We focus on the problem
of determining IIA-II and IIA-llo. Of course, this problem is trivial when A- is
known. But since A- is rarely needed in scientific computations and the cost of
inverting a matrix is often 3 or more times the cost of factoring a matrix, it is important
to estimate Ila-lll from A’s factors, not from the inverse. Also note that any scheme
for computing the ll norm of A-1 can be used to evaluate the lo norm since

* Received by the editors March 16, 1982, and in revised form January 12, 1983. This research was
partly supported by the National Science Foundation under grant MCS 8101892.
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Cline, Moler, Stewart and Wilkinson [1] give a strategy for estimating I]A-a that
involves solving two systems:

ATx=b, Ay=x

where b is chosen during the substitution process to "enhance" the growth of x. Their
estimate is

IIA -all1 -Ilylll/Ilxllx.

This scheme is incorporated in LINPACK [2], a collection of programs for solving
linear systems. To study reliability, O’Leary [4] computed the average ratio

estimated IIA-1111
actual

for 100 matrices of dimensions ranging from 5 to 50 where the aij were taken from
a uniform distribution on [-1, 1 ]. Obviously, r _<- 1 and r 1 if and only if the estimate
is perfect. Column 2 of Table 1 is extracted from [4, Table 1]. O’Leary points out
that for negligible cost, the strategy [1] can be improved slightly.

TABLE

n Average Average

5 .69 .61
10 .60 .55
20 .52 .42
40 .43 .40

On the surface, the reliability seems good. If the condition number is "big", then
its estimate is big, on the average. However, these results are disappointing in the
following respect: Setting

1

let us solve Ay x and consider the estimate [[A-alla- IlYllx. That is, IIA-1I[1 is approxi-
mated by the absolute sum of elements from column 1 of A -1. Column 3 of Table 1
lists the average ratio

where a is the (i,/) entry of A-1. Observe that this simple strategy is almost as
good as the .sophisticated approach! The next section presents a new scheme for
estimating IIa-lll.

2. A new idea. Before developing our algorithm, let us note that for certain
matrices with special structure, IIA-II1 can be computed very quickly. For example,
if every element of A -1 is nonnegative, we can evaluate ILA-1111 by solving A 7"x 1
where 1 is the vector whose components are all 1. Since the elements of A-1 are
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nonnegative, the components of x are the column sums of A-1, and IIA-1111 is the
biggest component of x. Our goal, however, is to develop an algorithm that is suitable
for matrices whose elements are generated randomly.

Given an n n matrix B, definef:R’-->R by

Thus we have

Z(x)--IIBxll
i=1

IIBII1 =max {f(x)" IlXlll _<- 1}.

Abstractly, liB[Ix is the maximum of the convex function f over the convex set

S {x e R "" Ilxlll <-- 1}.

It is well known that a convex function defined on a convex, compact set attains its
maximum at an extreme point. The 2n extreme points of S are simply

{+/-e/" / 1,..., n}

where e is the unit vector whose components are all 0 except for the ]th component
which is 1. Since f is convex, it satisfies the inequality

(2) f(y)>=f(x)+Of(x)(y- x)

for all x, y R" where 0f(x) denotes a subgradient of f at x. If

Y b,ixi # 0
i=l

for each i, then 0f(x) is the usual gradient vector. Defining for 1 to n,

1 if bix,>-O,
(3) :i =

-1 otherwise,

the chain rule gives us

(4) Of(x)=TB.
Note that if one or more components of Bx are zero at some point x, then the function
f(. has a corner at x, and the set of subgradients has many elements at this point.
That is, if (Bx)i 0, then equation (4) gives us a different element of this set for each
value of i between -1 and 1. Thus equations (3) and (4) specify a particular element
of the subgradient set at the corners of f(. ). In the special case B A-a, computing
0f(x) by equations (3) and (4) is equivalent to solving two systems:

(5) Ay x, ATZ j

where
1 ifyi_->O,

’ -1 otherwise,

and Of(x)=za.
Our algorithm for estimating IIBIIt starts at a point x on the boundary of S. We

then find a/" for which

(6) IOf(x),l max Iof(x),l.
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If ]0[(x)A-< 0[(x)x, then stop. (Below we show that this x is a "local maximum" of [
over the polytope $). Conversely, suppose that Io[(x)A>o[(x)x. By the convexity
inequality (2) and the fact that [(ei) [(-ei), we conclude that [(ei) > [(x). Replacing x
by ei, this process repeats. Since [ is strictly increasing, vertices of S are visited only
once, and the iterations terminate in a finite number of steps. A Fortran code for our
algorithm is included in [3].

To prove that the final point x generated by this algorithm is a local maximum,
we assume that every component of Bx is nonzero. In the case that some component
of Bx is zero, we should modify (6) by letting the index/" correspond to the maximum
absolute component over the entire set of subgradient vectors. The algorithm still
makes sense without this modification, but x may not be a local maximum of [. When
the components of Bx are nonzero, [(. is linear near x. Hence x is a local maximum
of [ over S if and only if

0f(x)(y x) <- 0

for every y e S. If y is a vertex of S, then 0/(x)y +0f(x), for some since all but one
component of y is zero. If [Of(x)i] =<0f(x)x for each i, it follows that 0f(x)(y x) -< 0
whenever y is a vertex of S. Since S is the convex hull of its vertices, 0f(x)(y-x)_<-0
for every y 6 S, and x is a local maximum of f over S.

To test this scheme, we computed the ratio

estimated 1[A-1[11
tl

actual []A-1][I
for 200 matrices of the same dimension where the a0 are taken from a uniform
distribution on [-1, 1]. Our initial guess is x= n-ll. Column 3 of Table 2 gives the

TABLE 2

Average Average Probability
tl steps tl --> .99

5 .96 2.1 .82
10 .97 2.1 .83
20 .98 2.1 .88
40 .97 2.1 .85
80 .98 2.1 .86

average termination step, counting the initial guess x n-ll as step 1. Column 4 is
the proportion of the cases where tl->.99. With few exceptions, tl->.99 if and only
if the algorithm actually found the vertex e for which IIa-aeqll- [Ia-alla. It appears
that the reliability is independent of n. Since the average termination step is 2.1, the
scheme starts from x n-ll and almost always moves straight to a locally maximizing
vertex of S. Of course, each step involves solving the two systems (5). In column 4
of Table 2, we see that the local maximum computed by the algorithm is a global
maximum with high probability.

To estimate [IA-[[1 more precisely, our scheme is applied repeatedly to suitable
subspaces. During the first cycle described above, we visit vertices {v 1, vm} and
stop at a local maximum. Let {vm+l,..., v } be the remaining vertices; that is,

vm+l,"’,v }={e,...,e }-{v,...,v }.
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Then starting at the point

X vim
n --/ i=m+l

we apply the same scheme to the polytope S2 with vertices

{q-V/" m + 1,..., n }.

This leads us to a local maximum on $2. Our estimate for [[A-[]I is the bigger local
maximum. Letting t2 be the ratio between the estimated IIA-[I1 and the actual I[A-1II,
our results for the two cycle process are summarized in Table 3.

TABLE 3

Average Average Probability
t2 steps t2 >-- .99

5 .993 4.2 .94
10 .991 4.2 .94
20 .993 4.2 .95
40 .987 4.2 .90
80 .995 4.3 .95

Finally, the three cycle process yields Table 4.

TABLE 4

Average Average Probability
t3 steps t3 >-- .99

5 .997 6.2 .98
10 .995 6.4 .97
20 .997 6.5 .96
40 .996 6.4 .97
80 .997 6.6 .97

The worst condition estimate that we detected for the 200 random matrices is
shown in Table 5. If the hyperplanes {x s R n. j__ bijxi 0} do not intersect some face
of $ and v is any vertex of $, then one step of our algorithm starting from v takes us
to a global maximum of f over S. This situation corresponds to f being linear on a
face of S. On the other hand, when the hyperplanes intersect all the faces of S, then
f has corners on each face, and it is possible to hide the global maximum behind a
corner.

TABLE 5

n

5 .32 .67 .70
10 .39 .67 .76
20 .46 .62 .74
40 .43 .44 .78
80 .46 .71 .71
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FAST APPROXIMATION OF DOMINANT HARMONICS*

GEORGE CYBENKO’

Abstract. This paper presents a fast method for estimating dominant harmonics in a sequence of data.
In a stochastic sense, the proposed method finds the autoregressive scheme with a pure point spectrum
that best describes the data, while from a deterministic point of view, the method is a special case of the
Lanczos algorithm for finding eigenvalues of a symmetric matrix. Eigenvalue approximations come into
play because every circulant matrix is diagonalized by the discrete Fourier transform matrix, and so using
the Lanczos algorithm with the given data as the initial vector on a simple circulant matrix, the eigenvalues
that are first approximated are the eigenvalues corresponding to eigenvectors which are dominant in the
initial vector. It is shown that this method is related to "lattice methods" for linear prediction and to
Prony’s method for exponential approximation.

Key words, time series analysis, eigenvalue approximation, Lanczos algorithm, spectral analysis

1. Introduction. In this paper, we address the problem of approximating a given
sequence of data by a sum of sinusoids. This problem arises in many fields of application
such as astronomy, meteorology, geology and tidal analysis [27], [37]. Lanczos called
the problem "the search for hidden periodicities," while others have called a version
of it "the retrieval of harmonics" problem. The problem of finding dominant harmonic
components in a time series is a fundamental question [2] and motivated much of the
early work in the field [45], [47]. This problem is also basic to the estimation of point
(discrete) spectra, as will soon be shown.

Specifically, given a sequence of data s l, s2,’’ ", sn we wish to find a collection
of amplitudes a 1, a2, , ap, a collection of frequencies wl, w2, , wp and a collection
of phase angles Ol, 02, 19p with 0 _-< Wk 97" SO that

p

(1.1) sj , ak COS (]Wk +Ok)
k=l

where denotes some sort of approximation. Typically, p is taken to be significantly
smaller than n. It is significant that the frequencies Wk are not assumed to be rational
multiples of r such as would occur in a discrete Fourier transform analysis of the
data sequence.

The exact sense in which the approximation is made is of course central to the
formulation and ultimate solution of this problem, and we shall now present some of
the more important direct approaches to formulating the problem.

1. The nonlinear least-squares problem of determining the best fit according to
2

minimize ]s,-Y’. ak COS (/Wk+lgk)
]1" k

over all ak, 0k and Wk. Notice that in this solution, the residual vector e (ej),

sj , ak COS (]Wk + Ok) + ei
k
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is orthogonal to the vectors c(k)= (cos (iwk --I-Ok)) by the properties of linear least-
squares solutions. Such nonlinear least-squares problems have been discussed by a
number of authors [15], [16], [21], [35], [40] in a very general setting.

2. Modeling the sequence sj as

sj ak COS (/Wk) + e/
k

where the residuals e- form a vector orthogonal to each of the c(k)= (cos (/Wk)) and
have zero autocorrelations, that is, also satisfy., e/e/+k O fork=l,...,p-1.

This formulation and a technique for the estimation of this model were proposed by
Pisarenko [6], [25], [37]. The statistical model for this formulation assumes that a
deterministic sinusoidal signal is contaminated with additive white noise.

3. Fitting the sequence by an autoregressive model with a pure point spectrum
in the following sense" minimize the expression

IS + bp-lSi-1 + bp-2S/-2 +"" + bosi-p[2

subject to the condition that the roots of the polynomial
p

b (z bkz k bv l
k=O

all lie on the unit circle of the complex plane. To see the relationship between this
problem and the sinusoidal fitting problem, let Z be the unit delay operator defined
by (Zs)i Si-x. Then solutions to the homogeneous difference equation

b(Z)s =0

are precisely the weighted sums of sinusoids arising in the approximation, so that the
b .determined by the above problem is in a sense "the best difference equation" with
sinusoidal solutions satisfied by the data s. Once the difference equation is found, the
homogeneous solution to it then gives frequencies for approximating the data. Notice
that phases are not present in this solution but can be reconstructed as will be shown
later in the paper. The statistical model for this formulation is that the given data
satisfies an equation of the form

S + bp-lSi-l+" + bosi-p w

where wi is white noise.
It should be noted here that the discrete Fourier transform (DFT) is of limited

use since the transform of n data points results in n frequency amplitudes which
amounts to no data compression or modeling whatsoever. Even after the computation
of the DFT using a fast Fourier transform, the problem would remain of finding the
"most dominant" collection of frequencies, thus requiring at least n (log2 n) operations
and the use of complex arithmetic. As we shall see, the method proposed in this paper
is faster when p is less than log2 n and uses only real arithmetic. In fact, Lanczos [17]
did propose a method based on the interpolation of the discrete Fourier transform,
but his approach is completely heuristic and does not correspond to any model or
error assumptions.

A significant observation is that the first formulation of above, namely the
nonlinear least-squares version, is in a sense ill-posed, as the following considerations
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show. Any data vector s (s.),/’ 1,
the 2n + 1 vectors

c(k)= cos
2(n+l)

say

.., 2n + 1, is expressible as a combination of

for k=l,...,2n+l,

s E x,c (k).
k

Let us assume that only a few of the Xk are nonzero and that the nonzero Xk have k
even. Furthermore, assume that we have p 1 for simplicity. Thus we are to find a
and w to minimize

2 Isj a cos (]w)]Z.

Writing d(w)= (cos (jw)), the value of a minimizing the expression for a given w is
a s:rd(w)/d(w)7"d(w), to that for a given w the attainable minimum is

(1.2) Ils-ad(w)ll- s’s (s’d(w))
d(w)Td(w)"

Now c(k)Td(w)=O for w an odd multiple of 7r/2(n + 1). Thus every such w is a local
optimum and between every adjacent pair of odd multiples of zr/2(n / 1) is a local
minimum. Hence, in terms of w there are about 2n local optima. The standard
approach to solving such separable least-squares problems is to find critical points of
the expression in (1.2), and as we have just seen, there are about 2n such critical
points. In a problem with n- 1000, the density of such extreme points is so great
that it is extremely unlikely that any random starting point for the nonlinear least-
squares formulation of the problem will converge to a global optimum.

Although this type of example is admittedly specially structured, it raises some
very serious questions about the well-posedness of the problem in Formulation 1,
above. The potential density of local optima at which an iterative algorithm for solving
the approximation in Formulation 1 can get trapped necessitates a re-evaluation of
the straightforward nonlinear least-squares approach. The method presented in this
paper can be used as a technique for generating starting values for the nonlinear
iterations required for solving Formulation 1, and numerical experiments support this
claim.

This paper presents a solution to Formulation 3 above, and it has been empirically
observed that these solutions yield excellent starting values for the nonlinear iterations
arising in Formulation 1. An analysis of the method actually makes it possible to
predict situations where the technique is not expected to behave well.

Our method formulates the problem in terms of a symmetric averaging operator
rather than in terms of the shift operator, thereby forcing functions of the symmetrized
variable to have zeros occurring in reciprocal pairs. The pth degree polynomial in
this averaging operator minimizing the 2-norm is seen to be the pth degree monic
orthogonal polynomial with respect to a classical real inner product in the real interval
[-2, 2], and is easily computed from the data sequence using the symmetric Lanczos
algorithm [18], [26], [36]. The zeros of this polynomial can be obtained from the
eigenvalues of the tridiagonal matrix determined by the Lanczos iteration. The zeros
are guaranteed to be in the interval [-2, 2] by a classical theorem of Fejer and the
frequencies are obtained as the arccosines of one half of the zeros thus obtained. The
frequencies can then be used to estimate optimal amplitudes and phases.
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Goodman and Miller [19] have shown how the monic polynomial occurring in
the solution to Formulation 3 can be computed efficiently using the Levinson-Durbin
algorithm [11], [29] or the "lattice" orthogonalization method [3], [4], [22], [31]. The
actual estimated dominant frequencies are then obtained by finding the zeros of that
polynomial. The method presented here derives a tridiagonal matrix whose eigenvalues
are simply related to the estimated dominant frequencies. In theory, the zeros of the
polynomial obtained by Goodman and Miller and the arccosines of one-half the
eigenvalues in this paper are identical. However, simple methods for symmetric
tridiagonal eigenvalue problems are known to be more efficient and accurate than
polynomial root-finding methods [46]. Thus, in addition to describing an alternate
approach for computing the desired polynomial, the method of this paper offers a
complete, efficient and accurate solution to the problem of computing the actual
dominant frequencies.

It should be noted that many other methods exist for spectral resolution problems
of the type discussed here. In particular, the papers [19], [44] address different
formulations (closer to our Formulation 1) that use exhaustive search techniques for
estimating dominant harmonics. The work by Marple [32] discusses Prony’s method
and Pisarenko’s method for solving Formulation 2.

Complete details of our approach are given in 2, while connections between
this method and currently popular methods for spectral estimation and resolution are
presented in 3. The results of some numerical experiments are in 4.

2. The algorithm. Recall that we are interested in solving the formulation to the
sinusoidal approximation problem as given in the third approach above. For ease of
presentation, we shall consider the case where the data sequence is extended with
zeros to be of arbitrary lengththat is, our problem is to find a monic polynomial
q(z) so that the expression

Ilq(z)sll= Z I(q(Z)s)l

is minimized, subject to the constraint that q(z) have roots on the unit circle. Here
as in the remainder of the paper, an upper case Z denotes the shift operator

(Zs)j sj-1

while lower case z denotes a complex scalar variable.
Although the summation is written as an infinite one, there are no more than

n +p nonzero terms. A feature of this approach is that we are padding the data
artificially with zeros to get a convenient form, but as we shall see, this is precisely
one of the ingredients of the formulation that make the problem tractable. Another
approach is obtained by summing only over interior indices j where the explicit padding
by zeros is not required, and although this formulation is solvable by ideas similar to
those presented in this paper, the introduction of a nonclassical orthogonal polynomial
theory becomes essential (this nonclassical theory is intimately related with "close-to-
Hankel" matrices as in [23]), and the root locations of the minimizing polynomial are
no longer easily kept on the unit circle. That extension will be presented in a
forthcoming paper.

In the present case, we restrict our attention to the above situation where data
is augmented with zeros. For problems with n large and p small, the difference between
the two formulations is expected to be quite small. Furthermore, results and algorithms
are cleaner and more complete in this case.
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A real polynomial with zeros on the unit circle is factorable into quadratic terms
of the form

z + ,z + 1,

where /lies in the interval [-2, 2], and possibly linear terms of the form

z-1 and z+l.

For the moment, we shall only consider the situation where q (z) has quadratic factors
with 1,1 < 2, and it will subsequently be clear how to accommodate the situation where
linear factors are allowed. That is, the possible real factors of q (z) that we consider are

z2+/z + 1

with 3’ in (-2,2) only. This means that q(z) has even degree, say 2p=p’. The
minimization of above is therefore equivalent to the problem

minimize IIz -oq (Z)s =
where q(Z) is a polynomial of degree 2p in Z with zeros on the unit circle. Such a
polynomial is clearly a function of Z* +Z because of the symmetry of the real quadratic
factors of q. Letting f Z* +Z, we are to solve

minimize IIr()sll

where the constraint that q(z) is monic with zeros on the unit circle has become the
constraint that r(Z) has zeros in the interval (-2, 2) and is monic.

Our first result is that the constraint on root locations for r(Z) is actually built
into the formulation of the problem and is therefore automatically satisfied by our
reformulation in terms of the symmetric operator f.

THEOREM 1. The monic polynomial r(z determined by

(2.1) minimum IIr(f)s 2

has all roots in the interval (-2, 2).
Proof. Consider the inner product defined by

(u, v) s (a)s

where u and v are polynomials in z. Although s and l are infinite, the inner product
is determined by finite sections so we can replace s and f by finite versions, sufficiently
large, whose size depends on the order of uv(z). In fact, we can replace l by the
finite circulant

-0 1 0 0 1-
1 0 1 0

0 1 iO
so that for u and v of degree less than p, say, we have

(u, v s uv (f’)s (Fs *uv (D)(Fs
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where F is the discrete Fourier transform matrix and D is the diagonal matrix of
eigenvalues of fl’ [8]. The eigenvalues of f’ are in fact

dk 2 cos (-), k=0,...,N-1,

all of which lie in the interval [-2, 2]. Thus

(u, v>- Z I(fs)l=uv(d),

and so the inner product thus induced is seen to be an inner product with respect to
a discrete measure on the interval [-2, 2].

Furthermore, it is well known that the solution to

minimum IIq(n)sll2 minimum (q, q)

over monic q(z) of degree p is precisely the pth monic orthogonal polynomial with
respect to the inner product (.,.) [7].

Fejer’s theorem [7], [12] states that the zeros of this polynomial all lie in the
interval [-2, 2]. The fact that the zeros actually lie in the interior of this interval is
seen from the fact that the orthogonal polynomials form a Sturm sequence. This aspect
is reviewed after the properties of the polynomials are developed in the following.

Thus solutions to (2.1) over monic r(z) must have zeros in the desired interval.
Hence, the factors of r(l’) are of the form

Z* +Z- ,/I, where -2 < < 2.

Each of these linear factors in Z +Z* gives rise to a conjugate pair of zeros of
q(Z) r(Z +Z*)Z",

’Y i1 (3,/2)2z =-+2 i’/1-(’//2)2’ z*=-
which lie on the unit circle.

Hence, we have reduced the problem to computing the orthogonal polynomials
with respect to the above inner product and then finding the zeros of the pth polynomial
obtained. The sequence of orthogonal polynomials can be easily computed using the
triple recursion relationship and the Lanczos algorithm, after which a tridiagonal
eigenvalue problem determines the zeros of the pth orthogonal polynomial. The details
of this are now presented.

First, we notice that the operator fl of above is symmetric, so that the inner
product in question satisfies

(xu, v) (u, xv ),

which is precisely the requirement for a triple recursion relationship to hold between
triples of successive orthogonal polynomials. In fact, it has already been shown that
this inner product is induced by a positive discrete measure over the interval (-2, 2).
Letting q(x) be the/’th orthogonal polynomial, we have

qj+l(X) (X -ozi)qi(x)-iqi_(x

where

(xqj, qj (xqj, qj-1
Oi (% qi) /3i (q/-1, qj-1}"
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A more balanced version of this recursion with better numerical properties is [36]

/3o (-,,/(1, 1), ro(- 1.

Forj=l top+l do

qj-l(x) rj-l(X)/fly-1

rj(x) xq-l(X)-fli-lql-2(x) (q-l=0)

r(x) r(x) aq- (x)

A fundamental feature of this iteration is that the characteristic polynomial of the
matrix

1 0 3

#-1 a I

T(Ol, ", egg; #1," ’, #p-l)

is the desired monic polynomial minimizing (2.1). This is easily shown by induction
on the order of the matrix. Hence, the eigenvalues of the matrix are the zeros of the
monic minimizer of (2.1).

A significant simplification of the above is the observation that the only required
quantities are the vectors

qi(lq)s, ri(fl)s
since they are sufficient for computing the inner products giving the coefficients aj

and/3.
Hence, we now state this vector version, which we shall call "the symmetric lattice

algorithm", a name to be explained in the next section. Here s, q, r, and v are vectors
of length n.

THE SYMMETRIC LATTICE ALGORITHM.

s (si) given with si 0 s,_/l for 1 to p,

sbo/sT"s, r--o, vO.

For/" 1 to p + 1 do

For =2 to n-1 do

(2.2)

ri (-- (qi+l +qi-1)/bi-l-bi-lvi

r - r aiq
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This part of the algorithm requires about 4np multiplications. The second phase of
the algorithm is then to find the eigenvalues of the tridiagonal matrix T(al,’", at,;
hi, bt,-1). This requires about p3 multiplications using the symmetric Francis QR
algorithm [13], [18], [36].

We now state a simple fact about such a tridiagonal T as computed by our
algorithm above.

LEMMA 1. The matrix Tof above is unreduced that is, none of the bi are zero.
Proof. Recall that

b --IIrll -IIr(n)sll
for some polynomial r(l)) of degree i, which will only be 0 if s satisfies exactly a 2ith
order difference equation. Since s rs 0 but is padded with zeros, this is clearly impossible
and the result is proved. [:!

The fact that T is unreduced allows for the direct use of fast and accurate methods
for solving symmetric tridiagonal eigenvalue problems. A description of methods and
their actual implementations may be found in [13], [18], [36], for instance.

The method described above solves the problem where the minimization is over
all polynomials with roots on the unit circle, except at the distinguished points +1
and -1, which would lead to linear real factors in the polynomial and could therefore
not be accommodated by the above technique. To include these linear factors, it seems
to be necessary to solve the auxiliary systems

min IIq (a)(z 1)sll=, min IIq (a)(z + 1)sll=,
min IIq (a)(Z= 1)sll=

where the minimizations are done over monic q(fl) of degree p- 1, p- 1 and p- 2
respectively. The four minimizations can then be compared and the smallest picked.
(The fourth minimization is without any linear factors.)

A fundamental question concerns the behavior, as p increases, of the residual norm

Ep min IIq (a)sll, degree (q) p,

over monic q with roots on the unit circle. In a problem where p is not known a
priori, it is essential that the algorithm provide some information about which order
p is optimal. This is in fact possible, as the following results show.

LEMMA 2 Ep (liP bi).i-1

Proof. The above results have shown that Et, is the norm of the monic orthogonal
polynomial of degree p with respect to the norm (.,.). The symmetric lattice algorithm
generates orthonormal polynomials in such a way that the relationship between
successive leading coefficients is

establishing the result.
LEMMA 3.

qi(x)
__xqi-l(X)

hi-1
lower order terms,

0 < bi <= /-.
In particular, Ei need not be a monotonic decreasing function of i.

Proof. Since b/2 (qi()s)T(fqi_l(’)S) and ][qi_l(ft)sll2= 1, an application of the
Cauchy-Schwarz inequality establishes the result once we note that the operator
2-norm of II is 2. The fact that some of the bi may actually be larger than 1, that
is, that Ei need not be decreasing as a function of i, is seen from the examples of 4.
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A few words are now appropriate to discuss the phase angles which have not
played a role in the procedure thus far. We note firstly that a sinusoid determined by
a sine function such as sin (/’w + 8) is trivially expressible as a cosine function with a
phase shift. Now the operator

Z +Z*-2 cos (w)I

annihilates any cosine function of the form cos (w/" + 8) regardless of the phase, 8, so
that we must do some extra work to recover the phase angle from a term such as

cos (iw + 0).

Now suppose that a value, 2 cos (w), has been computed as one of the roots of the
minimizing polynomials so that a component of the form a cos (wj+ O) is expected
to be significant in the data. We wish to recover the phase angle 8. Using the elementary
trigonometric identity

(2.3) cos (A +B)=cos (A) cos (B)-sin (A) sin (B),

we can find the least-squares components of the vectors

0 for 1 _-</’ =<p and n _-</" =<n +p,
c

cos (jw) otherwise,

0 for 1-<j<=p and n_-<j=<n +p,
s=(sj), si= sin(/w) otherwise

in the data vector s. Using the coefficients computed by the solution, it is then possible
to reconstruct the phase by using the identity (2.3).

The computation of the phase angles would of course significantly increase the
computational complexity--requiring about O(np a) additional algebraic operations
and 2np evaluations of the elementary trigonometric functions, sine and cosine. If
only the primary angles w are desired, however, this extra effort is not necessary. An
implementation of these ideas is presented in 4, where numerical examples and
comments on them are given.

3. Connections with Prony’s method and lattice algorithms. The basic connection
between the method described in this work and the classical Prony method for fitting
data with exponentials [24], [38], [39] is through the use of shift operators and their
action on exponential functions. The essential idea in both cases is quite simply
described as follows.

Prony’s method. To approximate a sequence sj by

f. ., ak e --i
k

note that

P(Z) I-I (z -e -wk)

annihilates f (.). Hence we can estimate wk by finding the zeros of the polynomial
P(Z) that minimizes the expression

[Ie(z)sll .
Symmetric Prony’s method. To approximate the sequence s by

f.=Eake iwki
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where the Wk occur in conjugate pairs and coefficients ak for these conjugate pairs
are equal, note that such an f (f.) is annihilated by a polynomial of the form

P(Z) 1-I (Z + 2 cos (w) +Z-)

where P(Z) may be written as a polynomial in Z +Z-, say O(f), where f Z +Z-.
Hence, we can estimate w by finding the zeros of the monic polynomial O(fl) that
minimizes IIo(f )sll over all such O.

Autoregressive modeling of time series [2] and linear prediction [30] use the
same basic construction as does Prony’s method, although with quite different goals.
An autoregressive time series of order p, si satisfies an equation of the form

S +bp_lSi_l +" +bosi-p + w 0

where w. is white noise and the polynomial

b (z) z p + bp_lZp- +. + bo

has roots inside the unit circle. Hence, given a time series, the problem of finding the
best model of a given order that describes the time series in a least-squares sense
involves computing coefficients of b (z) that minimize the expression

IIb(Z)sll,
with the constraint that b(z) have roots inside the unit circle. The polynomial b(z)
can also be used very successfully to estimate the spectrum of the time series using a
method known as "maximum entropy spectral estimation" [3], [10].

There are basically two direct ways of solving for the coefficients of b (z). Noting
that the vector of coefficients is the solution to a linear least-squares problem, it is
possible to form the normal equations, which involve a Toeplitz matrix, or to
orthogonalize the column space in the least-squares problem, which also involves a
Toeplitz matrix [4]. Methods for solving the Toeplitz normal equations efficiently have
been known for some time [11], [23], [29], [34], [43] while more recently fast methods
for orthogonalizing have been discovered also [3], [4], [9], [22], [31]. These fast
orthogonalization methods have become known as "lattice" or "ladder" methods
because of their form when implemented as circuits. It is for this reason that we call
our procedure the "symmetric lattice" algorithm.

By contrast, the least-squares problem solved here involves normal equations
with a Hankel matrix, which could be solved efficiently also [1], [33], [41] by essentially
using the three-term recurrence relation for real orthogonal polynomials. The corre-
sponding solution obtained by orthogonalizing the column space which is presented
here uses the symmetric Lanczos algorithm. The advantages are quite evident
orthogonalization is numerically superior to forming normal equations for solving
least-squares problems [17-1, [28], and the computation of the roots of the resulting
polynomial is easily reduced to a symmetric tridiagonal eigenvalue problem for which
efficient and accurate algorithms exist [13], [18], [36].

The correspondence between the Toeplitz and Hankel matrices is quite simple.
Given the sequence, si, define

where we use zero when si or Si+k is undefined (these are the autocorrelations for the
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time series) and define inductively
o yi+l -lyiy =s, =Zy +Z

h

where we once again pad with zeros at the boundaries of definition (these parameters
hk can be referred to as "Markov" parameters). The Toeplitz matrix is then

ro rl rp

r

"rl

and the Hankel matrix is then

hi h2 hp-]
h2 .’/

lii.. hlpl
The Markov parameters hk are related to the autocorrelations rk through the following
expressions involving binomial coefficients:

ho =/’07

hi r-1 +rl =2rl,

h2 r_2 + 2ro + rz 2(to + r.),

h3 r-3 + 3r_1 + 3rl + r3,

In general, if we let Zrk rk/l and Z-rk rk-1, then

hk (Z + Z-1)kro.
Notice that both the Toeplitz and Hankel matrices are positive definite and symmetric.

The polynomials arising from the Toeplitz matrix are orthogonal with respect to
a measure over the unit circle while the polynomials arising from the Hankel matrix
are orthogonal with respect to a measure on the real interval [-2, 2]. The relationship
between these two sets of polynomials goes as follows [14], [42]:

Let qi(x) and pi(z) be orthogonal polynomials with respect to the measure on the
interval [-2, 2] and the measure on the unit circle, respectively. Then

qj(x) Ci (P2.i( z) q- z2pp2 ()) z-J
where C. is a constant and x z + z -1.

It can be shown, using results from the theory of Pad6 approximation, that the
minimizing polynomial sought to solve (2.1) has a closed-form expression in terms of
values of the discrete Fourier transform of the data sequence s and Vandermonde
determinants of the n +p roots of unity (this involves a combination of results from
[53, [203).
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4. Numerical examples and a priori analysis of the method. The essence of the
described method comes from the symmetric Lanczos method [18], [36], which is
typically used to estimate eigenvalues of symmetric matrices. In this case, the symmetric
matrix is Z /Z-1, which has a completely trivial eigenstructuremthe eigenvectors are
the columns of the discrete Fourier transform matrix and the eigenvalues are of the
form 2 cos (2k/N) where N n /p. The data vector s plays the role of the initial
vector in the Lanczos algorithm.

Empirically, and to some extent analytically, it is known that the approximate
eigenvalues that emerge from the Lanczos method roughly fall into two groups:

For small values of p, the eigenvalues corresponding to eigenvectors of Z /Z-1

that are "dominant" in s are estimated;
For large values of p, the extreme eigenvalues of Z +Z- emerge.

The meanings of "small" and "large" are relative to the problem, and what
happens between large and small values is quite arbitrary. In our case, we must
definitely consider the case where p 5 or less and n 100 or more as qualifying as
circumstances where p is small. Hence, our applications suggest that as p gets too
large, the information that begins to emerge is for the most part irrelevant, since the
larger eigenvalues of Z +Z- begin appearing and these are trivially known. The
quantities of interest are precisely the harmonic components of the data vector s, and
so p must be small for the method to work best.

In the following examples, n 1,000, and the first and last ten entries of s were
0 (to conform with the zero padding discussed earlier). For 10 </" < 990,

si 5.5 cos (1.3/’)+ 5.5 cos (0.2/’)+ 1.7 cos (2.5/’)+ 0.5 wi

where wi were independent samples from the uniform distribution on the interval
[-1,1].

It is important to note that in these examples, the form of the data, s, is not meant
to suggest a stochastic model, although that would be possible. The data has been selected
to display some obvious dominant harmonic components.

Recall from 2 that the reciprocal of the product of the/- coefficients was a
measure of the minimal error

min IIr(a)sll=:, r monic, degree (r) i,

and that a heuristic monitor of the fit was monotone decay of E. When E begins to
increase, the correct "order" of the fit has been surpassed.

We now list in Table 1 the results of the computations.

TABLE

0.93905 0.826
2 1.57031,0.49533 0.985
3 2.50044,1.30003,0.20218 0.103
4 2.50456,1.58907 0.128

1.29791,0.20115
5 2.51664,2.35310,1.30101 0.137

1.00463,0.20059
6 2.72209,2.49510,1.57326 0.131

1.29930,0.73411,0.20024

Order (=p) Arccosine (0.5 eigenvalues) Relative
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Note that the error is not monotonic and that at the correct model order, a steep
drop in the error was observed. For p 3, the dominant frequencies were obtained
to three significant digits. As the order increases past 3, the frequencies computed
gradually but distinctly cease being reasonable approximations to the three dominant
frequencies in the data. This trend and the fluctuating value of Ej about the value
0.13 continues.

One feature of this example is that the frequencies enjoy significant separation
and have amplitudes that are of the same order of magnitude. Our next example has
two closely spaced frequencies, and we see that the method does not separate them well.

Consider

sj 3.5 cos (0.2/’)+4.0 cos (2.7/’)+ 1.1 cos (0.4/’) + 0.3w.
where wi are once again independent samples from the uniform distribution on [-1, 1]
(see Table 2).

TABLE 2

Order (= p) Arccosine (0.5 eigenvalues) Relative Ep

1.6178 1.87
2 2.6989, 0.2255 0.13
3 2.6999, 1.2371, 0.22136 0.16
4 2.7004, 2.1377 0.15

0.6126, 0.2136

The steep drop in the residual from p 1 to p 2 suggests that p 2 is the correct
model order, although the data itself was generated by three harmonic terms. The
point is that 0.2 and 0.4 are quite close and have been observed as one component.

The final example differs from the above two in that the random component is
large relative to the size of the data vector itself. In fact, the signal-to-noise ratio is

Ilwll- 0.17,
Ilsll

so that almost 20% of the data is noise (here w is the vector of white noise terms, wi).
The data is (see Table 3)

s. cos (1.3/’) + cos (2.5/’) + 0.6wi;

TABLE 3

Order (= p) Arccosine (0.5 eigenvalues) Relative Ep

1.8248 1.08
2 2.4822 1.2715 0.42
3 2.5017, 1.3083, 0.6245 0.31
4 2.5070, 1.0838 0.33

1.2981, 0.4238

In spite of the large noise component, the method has successfully detected two
harmonic components with two significant digits after rounding. For an extremely fast
and simple procedure, this must be regarded as significant evidence of the method’s
power.
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More work on the analysis of this method is currently in progress. For example,
most data of the type handled here is the result of discrete sampling of continuous
data. How should the sampling rate be selected to optimize the behavior of the
symmetric lattice algorithm? Although the Lanczos method for eigenvalue estimation
has been the subject of extensive study, the behavior for small p, which is precisely
the case of interest here, has never been adequately addressed. This is primarily
because typically one is interested in spectral information about the underlying matrix
and not the spectral content of the initial vector.

The theory described above suggests that any polynomial, say p, in Z +Z-1 will
define a "lattice algorithm" that gives information about the harmonic components
of a data vector. The image of the unit circle under the polynomial then becomes the
primary object of interest because this determines how the eigenvalues of p(Z /
which are the images under p of the real parts of the Nth roots of unity, are distributed
and the Lanczos method for small p becomes important again. Work in these directions
is currently in progress.

5. Summary. We have presented a method for estimating the dominant harmonic
components in a sequence of data. The method requires about 4np operations to
compute a symmetric tridiagonal matrix whose eigenvalues are the cosines of twice
the iv approximating frequencies where the data consists of n sample values.

Section 1 motivates the form that the approximation takes, including a discussion
of other approaches. Section 2 contains a detailed derivation of the method and an
explicit listing of the main part of the algorithm. To summarize, let s be the n-vector
of data padded with zeros as described in 2. We then execute the algorithm in (2.2)
for the desired value of p which is the number of frequencies sought. This gives a
symmetric tridiagonal matrix whose eigenvalues are then computed. The desired
frequencies are the arccosines of 1/2 the computed eigenvalues.

Section 4 contains some numerical examples with comments on the behavior of
the method.
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AN EFFICIENT TECHNIQUE FOR THE COMPUTATION OF STABLE
BIFURCATION BRANCHES*

H. WEBERt

Abstract. This paper deals with an application of the multi-grid iteration for large sparse linear systems
to the problem of computing stable branches of solutions of nonlinear eigenvalue problems which bifurcate
from simple eigenvalues. The theoretical background of the algorithm considered here is the selective
Picard iteration. We present numerical results for difference approximations of nonlinear elliptic eigenvalue
problems in one and two space dimensions. They confirm the efficiency of the algorithm proposed here.

Key words, multi-grid method, numerical solution, bifurcation, stability, nonlinear elliptic eigenvalue
problem

1. Introduction. Recently there has been a widespread interest in the numerical
solution of nonlinear eigenvalue and bifurcation problems, cf. e.g. [1], [19], [26].
Important results concerning the finite-dimensional approximation of nonlinear
parameter-dependent equations were obtained e.g. in [3], [5], [22], [32]. These results
give a good insight in the behavior of the solutions of finite element and finite difference
approximations in the neighborhood of turning and bifurcation points. On the other
hand there has been some progress in the computational solution of the finite-
dimensional nonlinear systems arising via discretization near such singular points, cf.
e.g. [12], [19], [31]. However, in this context, only few publications dealt with the
efficient solution of large, sparse systems arising from discretizations of partial differen-
tial equations. We mention [8], [17], [23], [24], [25].

Georg’s generalized inverse iteration [11] could also be used in connection with
a nested iteration and a fast solver or a linear multi-grid code, i.e. in a manner similar
to the approach discussed here.

In this paper we describe a multi-grid technique for the computation of stable
branches of solutions of nonlinear eigenvalue problems which bifurcate from the trivial
solution at simple eigenvalues. The algorithm is based on the selective iteration scheme
analyzed by Scheurle [27], [28] and on the nested iteration together with some
elementary bifurcation theory.

For the linear elliptic problems to be solved one can use a fast elliptic solver or
a linear multi-grid iteration method. The class of multi-grid methods that we use here
is based on work by Brandt [4] and Hackbusch [13], [15]. The multi-grid method has
some very desirable properties. For certain elliptic operators on an n by n grid it
computes the approximate solution to truncation error accuracy in O(n 2) arithmetic
operations and O(n 2) storage. It seems natural to use multi-grid methods for solving
nonlinear eigenvalue problems, too. However there are various different approaches
possible, due to the variety of different problems arising in this area. Compare the
papers [8], [17], [23], [25].

In 2 of this paper we state some important facts concerning the selective iteration
for bifurcation problems. The behavior of finite-dimensional approximations to simple
bifurcation problems and some useful results of bifurcation theory are discussed in

3. In 4 we describe the multi-grid algorithm for computing stable branches and in
5 we present numerical results.

* Received by the editors August 5, 1982, and in revised form February 17, 1983.

" Rechenzentrum und Fachbereich Mathematik der Johannes Gutenberg-Universit/it Mainz, Postfach
3980, D-6500 Mainz 1, Federal Republic of Germany.
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2. The selective iteration procedure for bifurcation problems. Let X be a real
Banach space. We consider a nonlinear mapping F: X X satisfying

(A1) F C2(I x V, X),

where I c is a suitable interval with A0 I and V is a certain neighborhood of 0 X.
Assume that

(A2) F(A, 0) 0 for A /,

i.e. (h, 0) is the trivial solution of

(2.1) x =F(A, x).

Furthermore, assume

1 is a simple eigenvalue of F(;to, 0). All other spectral points are contained(A3)
in a ball with radius strictly less than 1 about the origin.

Let 4’ be a normed eigenvector of Fx := Fx(AO, 0) corresponding to the eigenvalue 1
and Z be a complement of span {4’} in X. Suppose that

(A4) Fx (Ao, 0)4 R (F -id).

Here R denotes the range of a linear operator. By N we shall denote the nullspace.
THEOREM 1. Under the assumptions (A1)-(A4) the point (Ao, 0) is a simple

bifurcation point of equation (2.1). The nontrivial solutions of (2.1) in I V form a
branch (A(e),x(e)),lel<-eo, where x(e)=eck+ed/(e) holds and A’[-eo, eo]o,

" [-eo, eo]OZ are continuously differentiable functions, A (0) Ao, (0) 0.
For a proof see [9].
By T(A) we denote the simple positive eigenvalue of Fx (A, 0) with y(Ao) 1. It is

well known (cf. [10]) that T(A) crosses the unit circle with "nonvanishing velocity"
y’(Ao) 0, if (A4) is valid.

We call a fixed point z of a mapping G’X oX stable, if p(F’(z))< 1 holds. By
p we denote the spectral radius. A solution (A, x) of (2.1) is called stable (unstable),
if x is a (is not a) stable fixed point of F(A,.). The natural iteration method (Picard-
iteration) for solving (2.1) is

(2.2) X[n+l]=F(Z,x[n]), n =0, 1,2,....

THEOREM 2. Let (A1)-(A4) be valid and assume that 3,’(Zo)>0. Then the trivial
solution of (2.1) is stable for Z <Zo and unstable for Z >Zo. Suppose that Z’(e) 0 for
e rs O. Then the supercritical bifurcating solutions obtain stability from the trivial solution,
whereas subcritical solutions are unstable.

For the proof see [10] and [28].
For the convergence of (2.2) in the case of supercritical branching we have the

following result of Scheurle [28].
THEOREM 3. Let (A1)-(A4) be valid and 3,’(Z0)>0. Assume that Z’(e)>0 for

e >0 and Z’(e)<0 for e <0. Then, for small IZ -Zo]>0 there is a neighborhood Uof
0 X, depending on A, such that the sequence {x,} defined by (2.2) converges to a stable
fixed point ofF(A, for all x3 U\D, where D is a proper submanifold of U.

A similar result holds in the case of transcritical bifurcation where we have
convergence of course only to the supercritical part of the branch.

In applications one frequently has the following setting. X and Y are Banach
spaces, X c Y. Stationary solutions of many physical problems are described by
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equations of the type

(2.3) Lu G(A, u), u D(L)cX.

Here L’D(L) Y is a closed linear operator and one has G" R X Y, G(A, 0)= 0
for all A. OftenL has a compact or bounded inverse L-1’ Y X. Then (2.3) is equivalent
to

(2.4) u =L-G(A, u)=:F(A, u), u X.

The right-hand side defines a nonlinear operator on X satisfying the conditions of
the above theorems. Thus in a neighborhood of a bifurcation point the iterative
algorithm

Compute un+11 from
(2.5)

Lu["+l]=G(A,u[’]), ut"+D(L), n=0,1,2,...

yields the stable solutions of (2.3) in the sense indicated above.
A physically relevant criterion for stability is r(L G, (A, u)) c C+

{z CIRe {z} > 0}. For ordinary differential equations it guarantees the stability of a
solution u with respect to solutions of the evolution equation

(2.6)
du
--+Lu-G(A,u)=O.
dt

Generalizations to parabolic systems were given in [21]. In general, very little can be
said about the spectrum of L-Gu(A, u) if tr(L-aGu(A, u)) is known and vice versa.
However, for an important class of nonlinear elliptic eigenvalue problems the numeri-
cal and physical notion of stability coincide, cf. [27]. The problems treated in this
paper belong to this class.

From the arguments in [27], [28] it is clear that the iteration scheme (2.2) is also
applicable to problems where bifurcation occurs from a nontrivial solution u u (A)
if the above stability conditions are satisfied. This holds of course for the discretized
problems, too. However, it should be mentioned that discretized bifurcation problems
generally exhibit numerically perturbed bifurcation, i.e. the true bifurcation is
destroyed and one obtains two nonintersecting half branches, eventually having turning
points, cf. [3], [5]. Under certain circumstances this will not cause difficulties for the
iteration process (2.2) but it is a situation different from the one discussed below,
where we focus on bifurcation from the trivial solution which is not destroyed by
discretization.

3. Finite-dimensional approximations to bifurcation problems. Let X and Y be
real Banach spaces. Consider the equation

(3.1) Lu -f(,, u) O,

where L (X, Y), f: R X Y smooth, f(A, 0) 0 for all A . We assume that

N(L-f,(,o, 0))=span {4}, 4, 0,

(3.2) R (L -f, (A0, 0)) {y Y, (, y) 0}, 0 # Y’,

(, f, (Xo, 0)) 0.

Y’ denotes the dual space of Y and (.,.) the duality pairing. Under these hypotheses
,o is a simple bifurcation point of (3.1). The branching solutions have the form

2
Wu (e) eck + e (e), A (e) Xo + err (e), el. [20].
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Now consider a finite-dimensional approximation of (3.1) of the form, say

(3.3) Lhlgh --fh(it, Uh) O,

where Lh E (Xh, Yh), fh Sh Yh smooth, fh (it, 0) 0. Xh and Yh are finite
dimensional Banach spaces with dim Xh dim Yh, h is a real discretization parameter
tending to zero, cf. e.g. [3], [5]. Under appropriate consistency and stability require-
ments (cf. [3], [5], [22], [32]) one obtains that the discrete problems (3.3) also exhibit
simple bifurcation from the trivial solution at points itOh, limh-,O it Oh =itO. For the
bifurcating curves, error estimates of the form

IlA,u () u, ()11, Clh r.
(3.4)

IA (e)_A.(e)l Czh,
leleo

frequently are valid, where r is the order of consistency of the discretization scheme
employed and mh :S--->Sh is the usual matching operator. Figure 1 shows a typical
diagram of the quantitative behavior of approximations of simple bifurcation problems.

h hz :h3 ;lh+’
FIG. 1. Bifurcation diagram of continuous and discrete problems ]’or hi > h2 > h3 > h4.

We now turn to the asymptotic expansion of the solutions of a simple bifurcation
problem which is useful also for numerical reasons. We assume that the nonlinearity
f of problem (3.1) has the form

(3.5)

with

and

f(x, u) =L(x, 0)u +O(x, u)+R(X, u),

1 op+
Q(it, u)

(p+ 1)--- oup+’-----f()t’ O)(ulP+’

R (, u) O(llu[lO+=), uniformly in it.

Let Z be a complement of span {4} in X. Then we have the next theorem.
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(3.6)

THEOREM 4. Under the assumptions (3.2) and (3.5) the bifurcating solutions
(u (e ), h (e )) satisfy

u(e)= e( +e,"Vo)+O(e’+),
h (e) ho + e’no + O(e’+),

where
(, O(a.o, ))

no -(,0, I,, (o, 0)4,

and Vo Z is uniquely determined by

(L-f(*o, 0)) Vo f (*o, 0) Otto + O(*o, 4).

Proof. This follows from the arguments in [20].
If the nonlinearity has special properties, the asymptotic expansion (3.6) may

proceed in powers of e p, e.g. in the (scalar) case f(h, u)= h sin u, where p 2; we
refer to [20].

We shall apply this result to the discrete problems (3.3). For the sake of simplicity
we consider here only the case of symmetric operators Lh--fhu.(AOh, 0), i.e. th

4h, 1[4h[[h 1. If the discrete problems fulfill conditions corresponding to (3.2) and (3.5)
(in most cases, these properties are inherited from the continuous problems), we have

Uh (e (I)h " e PV0h -- O (e p+2),
(3.7)

with

X.(e) X0h + e%to. + O(e+),

((h, Qh (iOh, th))h
(3.8) 71Oh --(h, fhuh,k (lOh, O)th)h"

Under moderate requirements concerning the discretizations one may obtain conver-
gence of the r/Oh to r/0.

4. The algorithm.
4.1. The nested iteration lroeedure. The nonlinear eigenvalue problem (3.1) is

replaced by its finite-dimensional analogues (3.3). The kind of the discretization is

arbitrary. One may use, for example, finite differences or finite elements. Referring
to a sequence of stepsizes

(4.1) ho>hl>h2>’" ">h-l>h>"" (/:levelnumber),

we also write

(4.2) Ltut -[(, u) O, Ul Xl,

for (3.3) with h hr. The stepsizes h may be chosen more general, but we consider
the case

(4.3) h 2-ho (l ).

The norm in Xt will be denoted by
In the following we assume that the linear operator Lt is symmetric, positive

definite and (identifying it with a matrix) sparse. As a simple example consider the
problem

-Au=/(,,u) onlY, u=0 on

where l) (0, 1) (0, 1),/(,, 0) 0 and its usual five-point discretization.
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The discrete Picard iteration on level has the form

(4.4) L,ul’+1- =ft(A, u"l), n :0, 1, 2,. .
If the assumptions w.r.t, the eigenvalues of L[lfl,,(AOl, 0) are satisfied, cf. (A1)-(A3),
then the iteration scheme (4.4) will be convergent for almost all initial values ul.

For solving the linear equations arising in (4.11) the linear multi-grid algorithm
could be used. However it is well known (el. [28]) that the selective iteration (4.11)in
spite of its interesting theoretical propertiesis not an effective tool for solving
bifurcation problems computationally. Convergence will be linear and too slow,
especially near the bifurcation point, since p(L-[lflut(Al(e), Ul(e)))- 1 for e 0, and of
course if IA A oil increases.

For getting an effective algorithm one has to assure that only a very small number
of calls of the linear multi-grid code on the finest grid, i.e. on level l, is necessary.
This leads to the design of a nested iteration procedure.

[o] given, l0 > 0,A fixed, ut
(4.5) solve (4.2) on level lo by (4.4), result" u*lo

for k := lo+ 1(1)/" Uk := qkU’- ’.a, solve (4.2) on level k by (4.4), result u

Here qk:Xk-1 -) Xk is a higher order interpolation operator.
Algorithm (4.5) has been implemented using the multi-grid method for solving

the linear problems in every step. It worked satisfactorily, but only relatively far from
the bifurcation point. For 3‘ in the vicinity of 3,0 it is not very useful, i.e. it is not faster
than the simple iteration (4.4) on level l. The reason for this will become clear if we
inspect Fig. 1" the parametrization of the different discrete branches by the same
3,-scale is not adequate. This holds especially in the case of partial differential equations
where the step size h cannot be made very small. If one wants to solve (4.2) on level
for a fixed 3,, 3, near 3,0, one has to use different values of 3,, say 3, i, on the other,

lower levels i, < l; in the case of supercritical bifurcation as in Fig. 1 one should
choose

With the aid of the asymptotic representations of the bifurcating branches we
can easily compute reasonable values of the 3, i’s. For given 3, 3‘ we solve (see (3.6))
the equation

At =ho+ePot
with respect to e"

E EA
"r/o

Here ex has to be chosen real, of course. Set

(4.6) 3, 3,0j + e .rt0j, /" 0, 1,. , 1.

This is, of course, equivalent to the introduction of e as a new (uniform) parameter
valid near the bifurcation point.

It is not necessary to compute the r/oj’S very accurately, as experiments have
shown. Additionally, one has a good starting vector

[0]
U lo tlo

on the level lo which is the coarsest level for the nested iteration. If the distance
13,- 3,ol increases we suggest using

=3, +z(3,-3,), 0<=r < 1,
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instead of A in the nested iteration. This means that the distances between the [. and
A become smaller now, according to the behavior of the discrete solutions for increasing
A -Ao. See Fig. 1. We summarize this approach as shown.

Nested iteration with A-correction.

(4.7)

A > Ao, d%, lo=>0, p N, r/oo, ", Hot given

e,k :"- , A :-- A0k "1- ePA T0k, k lo, lo + 1," ,
T/01

eXo, k=lo,U[kl :=
q u ’- k o,

fork := lo(1)l’
+11 k, 1fori:=l,2, "u :=L-1fk(h u ),

result of the iteration" u k.

(x =x)

For the convergence of (4.7) we have the following result.
THEOREM 5.

(I) Assume that for the problem u F(A, u) with F(A, u) L-f(A, u) the
hypotheses (A1)-(A4) are valid and that there is a supercritical stable branch ofsolutions
of (3.1) corresponding to e >0.

(II) For the discrete problems (3.2) approximating (3.1) let the assumptions of 3
be valid, especially assume that (3.4) and (3.6) hold uniformly with respect to h hk,
k =1o,""" ,l, for O<e -<-eo.

Furthermore assume that"
(III) p(L;fk(Ag(e),Uk(e)))NCo(e)<l for O<eNeo, for all k, loNkNl, co

independent of k;
(IV) for all u eX, u k := hkU eXk (hg := hh’X Xg) we have [[qkuk---ukllk

dlllu h, a > O, uniformly w.r.t, k, lo + 1 k l;
(w) IIqv-ll d=ll-[l- for art v_ x_, k to + 1,..., t, d2 independent

o[k;
(VI) Ak(e) is strictly monotone increasing for 0<e eo, lok 1 and

Uk[Ak]llkd3ex uniformly w.r.t, k, loCk,l, and 0<e eo. Here we use brackets
to indicate the A-dependence of Uk.

Then, if ex and hl are suciently small, the nested iteration process (4.7) converges
on all &vels lo, , and we have limi ui3 ut[A ].

Proof. According to (I), (II) and (VI) the discrete problems possess supercritical
branches emanating from (0, A0k) corresponding to e > 0. Due to (III) and (VI) we have

(4.8) p(Llfku(A, Uk[A]))C[A]<I forA0k<AAk :=A0k+en0k, lokl.
[o]For the starting value uo exo on the coarsest level lo of the nested iteration we

find from (II) and (VI) the estimate
p+l daex + C1

p+l

Ostrowski’s theorem now implies the convergence on level lo for A-AOo sufficiently
small, i.e. ex sufficiently small.

From (4.8) it is also clear that the iteration process converges at the levels
lo + 1, , if the starting values are sufficiently near to Uk[A k], k lo + 1, , l. This
will be shown inductively. Due to (VI) and u

_
Uk-l[A k-] we have
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Assumptions (II), (IV), (V) and (VI) then imply

Ilu[ ]- uall <-d /Ch Z / dlllu ()llh / dz2rClh + d2d3ex
for 0 <ex <-Co. Thus, for sufficiently small ex and ht, the iteration process converges
at all levels k, l0 < k -<_ I. This finishes the proof.

The numerical solution of the linear systems with matrices of coefficients Lk may
be performed by different choices of algorithms (we focus here on elliptic equations
only): by fast elliptic solvers, such as Buneman’s algorithm [7] or the reduction method
of Schr6der and Trottenberg [29], or on the other hand by multi-grid methods (cf.
e.g. [4]).

In the author’s opinion fast elliptic solvers are very valuable for elliptic equations
on certain classes of simple domains, but multi-grid methods are more generally
applicable, i.e. to elliptic equations on almost arbitrarily general domains, cf. Stiiben
[30], where a FORTRAN program for this purpose is described. In the following we
will mention some basic facts and results on multi-grid methods for linear problems.

4.2. The multi-grid method or linear problems. Let us consider the linear
problem

(4.9) Lu ft,

under the conditions (4.1) and (4.3). The levels and l-1 are connected by the
restriction

rt" Xt -X_and the prolongation
p" Xt_ -X.p is usually different from q which has been introduced above.

By u G(u, f) we denote the result of a smoothing step. For elliptic problems
there are different choices possible. We mention Jacobi and Gauss-Seidel iteration,
SOR and the uncomplete LU-decomposition, cf. [15].

The characteristic feature of the multi-grid method is the combination of a
smoothing step and coarse-grid correction. During the smoothing step the defect is not
necessarily decreased but smoothed. By the following correction step the discrete
solution is improved by means of an auxiliary equation on a coarser grid. In fact this
equation has to be of the same structure and sparsity pattern. Well readable introduc-
tions to multi-grid methods are [4], [15], [18]. The following ALGOL-like program
describes the multi-grid algorithm for the linear problem (4.9). It performs one iteration
at the level l.

procedure multigrid(/, u, f);
value l;
integer/;array u, f;
comment l" actual level number, Ix" numbers of smoothing steps

3/" number of calls of multigrid at level l- 1
i+1u U as input, u u next iterate as output

f ft right-hand side at level l;
if l 0 then u :=L f else

begin integer j; array v, d;
for / := 1 step 1 until do u := G(u, f);
d := r * (L * u f); v :=0;
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for j := 1 step 1 until y do multigrid(/- 1, v, d);

for ] := 1 step 1 until/ do u := Gt(u, f);
end multigrid.

Usual values of (u,/) and y are (1, 0), (2, 0), (1, 2) and y 1, 2. The convergence of
the multi-grid algorithm for linear elliptic problems has been analyzed, e.g. in [16].

We shall assume henceforth that the convergence of the multi-grid algorithm for
the linear problem (4.9) is established.

For theoretical purposes a fixed strategy as in the above ALGOL-like program
is useful. For the design of effective programs an adaptive strategy might be preferable.
It could be as follows (cf. [4]). Transfer to a coarser grid when the ratio of the residual
norm of the current iterate to the residual norm a sweep earlier is greater than some
tolerance , and transfer to a finer grid when the ratio of the residual norm of the
current iterate to the residual norm on the next finer grid is less than another tolerance
6.

We are now ready to replace the application of L{ in (4.7) by s steps of the
multi-grid iteration, i.e. by s calls of multigrid, s => 1. We formulate the final algorithm
as an ALGOL-like program.

procedure multibif(l, 1o, ’, nmax, s, A, A0, 0, P, bo, u);
integer l, lo, p, s; real -, A
array A o, /o, 4,o, u integer array nmax;
comment /o: vector (Olo, , ot)

bo: linearized discrete eigenfunction on level lo
nmax: vector (nmaxo, ., nmax) of numbers of steps of

nested iteration on levels lo," ",

u" contains result at the end of multibif;
begin
real e, lam; array v integer k, i, n

:= C/( -,o[t])/no[t];
or k := lo step 1 until do

begin
lam:= h +- (ho[k]+e" * /o[k]-h);
if k lo then u := e * @o else u := q * u
for n := 1 step 1 until nmax[k do

begin
v := u; for := 1 step 1 until s do multigrid(k, u, fk (lam, v));
end n

end k;
end multibif.

For the algorithm outlined above we need exactly the same storage as in the
linear case, cf. [16]. If N. denotes the number of grid points on level ] we need

2 Y’, Nk <-2Nt/(1-2-")
k=0

units, n is the number of space dimensions.
From the standard perturbation results valid for contraction mappings we can

easily conclude that the iterative method described above results in iteration sequences
which are slightly perturbed compared with those of (4.7). The distances between the
corresponding iterates, however, can be made arbitrary small by choosing s, the
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number of multi-grid steps, sufficiently large. On the other hand, it does not make
much sense to compute the discrete solutions more accurately then to the level of the
discretization error.

A few words should be devoted to the problem of finding numerically Aoj and
bj. This may be done e.g. with the aid of Hackbusch’s direct multi-grid approach [14]
or by applying the.multi-grid method of the second kind, see [15].

5. Numerical results. In this section we present results of calculations with
algorithm multibif.

5.1. A one-dimensional example. Consider the parameter-dependent boundary
value problem

(5.1) -u"-g(A,u)=O, u(0)=u(1) =0

satisfying g(A, 0)=0, , eR. If g(A,u)=A,(u), if’(0) =c S0, the points Ao
In]are bifurcation points and the corresponding linearized eigenfunctions are b0

sin n.n’x, cf. [9]. (5.1) is discretized as usual by

(5.2) thUh--gh(A, Uh)’-O

where

2 -1 0
1 2 -1

Lh 1/h2 "" gh
o 2 -0 -1

g(A!
Ul) 1

(A, UN_I)A

-u"= A sinu, u(0) u(1) 0,

using its discretization (5.2). Weiss’ theory [32] implies the existence of an error
estimate of the form (3.4) with r 2, I1" II(ll’lla) being the (discrete) maximum norm,
for the branches bifurcating at A (c 1). All branches are supercritical. The first

[11one, emanating from A Oh is stable, both in the physical and the numerical sense,
compare paragraph 2. Thus our algorithm is applicable. The order p of the nonlinearity
isp =2.

The details of the multi-grid method used are:
smoother G: Gauss-Seidel relaxation,
prolongation p’ linear interpolation,
interpolation q" quadratic interpolation,
restriction r" weights ,,

We always used the fixed strategy z, 1, tz 0, 3’ 1. In Table 1 we present numerical
results for 9, h h 1/1024, h0 1/2, 1o 3, i.e. AOh 9.8695967, r/0h 1.234
for small h. It turned out that s 2 calls of the linear multi-grid code were sufficient.

Here h 1/N denotes the step width, Uh-"(Ul,""", UN-1), N is assumed to be an
even integer. If g(A, u)= A(u) as above the discrete problem (5.2) has the bifurcation

.In] 2 ;z
points ^on (4/h)sin (nzrh/2)/c, n 1,..., 1/h- 1 and the corresponding hnear-

[hi In] In] 2ized discrete eigenfunctions dOh (sin nzrX)x=h,2h,...,-h. We have [hOh --h0 [= O(h
for fixed n.

Weiss [32] gave a complete analysis of difference approximations to bifurcation
problems for a class of ordinary boundary-value problems, to which (5.1) belongs.
As an example for (5.1) we have treated numerically the pendulum equation
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TABLE

A M3 M4 M5 M6 M7 M8 M9 u (0.5)

9.9 309 36 4 0.1568288
10.0 212 4 2 2 0.3236076
11.0 46 19 15 10 2 5 0.9207691
12.0 26 14 12 9 6 4 2 1.2245260
15.0 7 7 6 6 5 4 3 1.7471018
20.0* 7 6 10 5 10 3 10 2.1906631
10.0" 15 3 21 100 31 97 110 0.3236089

Above we have Mi number of iterates on level i. An asterisk indicates computa-
tion with fixed A. The row 10" is included to demonstrate the benefit of using the
A-correction (4.14).

5.2. A two-dimensional example. We consider the nonlinear eigenvalue problem

(5.3) -Au=Xu+f(u) on I) (0,1) (0,1), u=0 on0f,

withf(0) 0 and f’(0) 0. Problems of this or a similar form arise in MHD-calculations,
the theory of elasticity, or in the theory of chemical reactions (cf. e.g. [6]) where also
numerical calculations are discussed.

The linearized equation -Au Au, u 0 on 01, has the eigenvalues zr2(m2+ n 2)
and eigenfunctions

b,,,.(x, y)= sin m,n’x, sin n’rry, (x, y)l’l, m,nl.

We discretize (5.3) by the usual five-point difference star with uniform step width
h, h l/N, N an even integer. It is well known that the eigenvalues of the discrete
linearized problem LhUh "-’l.hUh approximate the first (N-1)2 eigenvalues of the
continuous linearized eigenvalue problem. The first discrete eigenvalue is h hl
4/h 2(1 -cos rh) 27r 2 + O(h 2). As indicated by Beyn’s [3] and Kikuchis’s [22] results
(here a linear finite element approximation leads to the same nonlinear system of
equations), the discrete branch emanating from A hl approximates the branch of the
continuous problem bifurcating at h 11. So it is quite clear that an error estimate of
the form (3.4) with r= 2 holds, where [[. (11" I1)is the (discrete) L2-norm. Choosing
the nonlinearity

AU --U3
now leads to a stable supercritical bifurcation from A 11 and our algorithm becomes
applicable.

The details of the linear multi-grid code used here are"

smoother G" pointwise Gauss-Seidel relaxation,
prolongation p" linear interpolation,
interpolation q" quadratic interpolation,
restriction r" injection.

The program is based on Brandt’s subroutines and uses the adaptive strategy, cf. [4].
Table 2 presents some typical results for 6, h h 1/128, ho 1/2, l0 2,

AOh 19.738217, */Oh 0.5625 for small h.
Wi is the accumulated relaxation work of the iterations on level where a sweep

on the finest grid is taken as the work unit, cf. [4]. z is the damping parameter
introduced before (4.7). It is worthwhile to compare a typical value of the CPU-time
(Honeywell-Bull HB 66/80, FORTRAN, single-precision), say for h 25:23.35 sec
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TABLE 2

x r w. w3 w4 w5 w6 w Y, wi u(0.5, 0.5)

19.8 0.1 0.4 1.2 3.5 12.1 17.3 0.3310478
19.9 0.1 0.4 1.3 4.3 28.3 34.5 0.5353342
20.0 0.1 1.6 1.5 6.5 28.4 38.1 0.6808751
21.0 0.7 0.8 1.5 4.0 12.4 19.4 1.4887676
22.0 0.7 0.5 1.1 9.0 14.6 25.9 1.9842003
25.0 0.5 0.9 2.6 7.0 15.7 26.7 2.9860564
30.0 0.8 0.5 0.8 2.5 7.9 22.3 34.1 4.0855092

with the CPU-time required for solving Poisson’s equation (with the right-hand side
sin (sin zrx .cos zry)) by the same linear multi-grid code (h 1/128): 17.94 sec (16.7
work units).

The results are in good agreement with those given in [22]. Figure 2 shows the
solutions u (x, 0.5) for different A ’s. A bifurcation diagram is given in Fig. 3.

5.3. Von Kirmin’s equations for the simply supported plate. As a less simple
example we have treated numerically von Kirmin’s equations for the buckling of a
thin elastic simply supported rectangular plate, which is subject to a compressive

A 25

A 22

A=21

A: 20

A 19.8

0 0.5

FIG. 2. Plots of u (x, 0.5) for different values of A.
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0-
20 25 30

FIG. 3. Bifurcation diagram (h 1/128).

FIG. 4. Plate problem.

A
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thrust applied along the short edges (see Fig. 4). In the dimensionless form von
Kfirmfin’s equations for the deflection w (x, y) and the stress function f(x, y are (cf. [2])

(5.4)
A2/= -1/2[w, w] on

A2w +
where

[g, h g,,,,hyy + g,yh,,,, 2g,,,h,,,.

A is proportional to the compressive force. (5.4) may be written in the form

(5.5) A2w -XW,,x + C(w) on fl, w Aw 0 on Off,

where C is a certain "cubic" operator. Thus (5.5) belongs to the class of equations
treated here.

For numerical reasons, however, we introduce new variables

=Af and =Aw

with Dirichlet boundary conditions. This leads to a mixed formulation of (12), consist-
ing of four second order equations with zero boundary conditions. This problem may
be solved iteratively by

A(I)[i+I] [i] [i]] (i[i+l]=-[w ,w onfl, =0 on Of/,

Af[i+1]= (I)[i+1] on fl, fti+a= 0 on Of/,
(5.6)

ht+=-Aw w on fl, =0 on Off,

Awt+=t+ onfl, wti+l=0 on0fl, i=0,1,....

Of course a discrete version of (5.6) is actually used. We have again approximated
the Laplace operator by the five-point difference star. The brackets [,] on the right-
hand sides were evaluated by central differences. The same holds for wx. For the
solution of the linear problems the same multi-grid code as in the above example was
used. The eigenvalues and eigenfunetions of the linearized problem are

A,,,= m+ w,,,(, y) =sin rx
rn L

.sinncry, fm,,=O, m,n.

For the square plate (L 1) we have A 11 4r= and the corresponding discrete first
eigenvalue is A (4/h 2)(1 -cos rh)2/sin2 (rh/2) 4r2 + O(h ). An obvious gen-
eralization of multibif is applicable to the case of bifurcation from A x. The branch
is table and supercritical, r/oa was determined experimentally to have a value near 1.6
for small h. The linear multi-grid code used here was the same as in the previous
problem.

We present some typical results which where obtained for the square plate with
=6, ht 1/128, ho 1/2, Io 3, Ao/= 39.476561 (64516 unknowns!):

A 39.6 39.8 40 41 43

w(0.5, 0.5) 0.27347502 0.44754198 0.58047975 1.0025525 1.5308431

45 50 60

1.9213904 2.6671492 3.7659858

The shape of the plate for A 45 is shown in Fig. 5. A typical value of the CPU-time
is 97.56 sec for A 43 (HB 66/80).
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6. Conclusion. We have analyzed a simple but effective method for computing
stable branches of solutions of nonlinear elliptic eigenvalue problems. It needs only
a multi-grid code for the corresponding linear problem and only the storage which is
necessary for this. The CPU time required is of the order of the time necessary for
solving Poisson’s equation (on the same domain). The algorithm is limited to the
computation of stable branches (in the sense of fixed points). For the problems under
consideration, however, these are the physically interesting ones. Extensions to com-
pute stable secondary branches and stable branches of perturbed bifurcation problems
are possible.
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A FAST, EASILY IMPLEMENTED METHOD FOR SAMPLING FROM
DECREASING OR SYMMETRIC UNIMODAL DENSITY FUNCTIONS*

GEORGE MARSAGLIAf AND WAI WAN TSANGt

Abstract. The fastest computer methods for sampling from a given density are those based on a
mixture of a fast and slow part. This paper describes a new method of this type, suitable for any decreasing
or symmetric unimodal density. It differs from others in that it is faster and more easily implemented,
thereby providing a standard procedure for developing both the fast and the slow part for many given
densities. It is called the ziggurat method, after the shape of a single, convenient density that provides for
both the fast and the slow parts of the generating process. Examples are given for REXP and RNOR,
subroutines that generate exponential and normal variates that, as assembler routines, are nearly twice as
fast as the previous best assembler routines, and that, as Fortran subroutines, approach the limiting possible
speed" the time for Fortran subroutine linkage conventions plus the time to generate one uniform variate.

Key words, random numbers, normal random variables, exponential random variables, ziggurat
method, Monte Carlo, simulation
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1. Introduction. It has long been known that, in principle, computer sampling
from any given density can be made very rapid; if enough memory space is available
and enough attention is paid to details that provide, most of the time, rapid return
of the required variate by means of a few operations on a uniform variate [5].

Applications of this principle have led to very fast subroutines for normal and
exponential variates, but these implementations have been ad hoc, tailored to the
features of each density and each particular machine. The fastest seem to be those
based on the rectangle-wedge-tail method of references [6], [8] and described in
Knuth [3, p. 211 ].

This article seeks to improve on this situation by suggesting a general method
that is easily applied to any decreasing or symmetric unimodal density f(x). The
method leads to exact, even faster, subroutines, using a table of n + 1 entries, with
the user free to choose n on the basis of time and complexity before setting up the table.

The time and space complexity of the algorithm may be inferred from the following
outline, in which UNI means a uniform random variable and a table x0, x,..., x,
and constants a, b, c are given’

ALGORITHM Z.
1. Choose / uniformly from {1, 2,. ., n}.
2. Form X x’UNI; if X <x_, return X.

(Some 99% of the time when n 256, 96% when n 64.)
3. Else form x (X-xi_)/(xi-x_), y UNI.
4. If y > c al:(b bx ), return b bx.
5. If ]’(x) + y/(nx)<]:(X) return X.
6. Else return an X from the tail density, c’[(x), x > x,.

The algorithm returns the required variate some 96-99% of the time from step 2,
which requires two table look-ups, one multiplication and one uniform variate (since
a single uniform variate can provide / in step 1 and the UNI in step 2). If the fast

* Received by the editors November 17, 1981. This research was supported by the National Science
Foundation under grant MCS80-05789.

f Computer Science Department, Washington State University, Pullman, Washington 99164.
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part of the algorithm, steps 1 and 2, is coded as an assembler subroutine and the
remaining, slower, part as a Fortran subroutine, the composite will be very fast--nearly
twice as fast as the previous fastest.

The entire algorithm can also be easily implemented as a standard Fortran
subroutine, to make it machine independent, but there is a time penalty, primarily
because of Fortran linkage conventions, which are more costly than the generating
procedure itself. But even as a standard Fortran subroutine the procedure is very fast
and general, suited for decreasing or symmetric unimodal densities. The resulting
average execution times approach the limit that a standard Fortran random variable
subroutine can attain’ the time for the linkage conventions plus the time to generate
one UNI.

Development of the algorithm is in 2, followed in 3 by a straightforward
procedure for setting up the table x0, xl," , xn and the three constants a, b, c needed
in the algorithm. The set-up procedure accepts the table size n and the given decreasing
density f(x), x >= O, or a symmetric unimodal density, in which case a uniform variate
on (-1, 1) is used.

Section 5 discusses implementations and gives Fortran programs for normal and
exponential variates, but the method provides equally fast subroutines for decreasing
or symmetric densities, such as Student’s for given degrees of freedom. Section 5
also gives a general method for handling the tail.

Section 6 discusses timing of subroutines and gives times for assembler and
standard Fortran versions of the new method, followed by a summary in 7.

2. The ziggurat method. This section will describe a method that leads to excep-
tionally fast algorithms for generating variates with decreasing or unimodal, symmetric
density functions. Suppose we are given a decreasing f(x) and want to generate a
random variable X with density f. Choose a rectangle of unit area, one that crosses
f(x) twice, as pictured in Fig. 1.

FIG. 1. Efficient use of a uniform point in a rectangle to get a point under y f(x).

This leads to five regions. Region 4 is called the cap. The cap is rotated and
translated to get the corner region 3, having the same area. Then region 2 has the
same area as region 5. (For densities unbounded at the origin, the exact-approximation
method [9] may be used to provide a bounded cap.)

Now to generate a variate X with density/(x): Choose (X, Y) uniformly from
the rectangle. If (X, Y) is in region 1, return X; if in region 3, return a-X; else
return a new X from the tail density c’f(x), x > a.

This idea is worth implementing if region 1 dominates the rectangle, and we can
make it do so by means of what we call a ziggurat density, illustrated for the exponential
density e-x, x > 0, in Fig. 2. The ziggurat function z(x) is the step function drawn with
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FIG. 2. Crossing the exponential density twice: a ziggurat density with 8 layers of area 1/8.

heavy lines. It is a density function, made up of n layers, each with area 1! n. (Drawn
with n 8--too small to be practical but chosen to provide detail.)

A point (X, Y) is easily generated uniformly under the ziggurat: Choose/" uni-
formly from {1, 2, , n}, then (X, Y) uniformly from the jth layer. Most of the time,
Y in the appropriate range will not be required, since X <xj-1 ensures that the
resulting (X, Y) will be under the curve y f(x).

Each layer of the ziggurat can be represented as in Fig. 3, and this leads to the
outline of an algorithm with very fast average execution time"

1. Choose / uniformly from {1, 2,. , n }.
2. Form X =xUNI; ifX <xj_l, return X.
3. Else choose Y uniformly in the range/(xi)<y <f(x)+p/x. The resulting

(X, Y) is uniform in B t.J C UD. If in B, return X; if in D, return a multiple
of (x-X); if in C, return an X from the tail.

f(x)+p/x

xj-1 xj

FIG. 3. The jth layer of the ziggurat, not drawn to scale. Typically, region A occupies 99% of the layer.

The D region of each layer of the ziggurat has the shape of the cap density,
rotated, translated and reduced so that the sum of all the D areas is the area of the
cap. Thus if a point (X, Y) is uniform in the D region of the/th layer, then a multiple
of xj-X has the cap density.

The total area of C regions is the tail area, so that the algorithm returns a variate
X from the cap and tail densities with the proper frequency.

3. The set-up. The ziggurat density is a step function with n layers, each having
area p 1/n. The abscissas of the steps are x0, x,.. , x,. They may be computed by
letting x, be the rightmost solution to xf(x)=p (there will be two solutions); then
x,,_l=X, and the remaining x’s computed from f(xi)=f(Xi+l)+p/xi+ for i=
n-2,...,1.

The generating process chooses one of the n layers of the ziggurat at random,
say the/th, then forms X -xUNI and returns X if X <Xi-l. This happens most of
the time (99% when n 256) and accounts for the speed of the method. Occasionally,
further tests must be made after forming Y f(x) + UNI*p/x so that (X, Y) is uniform
in the rectangle at the end of the/’th layer--region B LI C [.JD in Fig. 3.
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Details of the additional tests are made easier if the point (X, Y), uniform in
B LIC U D, is made a point (x, y) uniform in the unit square by means of the
transformation

x =(X-x_)/(x-x_), Y =(Y-f(xi))xi/P.

When transformed to the unit square, the test regions look like those in Fig. 4.

y =s(/,x)

0 1

FIG. 4. The rectangle at the end of the jth layer, transformed to the unit square.

Then the test (X, Y) s B is equivalent to y < s (], x) and (X, Y) s D is equivalent
to y > t(x).

The region y < s (j, x) changes with/’"

s (/, x) nx[f(x_ + x (x x_)) O<__x<__l.

The region y > t(x) does not change with/’:

xo[f(b -6x)-f(xo)]
t(x) 1-

b[f(O)-f(Xo)]
1-xo/b <=x <- 1,

with b to be determined so that the area above y t(x) is correct.
Let the area above t(x) be r. Then r may be expressed in two different ways,

providing a formula for the constant b in t(x). Since each of the D regions is mapped
into the region y > t(x) of area r in the unit square, each D region must occupy the
fraction r of the rectangle B (.J C LID. Thus the area of the jthD region is r(1 -X-l/xj)p
and the sum of the D areas must be the cap area:

(1)

be

r(1 Xo/X 1)P + r(1 x 1/x2)p +" + r( 1 Xn-1/Xn )p cap area.

The cap area is jo [(x) dx -Xo[(Xo) and integration shows the area above t(x) to

(2) r= fl [1-t(x)]dx
-xo/b

Combining (1) and (2) provides the formula

Xo(cap area)
b:(f(O)-f(xo))"

bZ=xo 1-p ,l- ’
(f(O)-f(xo))
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as well as the interesting conclusion: setting up the ziggurat does not require integration
off.

We may summarize the ziggurat set-up procedure with this outline.
Given the decreasing density function f(x), x >- O, and p 1/n, with n the number

of layers:

1. Let xn be the larger of the two solutions to xf(x)= p.
2. Put xn-1 x, and solve for xi from the relations

f(xi) f(xi+l)+p/xi+l, n -2,..., 2, 1.

(See the note below.)
3. Compute

b--- Xo 1-p Xi-llXi (f(O)-f(xo))
i=

a Xo/[b (f(O)-/(Xo))],

c 1 + af(xo).

Note. For some densities, putting x,-1 x, then solving for the remaining x’s in
step 2 may leave the cap so large that regions B andD of Fig. 3 overlap. This difficulty
may be overcome by stacking more than the first two layers of the ziggurat, such as
by setting x,-z xn_ x,. For example, the normal and some of the densities require
x,-3 x,,-2 x,-1 x, before computing the remaining x’s. Thus for some densities
the set-up procedure is not completely automatic, and will require user intervention.
An alternative method is to transform the cap by the exact-approximation method
[9], so that regions B and D never overlap and the boundary of D is nearly linear.
Such a device also allows one to use the ziggurat method for unbounded densities.

4. The algorithm. With n, p, a, b, c and x0, x 1, , x, provided by the ziggurat
set-up and recalling that p 1/n, Algorithm Z will return a variate with density f(x).

Since the boundary functions in Fig. 4 are nearly linear, we may use a linear
squeeze test in order to avoid the need to evaluate f in steps 4 and 5, most of the
time. Define

c min [x + s (], x)], c2 max [x + (x)].
O_--<x_--<l a-xo/b <--x<=l
l<--j<--_n

Then c2-x>t(x) and the linear test x+y>c2 will imply y>c2-x>t(x).
Similarly, x + y < c will imply y < s (], x).

Thus a faster algorithm results from inserting two steps between steps 3 and 4
of Algorithm Z"

1.
2.
3.
3.1. If x + y > c2 return b- bx.
3.2. If x + y < Cl return X.
4.
5.
6.
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A quadratic squeeze test may speed up the algorithm even more, but the improve-
ment does not justify the complication, unless f is exceedingly difficult to evaluate.
When n -> 256, even the linear squeeze is barely worth it.

5. Implementation. As examples of the ziggurat method, we list below two
Fortran subroutines, REXP and RNOR, that return exponential and normal random
variables. They are based on the method with n 64. The generating procedure is
short, some 15-17 lines of virtually linear code that follows the outline above.

Both of these subroutines must themselves call random number generators
(RNG’s). We do not address here the problem of providing suitable RNG’s but have
assumed those based on the conventions set in the McGill Random Number Package
"Super-Duper" [7]:

IUNI" a random integer in [0, 231),
IVNI: a random integer in [-231, 231),
UNI: a random real in [0, 1).
Users who have different in-house RNG’s, over possibly different ranges, should

be able to replace calls to IUNI, IVNI, and UNI with suitable adaptation to their
own system. Better yet is to insert Fortran code that generates the random IUNI and
IVNI directly in the fast part of REXP and RNOR, for the subroutines are so fast
that the time for the RNG in the fast part is a major determinant of the overall-speed.

EXPONENTIAL SUBROUTINE

FUNCTION REXP(NULL)
C--RETURNS A RANDOM EXPONENTIAL VARIABLE, IGNORES ARGUMENT

DATA A, B, C, RMAX/4.780222, .2339010, 4.807275, .4656613E-9/
DATA C1, C2, P, XN/.9130147, 1.055764, .015625, 5.940712/
REAL V(65)/.2275733, .2961199, .3568076, .4124534, .4645906,

+ .5141596, .5617859, .6079111, .6528617, .6968884, .7401897,
+ .7829269, .8252345, .8672267, .9090027, .9506499, .9922470,
+ 1.033865, 1.075572, 1.117430, 1.159497, 1.201832, 1.244491,
+ 1.287529, 1.331001, 1.374964, 1.419475, 1.464591, 1.510374,
+ 1.556887, 1.604196, 1.652370, 1.701488, 1.751625, 1.802871,
+ 1.855318, 1.909067, 1.964230, 2.020929, 2.079300, 2.139492,
+ 2.201675, 2.266037, 2.332792, 2.402185, 2.474495, 2.550045,
+ 2.629211, 2.712438, 2.800248, 2.893275, 2.992284, 3.098219,
+ 3.212264, 3.335930, 3.471187, 3.620674, 3.788045, 3.978562,
+4.200208, 4.465950, 4.799011, 5.247564, 5.940712, 5.940712/

CnFAST PART
IUNI(0)

J MOD(I, 64)+
REXP- I*RMAX*V(J+ 1)
IF (REXP.LE.V(J)) RETURN

C, ,SLOW PART
X= (REXP- V(J))/(V(J + 1)- V(J))
Y UNI(0)
S=X+Y
IF (S.GT.C2) GO TO 11
IF (S.LE.C1) RETURN
IF (Y.GT.C-A*EXP(B*X-B)) GO TO 11
IF (EXP(-V(J + 1)) + Y*P/V(J + 1).LE.EXP(-REXP)) RETURN

C TAIL PART
REXP XN-ALOG(UNI(0))
RETURN

11 REXP B B*X
RETURN

END
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NORMAL SUBROUTINE

FUNCTION RNOR(NULL)
C--RETURNS RANDOM NORMAL VARIABLE, IGNORES ARGUMENT.

DATA AA,B,C,RMAX/12.37586, .4878992, 12.67706, .4656613E-9/
DATA C1,C2,PC,XN/.9689279, 1.301198, .1958303E- 1, 2.776994/
REAL V(65)/.3409450, .4573146, .5397792, .6062427, .6631690,
7136974, 7596124, .8020356, .8417227, .8792102, .9148948,+

+.9490791, .9820005, 1.013848, 1.044780, 1.074924, 1.104391,
+1.133273, 1.161653, 1.189601, 1.217181, 1.244452, 1.271463,
+1.298265, 1.324901, 1.351412, 1.377839, 1.404221, 1.430593,
+1.456991, 1.483452, 1.510012, 1.536706, 1.563571, 1.590645,
+1.617968, 1.645579, 1.673525, 1.701850, 1.730604, 1.759842,
+1.789622, 1.820009, 1.851076, 1.882904, 1.915583, 1.949216,
+1.983924, 2.019842, 2.057135, 2.095992, 2.136644, 2.179371,
+2.224517, 2.272518, 2.323934, 2.379500, 2.440222, 2.507511,
+2.583466, 2.671391, 2.776994, 2.776994, 2.776994, 2.776994/

CmFAST PART

22

33

11

IVNI(0)
J MOD(IABS(I),64) +
RNOR I*RMAX*V(J + 1)
IF (ABS(RNOR).LE.V(J)) RETURN

.SLOW PART; AA IS A’f(0)
X- (ABS(RNOR)- V(J))/(V(J + 1)-V(J))
Y UNI(0)
S=X+Y
IF (S.GT.C2) GO TO 11
IF (S.LE.C1) RETURN
IF (Y.GT.C- AA*EXP(-.5*(B- B’X)**2)) GO TO 11
IF (EXP(-.5*V(J + 1)*’2)+ Y*PC/V(J + 1).LE.EXP(-.5*RNOR**2)) RETURN

TAIL PART: .3601016 IS 1./XN
X .3601016*ALOG(UNI(0))
IF (-2.*ALOG(UNI(0)).LE.X**2) GO TO 22
RNOR SIGN(XN-X,RNOR)
RETURN

RNOR SIGN(B B*X,RNOR)
RETURN
END

We have chosen to provide the tables in the subroutines through DATA state-
ments, rather than generate them on first entry to the routine. By doing this we avoid
the need to use or even look at the arguments of the functions REXP(NULL) and
RNOR(NULL). The integer arguments are ignored in the subroutines, but they must
be included, since Fortran conventions require that a function subprogram have at
least one argument, used or not.

The values in the tables may be generated separately through recursive use of
two double precision values DX and DY. Here are Fortran segments that generate
the tables, given the initial value DX, the larger of the two solutions to x.f(x)= I/n,
and DY f(DX).

DOUBLE PRECISION DX/5.940712090024669/,DY/.2630156076110249D-02/
XN DX
DO 1,63

IF (I.LE.2) V(63 + I) XN
DY DY+ 1.DO/(64.DO*DX)
DX -DLOG(DY)
V(64- I) DX
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DOUBLE PRECISION DX/2.776994269662875/,DY/.1687976115474328D- 1/
XN DX
DO 2 I= 1,61

IF (I.LE.4) V(61 + I)= XN
DY DY+ 1.DO/(64.DO*DX)
DX DSORT(-2DO*DLOG(DY/.7978845608028653DO))

2 V(62- I) DX

As the above examples show, there is a standard procedure for the set-up and
generation parts of the ziggurat method, given a particular densitymexcept for one
thing" the tail part. This part of the overall procedure appears to require the user’s
intervention in what is otherwise an automatic process.

But even this part of the generating procedure can be made systematic, at least
for most of the densities encountered in practice, in the following way: given the tail
density c’f(x), x >=x,, choose a function g(t) from the class e -t’ or (1 +bt)- such that

f(x. + t) <-[(x,,)g(t), >-_0.

Then G(x)= S g(t)dt/D is easily inverted in terms of standard Fortran functions,
where D Io g(t) dr. To generate X from c’[(x), x >-_x,, choose uniform U, U until

U2f(xn)g[G-’(U1)]<=f[xn + G-’(U1)],

then return X x, + G-I(U1).
The efficiency of this rejection method is x f(t)dt/[D[(x,)], so the parameter(s)

in g(t)=e-’ or g(t)=(l+bt)- should be chosen to minimize D and still have g
dominate [.

Examples. The normal tail"

f(x) c’e -x2/2 x > x,, g(t) e

Tail, Student’s with d degrees of freedom"

f(x)=c(1 +x2/d) -(a+)/2, x =>x,,

g(t)=(l+bt)-a- b=x,,/(d+x).,

Since most of the densities encountered in practice--normal, exponential, gamma,
beta, F, t, as well as the stable densitiesmmay be asymptotically, and closely, dominated
by a g of the form e -’ or (1 + bt)-t, this general method may serve as a uniform
procedure for convenient and reasonably fast sampling from tail densities.

6. Timing. Most articles that propose a new method for generating random
variables claim that the method is fast, and often specific times are quoted. But many
questions arise in assessing such claims: Is the method implemented as a standard
subroutine with linkage-convention overhead, or as a faster assembler routine? Are
the necessary uniform variates generated within the subroutine or called from separate
subroutines with linkage penalties? Is the method for generating uniform variates one
of the fast ones, such as multiplicative congruential, or one of the safer, but slower,
ones that combine two different methods? If exponential or normal variates are used
within the subroutine, how are they generated? What is the effect of the computer
used--not only because of possibly faster arithmetic operations and high-speed
memory, but the architecture--for example, modular arithmetic for powers of 2 is
inherently faster in 2’s complement machines.
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Some methods are so slow that answers to these questions do not make much
difference, but they can make a great difference for methods that approach the limiting
speed for a random variable generator.

What is the best possible speed for a method? If it is to be implemented as a
standard Fortran subroutine, with linkage-convention overhead, we suggest that the
best possible speed on a particular computer can be estimated by timing the subroutine

FUNCTION FAST(T)
FAST UNI(1)
RETURN
END

with UNI the name of the uniform generator subroutine.
Such a limiting speed may be estimated by timing the loop

DO 2 I= 1,100000
2 X FAST(I.)

then subtracting the time for the nugatory loop

DO 3 I,I00000
3 X=I.

(assuming that the compiler is not so smart that it will compress the latter loop).
Two questions still remain, however. Is the subroutine UNI itself a standard

Fortran subroutine or a faster assembler routine, and what is the method for producing
the uniform variates?

We contend that comparisons between two methods can be accurate only if both
methods are implemented on the same computer, in the same waymas standard or
as assembler subroutinesmand using the same uniform generator.

Using this criterion, we will compare two methods for generating normal and
exponential variates: the zigguratmethod and the rectangle-wedge-tail method in the
McGill package "Super-Duper" [7], chosen because it was the fastest we knew. None
of the published methods such as in [1], [2], [4] provided implementations as simple
or as fast as the ziggurat method. Readers may wish to compare these methods on
their own systems.

Timing was done on an Amdahl V8, a computer with architecture patterned after
that of the IBM 360/370. For the Amdahl V8, the limiting speed for a standard
Fortran random variable generator was 6 microseconds (ls.), obtained by timing the
above loops, with UNI the assembler routine in the McGill package [7] that generates
uniform variates by combining a congruential and a shift-register generator.

The results are in Tables 1 and 2. No comparison could be made between standard
Fortran versions, as the rectangle-wedge-tail method was available only as an assem-
bler routine.

TABLE
Average speed, in microseconds, ]:or the generation of

normal and exponential variates using Fortran callable
assembler routines, based on the ziggurat method and the
rectangle-wedge-tail method in the Super-Duper package

[7]. For the Amdahl V8 computer.

RNOR
REXP

Ziggurat
n 64 n 256 Super-Duper

2.74 2.34 3.79
2.45 2.06 4.04
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Table 1 compares the two methods with the fast parts implemented in assembler
routines, the uniform variates generated within the subroutine. The slow parts are
implemented as standard Fortran subroutines. The ziggurat method is faster and the
choice of n has a greater effect than in Table 2.

Table 2 shows the speed, for n 64 and 256, of the ziggurat method implemented
as a standard Fortan subroutine. The times there, around 9/xs, should be compared
to 6/zs, the limiting speed, on this machine, for generators as standard Fortran
subroutines that call the subroutine UNI in the McGill Random Number Package [7].

TABLE 2
Average speed, in microseconds, [or

the generation of normal and exponential
variates using the ziggurat method,
implemented as a standard Fortran sub-

routine in the Amdahl V8.

n =64 n =256

RNOR
REXP

9.53
9.49

9.11
9.20

Another means to put reported speeds of random variable subroutines into
perspective is to compare them with the speeds of built-in Fortran functions for that
machine. With the Fortran compiler for our Amdahl V8, the average times for SQRT,
ALOG and EXP were 6.7, 7.1 and 8.6 microseconds, respectively, for arguments
uniformly spread over (0, 1). Such built-in functions are, of course, written in assembly
language, and do not have unnecessary linkage convention costs.

Still another measure of the speed for generating exponential variates is to
compare REXP with -ALOG (UNI). For the Amdahl V8, the ziggurat speeds are
2.1 s for REXP partially in assembler, 9.2/zs for REXP as a standard Fortran
subroutine and 12/xs for -ALOG (UNI), with UNI itself a standard Fortran subroutine.
If UNI is a fast assembler routine, then -ALOG (UNI) is as fast as the standard
Fortran version of the ziggurat REXP, and much more convenient.

7. Summary. For repeated, very rapid sampling from a given decreasing or
symmetric unimodal density, the ziggurat method described here is simple and faster
than any other we know. If the fast partmX xUNI; if X <xj-1 return Xmis
implemented as an assembler routine, with the slower part in Fortran, the composite
is nearly twice as fast as the previous fastest methods. If the entire procedure is
implemented as a standard Fortran subroutine, to make it machine independent, the
result, while slower, still approaches the limiting attainable speed" the time for
subroutine linkage conventions plus the time to generate one uniform variate.

The method requires setting up a table of n + 1 values, which is slow but straight-
forward. The set-up is easily implemented as part of a Fortran program that accepts
the density function and table size as input.

The method is not suited for rapid sampling from a family o densities with shape
parameters changing from call to call.

Because of their importance, we think that UNI, RNOR and REXP should be
available to Monte Carlo reserchers as very fast, reliable subroutines. These are the
bread-and-butter functions for such research, as important to many as the SIN, COS,
SQRT, ALOG, EXP functions available--as assembler routines--with every Fortran
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compiler. Because of the standardized set-up and generating procedure for the ziggurat
method, assembler routines for the fast part, and Fortran routines for the remaining,
are easily implemented. We urge serious users to consider doing so.
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BIDIRECTIONAL SHOOTING: A STRATEGY TO IMPROVE
THE RELIABILITY OF SHOOTING METHODS FOR ODE*

PIETER P. N. DE GROENI AND MARTIN HERMANN

Abstract. A new shooting technique for the numerical treatment of boundary value problems in ordinary
differential equations is proposed. It improves the accuracy and robustness of the simple (unidirectional)
shooting method by combining the fundamental matrices originating from both endpoints of the interval.
The combination is performed such that the smaller singular values of these matrices and the corresponding
orthogonal projections are eliminated. The reason for this strategy is that perturbations of a matrix have
a much stronger effect on the smaller singular values than on the larger ones.

Key words, two-point boundary value problem, shooting method, bidirectional shooting, singular
value decomposition

AMS (MOS) classilications. Primary 65L10, secondary 65F15

1. Introduction. We study shooting methods for boundary value problems in
ordinary differential equations from the point of view of how the accuracy and
robustness of the basic (simple) shooting procedure can be enhanced. So we shall not
deal with segmented shooting methods (multiple shooting), since this is only a repetition
of the same argument (see e.g. Keller (1968), (1976), Osborne (1979), Hermann and
Berndt (1981)), nor with nonlinear problems, since those generally are reduced to an
iteration of linear ones by a linearization technique (see e.g. Roberts and Shipman
(1972)).

We consider the boundary value problem

(l.la) x(t) := i(t)-F(t)x(t) O, a <- <- b,

(1.1b) x(t) := B,x(a +Bbx(b

where x(t), 13 R" and F(t), Ba, Bb are n x n real matrices, and we assume that (1.1)
possesses an isolated solution.

We study homogeneous differential equations only, since an inhomogeneous
equation

(1.2) y(t) =(t)

can be reduced to homogeneous form. To this aim, we add a component yn/l to the
vector y and consider the system

(1.3) y(t)-i(t)y.+l --’0, ))n+l "-’0;

moreover, to the boundary conditions we add an equation of the form (a arbitrary)

(1.4) ay,+l(a) + (1 c)y,+l(b) 1.

The idea of shooting for linear problems with nonseparated boundary conditions
is to generate the whole solution manifold of the differential equation and to select
from it the solution of the boundary value problem by the associated algebraic equation
resulting from the boundary conditions (cf. Keller (1968)). Effectively, in the simple
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shooting method we compute from a boundary point, say a, the fundamental matrix
X(t;a) such that X(a;a)=I (=identity) by an initial value problem solver. The
solution of the boundary value problem is determined by applying the boundary
conditions to X(t; a)d and solving the resulting linear system of algebraic equations
for fl by an appropriate numerical method.

For each the columns of the fundamental matrix X(t; a) form a basis for the
solution manifold of the differential equation, and theoretically these columns remain
independent forever, although the angles between them may become very small. In
practice the columns become spoiled by truncation and roundoff errors, the more as
It-al grows larger or as the differences between the eigenvalues of the matrix F(t)
become bigger. Therefore the system of linear algebraic equations by which we select
the solution of the boundary value problem may be perturbed so strongly that the
approximation of the solution may become very poor. This puts a severe restriction
on the length of an interval in which simple shooting is practicable, namely, that the
angles between the columns of X(t; a) not become too small.

Because of the fact that the fundamental matrix is a group with respect to t, it
is possible to improve the stability of the simple shooting method by combining the
fundamental matrices originating from both endpoints of the interval [a, b]. Given
constant n n matrices Ma and Mb, a matrix Y of the form

(1.5) Y(t):=X(t; a)Ma +X(t; b)Mb

is again a fundamental matrix, provided Ma and Mb are chosen such that the rank of
Y is maximal. Obviously this leaves much freedom in the choice of M and Mb to
minimize the computational errors in Y(t) and to optimize the condition of the
resulting system of algebraic equations from which the solution of (1.1) is determined.
Our choice of Ma and Mb is based on the singular value decomposition of X(b;a)
and X(a;b), namely such that the smaller singular values of these matrices and the
corresponding orthogonal projections are eliminated. The reason for this choice is
that perturbations of a matrix have a much stronger effect on the smaller singular
values than on the larger ones (cf. Lawson and Hanson (1974, Ch. 4-5)). From
numerical experiments we can conclude that this technique of "bidirectional shooting"
indeed gives better results and is more reliable than simple (unidirectional) shooting.
Obviously the improved reliability has to be paid for by a doubling of the computational
effort for the integration.

Although bidirectional shooting is more robust than unidirectional shooting, this
method is doomed to fail also if the interval length becomes too large. An obvious
generalization is then to use it as the basic algorithm in multiple shooting. Certainly
the number of intermediate shooting points and hence the order of the resulting
algebraic system will be less than when simple shooting is used. Moreover, the
spreading of the singular values offers a good criterion for the selection of shooting
points.

Finally we remark that shooting in both directions has been proposed earlier,
e.g. in Fox (1962, pp. 61-62). However, there the solution manifolds are generated
from both sides until they meet somewhere in the middle of the interval, where they
are matched. Hence there is no redundant information generated on the solution
manifold, from which the better part can be selected.

Outline of the paper. In 2 of this paper we formulate the basic results on singular
value decomposition of a matrix and perturbations thereof. In 3 we describe precisely
the bidirectional shooting method and in 4 we report on numerical experiments.
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2. Perturbations of the singular value decomposition. In this section we study
the influence of perturbations of a matrix on its singular values and the corresponding
orthogonal factors.

Each n n matrix A can be decomposed (cf. Lawson and Hanson (1974, Ch. 4))
into the product A USVu, where S :=diag (ri) is a nonnegative diagonal matrix
consisting of the singular values of A and where U and V are orthogonal matrices
that diagonalize AA (= US2UH) and AUA (= Vs2vH). Unless explicitly stated
otherwise, we shall assume that the singular values in S are ordered in decreasing sense.

A perturbation E of A influences the singular values as follows. Let {i} denote
the singular values of := A +E. Then

(2.1) r, ,1 IIEII,

where I1"11 denotes the Euclidean norm in R" and the associated matrix norm; cf.
Lawson and Hanson (1974, Ch. 5). The perturbation influences the orthogonal factors
U and V too, but, since those matrices are not defined uniquely, the columns of the
factors and Q of (= rQn) need not be near to those of U and V. Therefore
we must formulate those perturbations in terms of the corresponding orthogonal
subspaces.

Let us define the 2n 2n matrices C, W, T and F by

0) (00 1 U
T:= F:=C:

An W:=- V -S E

Obviously, the symmetric matrix C satisfies the factorization

(2.2) C WTW,
where W is orthogonal and where T is a diagonal matrix with o’i and -ri (i 1, , n
on the diagonal. If

O’k-1 > O’k 2" O’l > O’l+ (with k _<- <_- n ),

then the kth up to the /th columns of W are an orthonormal basis in the joint
eigenspace of C corresponding to the eigenvalues {rk,""", cry} Of C. The orthogonal
projection P on this eigenspace is given by

(2.3) e :=/ (C-AI)- dA,

where F is a closed contour in the complex plane enclosing {crk"" "o’l} and no other
eigenvalues of C; cf. Kato (1966, 1 3.5). For the perturbed matrix ( := C +F we
define analogously I’, ]F and/5.

In order to estimate P-ff we define 8 by

8 := 1/2 min {r_l O’k, O"l O’l +1 },

which is half of the distance to the rest of the spectrum. We consider the strip D C.

D:= {zClr+8>Re z>o’,-,,llmzl<R}

which contains {rk’’ .crt}. If IIEII < it contains also the eigenvalues {Sk.. "51} of the
perturbed matrix C, according to (2.1). Hence, we can estimate the difference P-P
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as follows:

P-P=i"
1 I0o {(C )-a (C +F )-} dh,

Since [IEll IlFII and [l(c dist (A, (C)), the integrals over the horizontal
parts of OD vanish in the limit for R . For the integral on the line Re h g-
we find

and on the line Re h g + 8 we have the same estimate. Hence P- satisfies

< IIEIIlIP-Pll =s -lIE I1"
provided [[E[] < 8.

The orthogonal matrices W and that diagonalize C and are not uniquely
determined; hence a straightforward estimate of the difference of corresponding
columns of W and is not possible. However, if we denote the ith column of W
by w, we find from (2.4) the result

(2.5) (ww #i#S)x <

for all x ", provided IIEil < . This implies that we do not make a big error in W if
we replace the kth up to the/th columns of W by the corresponding columns of if,
provided the eigenvalues {...} are well separated from the other ones.

The matrix W defines uniquely the orthogonal factors U and V in the singular
value decomposition of A. Hence, denoting the }th columns of U, O, V and Q by u,
fii, v and respectively, we find from (2.5) the estimate

for all e N. This implies that we do not make a big error, if we replace the kth up
to the /th columns of U and V by those of 0 and , provided IIEII is small with
respect to 8.

3. Te eefi! sfig e. Consider the boundary value problem

(1.1) x(t)=0, a <-t<-b, x(t)=13.

Define the fundamental matrix X(t; to) as the (n n matrix) solution of the initial
value problem

(3.1) X 0, X(to; to) L

This fundamental matrix satisfies the group properties

(i) X(tl; tz)X(tz; t3)=X(tl; t3) and
(3.2)

(ii) X(tl; t2)= X(tz; ta)-
provided X(t; -) is nonsingular for all and z. Given constant n x n matrices M and
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Mb, each constant vector e R" generates a solution of (1. l a) of the form

(3.3) x(t)=[X(t; a)Ma +X(t; b)Mb]e,

provided X(b; a)Ma +Mb (or equivalent Ma +X(a; b)Mb) is nonsingular. Moreover,
each solution of (1. la) can be represented in this way.

We select the solution of the differential equations which also satisfies the
boundary conditions (1.1b) by inserting (3.3) into (1.1b) and by solving the resulting
equation

(3.4) [Ba(Ma +X(a; b)Mb)+Bb(X(b; a)M +Mb)]C .
From the analytic point of view M and Mb can be chosen arbitrarily if only the
nonsingularity condition is satisfied. Numerically the choice influences the condition
of the system of equations (3.4) drastically. In practice the matrices X(b; a) and
X(a;b), which we shall abbreviate from now on by

(3.5) X:=X(b;a) and Xb:=X(a;b)=X,
are computed numerically and are perturbed by discretization and roundoff errors. If
their singular values differ strongly in magnitude, the analysis of the previous section
implies that the smaller ones and the corresponding orthogonal projections are
approximated very poorly while the larger ones and their projections are still well
determined. This motivates us to choose Ma and Mb such that they eliminate the parts
of X and Xb in (3.4) corresponding to the smaller singular values.

Let X USVH be the singular value decomposition of X, where U and V are
orthogonal matrices and $ is a positive diagonal matrix, and let us assume that the
singular values of S are ordered in decreasing sense; from (3.2) we find Xb VS-1UH.
Inserting this into (3.4) we get

(3.6) [B(M + VS- UHMb) +Bb(USVnM +Mb)]C .
In the product SVnMa we can eliminate the smaller singular values of S if we set
VnM equal to a diagonal matrix with zeros on the corresponding diagonal places;
in S-1 uHMb we can do the same.

Let us now assume that we want to select with the aid ofM the k larger singular
values of S and to eliminate the others and to do the complementary for S-1 with
the aid of Mb. Then we can choose

(3.7) VnMa=p,p, UnMb=u(l_p), p:=(k ),
where Ik is the identity in Rk and tz, u R. Inserting (3.7) into (3.6) we find

(3.8) [B,V(pP+ ,S-I(I-P))+BbU(tzSP+ ,(I-P))]e .
This choice of M and Mb implies that IP + uS-I(I-P) is invertible and that (tzP +
uS- (I P))- (ISP + (I P)) S. Hence, the left-hand side of (3.8) is equal to

(3.9) (Ba / BbXa)[(txP+ uS-I(I-P))- vH]-.
From the assumption about the unique solvability of (1.1), which implies that Ba +BbXa
is nonsingular, it follows that .(3.8) is uniquely solvable with the choices (3.7) of M
and Mb.

We remark that proper choices of/z and u can improve the condition of the
system (3.8) if the singular values of X differ largely in magnitude. They should be
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chosen such that the elements of the diagonal matrices

tzP + vS- (I P) and tzSP + v (I P)

in (3.8) have the same orders of magnitude.
Let us now assume that the k largest singular values of Xa are well separated

from the other ones, and hence that the n -k largest singular values of Xb X-d are,
too. Moreover, assume that we have computed approximations Xa and Xb and that
the perturbations I1- -soil and limb--Xbll are small with respect to this separation.
According to the result (2.6) of the previous section, the corresponding projections
are well determined. From these computed matrices we have to determine the unknown
vector e in (3.4), and we can do this via the procedure stated above, which is designed
to suppress the bad parts of X and Xb.

4. Numerical examples. In this section we describe some numerical experiments
in which we compare the performance of bidirectional shooting with unidirectional
methods (Examples 1-5). All computations were executed on a CDC 170/750 com-
puter in single precision arithmetic carrying a mantissa of 14 significant digits. For
the singular value decomposition and the solution of the linear algebraic systemg we
used routines from the NAG-library.

For the integration we employed standard ODE solvers for nonstitt problems’
in experiments 1, 2, 4 and 5, it was a routine from the NAG-library using a variable-
stepsize and variable-order Adams method; in experiment 3 we used an extrapolation
algorithm based on the midpoint rule with a stabilization proposed by Gragg (see e.g.
Hermann and Berndt (1981)). A specialized stiff ODE solver might possibly enhance
the results somewhat (following our opinion in the favour of bidirectional shooting).
We used the same computed fundamental matrices in the evaluation of both the
bidirectional and the unidirectional solutions. Hence, the experimental data give a
fair comparison of both methods.

The equations as they are written in the examples are not implemented as such.
We transformed them into first order systems, and we reduced inhomogeneous
equations into homogeneous ones by using formulae (1.3)-(1.4). Moreover, we mixed
the three uncoupled equations in experiments 4 and 5 by a linear transformation in
order to simulate a coupling, at least numerically.

Our implementation of the bidirectional shooting method described in the pre-
vious section is as follows. Compute approximations X, and Xb (cf. (3.5)) by an
initial value problem solver (and store intermediate values). Make their singular value

V and b VbgbOl such that the singular values of ffdecompositions Xa US t4

are ordered decreasingly and those of Sb increasingly.
Select the index k used in the choice of M,, and Mb in (3.7) by the simplistic

algorithm

k:=2;l:=n-1;
while k<-_ldo

if
ak bt> then k := k + 1 else := 1- 1"
al

where {ak} and {bk} denote the singular values of X, and Xb respectively. This
algorithm does not care about clusters of neighboring singular values. However, since
in our experiments the singular values appeared to lie far apart, it worked appropri-
ately. Furthermore, we have chosen tz , 1 in (3.7). This we inserted into (3.8) and
solved this system for c. Finally, from the matrices Ma and Mb, the vector c and the
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stored intermediate fundamental matrices we computed the approximated solution by
(3.3) in a number of points tk [a, b]. We have tabulated the max-norm of the errors
at those points in the column under head BD (bidirectional shooting). For comparison
we give in the columns LR and RL the corresponding errors of the simple shooting
from left to fight and vice versa. At the end we give also the results of an experiment
in which we have added random perturbations to the fundamental matrices Xa and
Xb in order to demonstrate the better robustness of bidirectional shooting once more
in a different manner.

Example 1 (see Table 1).
ODE" ex"-(1 + eA)x’ + Ax =0.
BC: x(0)- 1, x(1)-- 1.
Solution"

e’/ (1 +eX)-eX’(1 +e/)
x(t) /e -e

Transformation into first order system" y x, y2 x’.

TABLE
Numerical results ]’or Example 1.

Absolute error in ya of shooting method
Exact solution"
norm of Y2 BD LR RL

10 -10 1.0El 3.2E- 10 7.2E-6 7.2E-6
50 -50 5.0El 2.2E-9 1.1El3 1.1El3

100 -100 1.0E2 1.7E-9 4.5E34 4.5E34
50 2 4.0E2 7.9E-7 6.7E7 9.0E-7

-50 -2 4.0E2 7.9E- 7 9.0E- 7 6.7E7
2 100 8.2E2 1.5E- 5 3.2E29 1.4E- 5

Example 2 (see Table 2).
ODE: ex"-(l + eA)x’ + Ax= e’’-l/2(erl-1)(rI-A).
BC: x(0) 1, x(1) =-1,
Solution"

[(1 -e-’/)e x + (1-e’/2)]e ’/ -[(1 +e’/2)+(1-e-’/2)e/]eX’
x(t) .. 1/e +e

e

Transformation into first order system: Yl x, Y2 x’.

TABLE 2
Numerical results for Example 2

l(t-1/2)

Absolute error in Y2 of shooting method
Exact solution:

e r/ norm of y BD LR RL

2
10
20
40

-40
-40

.5 0 4.9E0 6.9E- 13 9.7E-13
5 0 2.0El 1.1E-10 4.6E-9

10 0 4.0El 1.6E-8 6.9E-5
10 7 6.4E5 8.0E-7 1.3E5

-10 5 8.7E6 2.8E-4 4.8E-5
10 5 7.1El 8.7E- 10 3.8E-9

1.6E- 12
9.7E-11
1.3E-8
1.5E-6
3.2E6
2.6E5
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Example 3 (Mattheij and Staarink (1981) (see Table 3).
ODE"

[ : 21dy
1-h os2t 0 l+hsin

h 0
dt

[-l+hsin2t 0 l+Acos2
y(t)

2 + h (sin 2t-cos 2t)1h

A (sin 2t + cos 2t) _J

Solution"

[i y(0)+ 1 0 y(Tr)=
0 1

y(t) =[1, 1, 1]r.
TABLE 3

Numerical results for Example 3.

Absolute error in ya of shooting method
Exact solution"
norm of ya BD LR RL

5 1.0E0 9.4E-9 5.0E-7 1.0E-9
6 1.0E0 5.5E-8 1.1E-5 6.0E-8
7 1.0E0 2.5E-6 3.1E-5 9.5E-7
8 1.0E0 1.3E-5 1.7E-3 3.0E-5
9 1.0E0 7.3E-5 3.5E-2 4.9E-4
10 1.0E0 6.8E-3 1.0E0 1.6E-2

Example 4 (see Table 4).
ODE:

2 2 2) 2u"-a u=-6(a +r/ coslt+6a cost/,

BC:
u(1)=l, u(-1)=-l, v(1)=l,

Solution"

sinh at
u (t) + 6 (cos r/t cos r/),

sinh a

Transformation into first order system"

yl U +I) + W,

V"+2t/32V’=0, W’-’yw O.

v(-1) -1, w(1)+w(-1) 1.

err/3t 1 e
v(t) erf/3’

w(t)
cosh y

y2=u+t--W, y3=U--13--W,

TABLE 4
Numerical results for Example 4.

y4=u+v , ys=U’--V’.

13 3’ 8
Exact solution’
norm of yl

Absolute error in gl of shooting method

BD LR RL

5 3 20 10
10 2O 20
10 20
5 -3 -20 2 -5
5 -3 -30 2 -5
2 -1 -32 -2

3.0E0 1.1E-8 2.1E5 4.8E-7
3.0E0 2.4E-3 5.7E5 1.4E-2
3.0E0 2.9E-3 1.1E6 7.0E-3
3.7E0 4.6E-9 1.1E-6 3.4E2
3.7E0 9.0E-9 1.4E-6 2.0Ell
2.0E0 3.4E- 10 1.6E-9 2.3E13
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Example 5 (see Tables 5a, 5b).
ODE"

2u _..u"-a O, v + 2B2tv O,
BC"

w" + y{4tw’ + (4yt2 + 2)w} 0.

u(1)=l, u(-1)=-l, v(1)=1, v(-1)=-1,

w(1)=0, w(-1)=1.

Solution"

sinh at erf Btv(t)- w(t)=1/2(1-t)e-’u (t)
sinh c erf B

Transformation into first order system:

yl=U+V+W, y:=u+v--w, y3=u----W,

Y4 t/ + W’ tY5 + U Y6 W’ +

TABLE 5a
Numerical results for Example 5

Absolute error in y of shooting method
Exact solution’

a /3 3’ norm of yl BD LR RL

10 3 5 7.4E1 2.0E-5 1.3E-3 1.3E-3
10 5 10 1.1E4 1.2E-1 1.1El 2.9E0
3 6 3 1.0El 8.0E- 1.2E3 2.9E2
10 2 15 1.6E6 3.8E0 3.6E1 3.5E0
8 4 8 1.5E3 4.9E-5 2.7E-4 2.8E-4
6 4 6 2.0E2 4.0E-7 5.9E-5 5.1E-6

TABLE 5b
Numerical results for Example 5 in which the entries of a and .b are perturbed by adding a small
number e multiplied by the largest singular value and by a random number equally distributed in [-1, 1].

Absolute error in yl Of shooting method
Exact solution:

a /3 3’ norm of yl 8 BD LR RL

10 5 10 1.1E4 0 1.2E- 1.1El 2.9E0
1.0E-11 8.9E1 3.1E4 1.3E3
1.0E 10 8.0E2 7.9E4 2.9E4

10 2 15 1.6E6 0 3.8E0 3.6E1 3.5E0
1.0E- 10 4.7E2 1.1E6 3.2E4
1.0E-9 2.1E4 3.9E6 6.0E5

8 4 8 1.5E3 0 4.9E-5 2.7E-4 2.8E-4
1.0E-10 3.6E-2 2.9E0 9.6E-
1.0E-9 3.4E- 1.0E2 5.1E0
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NUMERICAL SIMULATION OF TIME-DEPENDENT CONTACT AND
FRICTION PROBLEMS IN RIGID BODY MECHANICS*

PER LTSTEDT;

Abstract. A numerical method is given for the solution of a system of ordinary differential equations
and algebraic, unilateral constraints. The equations govern the motion of a mechanical system of. rigid
bodies, where contacts between the bodies are created and disappear in the time interval of interest. The
ordinary differential equations are discretized by linear multistep methods. In order to satisfy the constraints,
a quadratic programming problem is solved at each time step. The fact that the variation of the objective
function is small from step to step is utilized to save computing time. A discrete friction model, based on
Coulomb’s law of friction and suitable for efficient computation, is proposed for planar problems where
dry friction cannot be neglected. The normal forces and the friction forces are the optimal solution to a
quadratic programming problem. The methods are tested on four model problems. A data structure and
possible generalizations are discussed.

Key words, ordinary differential equations, numerical methods, mechanical systems, rigid body, contact
problems, Coulomb friction

1. Introduction. In many engineering applications there is an interest in the
simulation on computers of the large-scale motion of mechanical systems. These
systems are often well approximated by a number of rigid bodies interacting with
each other. The bodies may be interconnected by different kinds of joints, e.g.
ball-and-socket joints or hinge joints, or they may be in contact with each other at a
point, along a curve, or on a surface. The reason to choose a rigid body model instead
of a more elaborate and perhaps more accurate elastic or elastic-plastic model is that
the governing equations are a system of ordinary differential equations and the number
of degrees of freedom is much lower after discretization. Examples of areas of
application where rigid body systems have been simulated are

(i) mechanisms and machinery [33], [34], [38],
(ii) satellites [12], [37],
(iii) biomechanics: the human body represented by 10-15 rigid bodies in sports

activities [36], vehicle crash simulations [20],
(iv) vehicles on the road [11] and on rails [24],
(v) rock mechanics: the motion of assemblages of rock blocks [7],
(vi) building construction, the collapse of a concrete building [28].

In the first four examples the joints between the bodies are assumed to be permanent
during the time interval of interest. Friction is usually ignored in the first three
categories. These systems are simulated in both two and three space dimensions. In
examples (v) and (vi) it is of importance to use a realistic model for the creation and
disappearance of contacts between the bodies and the friction between bodies sliding
on each other. Due to the complicated geometry of the bodies in three space dimensions
these systems have so far only been treated as planar systems.

The standard numerical methods for the solution of ordinary differential equations
can often be applied directly to the systems in (i)-(iv), possibly with a modification
to allow for algebraic constraints (Gear [15, p. 226]). There are methods in analytical
mechanics to reduce the dimension of the system of ordinary differential equations

* Received by the editors October 7, 1982, and in revised form March 22, 1983. This work was
supported by The National Swedish Board for Technical Development under contract dnr 80-3341.

I Department of Numerical Analysis and Computing Science, The Royal Institute of Technology,
S-100 44 Stockholm 70, Sweden. Present address: KLUB-2, Aerospace Division, SAAB-Scania, S-581
88 Link6ping, Sweden.
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tO the degree of freedom of the mechanical system; see Paul [34]. This technique is
used in Sheth and Uicker [38], while in Orlandea and Calahan [33] extra variables,
Lagrange multipliers, and associated algebraic constraints are introduced. For problems
where the number of contacts is small, say 1-3, it is possible to reduce the size of the
differential equation system as described above and to reformulate the system at each
time a new contact is established or an old contact disappears. For mechanical systems
with several contacts and dry friction, the Lagrange multiplier approach is much more
flexible and efficient. Furthermore, the multipliers are directly proportional to the
contact and friction forces.

Coulomb’s law is a simple and common model for dry friction between sliding
bodies. In this paper we develop a numerical method for the simulation of time-
dependent contact and Coulomb friction problems for rigid body systems based on a
Lagrange multiplier approach. The method was outlined in L6tstedt [27]. An improved
version is here analyzed and tested On model problems inspired by rock mechanical
applications. Cundall [7], in his simulation of rock blocks, introduces springs and
dampers at the points of contact to prevent the blocks from penetrating each other.
In our method the Lagrange multipliers serve the same purpose.

Cundall’s idea is related to the penalty function method in nonlinear optimization
and is analyzed by L6tstedt [26]. The analysis of two deformable bodies in contact is
reviewed in Kalker [21 and methods of solution are indicated in Cottle [6]. Numerical
methods for the elastostatical contact problem have been devised e.g. by Haug, Chand
and Pan [19] for many bodies without friction and by Fredriksson [14] for two bodies
with friction.

In the next section the system of equations and inequalities satisfied by the
coordinates of the bodies and the Lagrange multipliers is formulated. Friction-free
contact problems are treated in 3. The system of ordinary differential equations is
solved by a linear multistep method and the Lagrange multipliers are the optimal
solution to a quadratic programming (QP) problem. A discrete interpretation of
Coulomb’s law of friction is made in 4. The friction forces are also the solution to
a QP problem. The performance of the method described in 3 and 4 is illustrated
in four examples. In 5 a data structure for the representation of the mechanical
system in the computer is proposed. Possible generalizations are discussed in the final
section.

2. The governing equations. The governing equations for planar contact and
Coulomb friction problems are derived in L6tstedt [29], [30]. The equations are stated
and explained here for completeness and the notation used throughout the paper is
introduced. The necessary modifications in three space dimensions are discussed in 6.

The system of ordinary differential equations satisfied by q(t) ", the vector of
the coordinates of the bodies, is for => 0
(2.1) Mq f(q, gl, t) + G (q)a (t).

The position of a body is represented in q by the Cartesian coordinates (x, y) of its
center of gravity and an angle of direction q,. M e R"" is the mass matrix, a constant,
diagonal matrix with positive diagonal elements. M has the factorization

(2.2) M=DrD.
f e R" contains the explicity given driving forces and GA represents the contribution
of the contact and friction forces to the equations of motion, a is the Lagrange
multiplier vector which is determined such that certain algebraic constraints and
inequalities are fulfilled.
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Let the components of b (q) Rp be the holonomic, unilateral constraint functions.
b may e.g. be the perpendicular distance between the corner of one body and the
edge of another body. The unilateral algebraic constraints in the mechanical system are

(2.3) 4(q) => 0.

To simplify the presentation, only holonomic constraints arc discussed here. In the
computational procedures in 3 holonomic and nonholonomic constraints are given
equal treatment. Let gv O4/Oq and let the transposition of the vector or matrix C
be denoted by C r. If 4b is the distance between a corner and an edge then
dqb/dt rgr,rq is the relative velocity between the same corner and edge in a direction
normal to the edge. ANi is the nonnegative Lagrange multiplier associated with bi.
Define 8N as follows:

(2.4) Ni
d2ti T

dt--- gNiq + vil.
Introduce the time-dependent, active constraint set JN
(2.5) JN -{i14i-0}.

TThe complementarity relations satisfied by cki, gNiq, Ni and ANi are

(2.6a) i O, /Ni O, /Nil)i O,
T T(2.6b) if Jr then gNiq >= O, ANigrigl O,

(2.6c) if grigl 0 then 8i >= O, ZNi’3Ni O.

Since bi and Ari are nonnegative, the conditions Aribi =0, 1,2,...,p, are
equivalent to A nrb =0. The physical interpretation of (2.6a) is that if there is no
contact between the corner and the edge then b > 0, and the multiplier proportional
to the normal force at the point of contact AN’ has vanished. If A0 > 0 then we have
a contact, b 0.

The vectors gFi W", 1, 2,’’’, k <=p, are determined such that gri is the
relative velocity in the transverse direction between two bodies in contact at a point
or along two edges. Let AFi be the associated Lagrange multiplier proportional to the
friction force acting on the bodies. 8F has the definition

(2.7) Fi
d (gi T

d gFiq + iO.

To each friction multiplier AFi there is a corresponding normal multiplier ANi. Introduce
three index sets

(2.8) JFo= {ili e JI, gdl =O}, JFw {ili JN, gidl # O}, JF (JFw [.J JFo) C JN
All the sets in (2.8) are time-dependent and are altered at discrete time points. If

JFO then no sliding takes place at this particular contact. According to Coulomb’s
Tlaw of friction the following relations are satisfied by gFiq, 6Fi, Ai and AFi"

(2.9a) if JF then IAil--< t-lbXNi,

(2.9b) if JFw then IAFil- [d,ANi, AFigi4 <--0,

(2.9C) if JFo then (/zAvi- [AFil)6Fi O, AFfiF <= O.

The friction coefficient is/z,/z => 0. The condition (2.9b) expresses the fact that if two
bodies slide upon each other, then the friction force has the direction opposite to the
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relative velocity. It follows from (2.9c) that when there is no sliding then 8Fi 0 and
but when the sliding has just begun then 8Fi 0 and

The columns of G in (2.1) are at least those vectors gNi and gFi for which
at a given time point. The elements in h in (2.1) are the corresponding normal and
friction multipliers hri and AFt.

If JFw then AF can be written in terms of hr,/z and sg +/- 1"

(2.10) hFi Si[J,ANi.

For friction problems it is convenient to split G into two parts, G1 and H. Let
contain the normal multipliers hv and the friction multipliers AFj, j JFo. Moreover,
let the columns of G1 consist of those gi and gFi corresponding to the components
in h and collect the remaining vectors gi, f Jw, in H. By (2.10) there exists a
matrix U such that

(2.11) E gF,X E gF,s,lzXl, HUh1.
ieJFw ieJFw

The contribution of the working friction forces to the equations of motion (2.1) is
(2.11). Thus, with the new notation, (2.1) is equivalent to

(2.12) M4 =t’+ (G1 +HU)A, >=0.

Suppose that a new constraint /" becomes active at t.. Then J(t>=t.)
Jiv(t < t.)IJ {/’} and bi(t)> 0, < t., but bi(t)= 0, -> t.. In general, there is an impulse
A in the system at t. and c is discontinuous. Let c/ and c_ denote (t+0) and
(t-0), respectively. F is the vector of external impulses. Then one relation between
+,

_
and A is

(2.13) M(4/-4-)=F + G(q)A.

G consists of the columns gr and gri such that Jr(t. + 0). A component AN of A
corresponds to a contact constraint b and AFt to a friction constraint gFiq. The
complementarity relations for / and A depend on the material in the colliding
bodies and on the impulse friction model. Here the collision is assumed to be inelastic
and A is the optimal solution to the QP problem

min 1/2A 7"GTM-1GA+ArGr(1- + M-1F),
(2.14)

Avi >- O, -Ix1ANi AFi <= I.I ANi.

The impulse friction coefficient is/xI, t->0. For a friction-free system/zx 0 and
AF =0. By (2.13) and the Kuhn-Tucker conditions [13, p. 51] at the optimum of
(2.14) we have

T(2.15) g/ -> 0, Ari -> 0, Argrq/ O.

The implications of (2.14) on A and gF/ when/xt > 0 are discussed in 4.3.
Another source of discontinuities is when a friction constraint j is transferred

from JFw to JFO, i.e. when g. 0. Then /and h are in general discontinuous. The
time derivatkves ff and are usually discontinuous when hri reaches its lower bound
0 and j is removed from J, and when IAFil attains its upper bound /zhri and ./" is
transferred from JFO to JFW.

In order to solve (2.1) or (2.12) in combination with the relations (2.6) and (2.9),
the problem is discretized by two linear multistep methods (Gear [15]). An approxima-
tion (q,) to (q(ti),t(t)) is determined at t=t, i=O, 1,..., where t0=0 and
ti/l t + h/l. Assume that (q, ), 0, 1,..., n- 1, are known. Then the formulas
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for computation of (qn, 4n) with a constant step size hi h and two r-step methods are

1.(2.16a) ’. aqn-i h ’. fliqn-i,
=0 =0

2 -1(2.16b) an-i =h fliM (fn-i+Gn-iAn-),
i=0 =0

where fn-i =f(qn-, gin-i, tn-i), Gn- G(qn-i) and the coefficients a,/3[, j 1, 2, are
constant. Sum all the quantities in (2.16a) and (2.16b) that are known from previous
steps in b nl and b 2n, respectively, so that qn and 4n are the solutions to the nonlinear
equations

1 1
(2.17) qn =--(hflln + bln), dl =-(hflM-l(fn +Gnhn)+ bEn).

Ol 0 Ol 0

In a friction free problem,/x 0, qn and An satisfy in addition to (2.17) the discrete
version of (2.6a)

=>0, Affb(qn) 0.(2.18) b (qn)_-> 0, An
The system (2.17), (2.18) is referred to as a nonlinear complementarity problem
(NLCP) in Cottle [6]. The prospects of having to solve an NLCP at each time step
are not so encouraging. Therefore, in the next section, by a suitable choice of linear
multistep methods in (2.16) and by replacing the condition (2.6a) by (2.6b), we arrive
at a linear complementarity (LCP) problem whose solution is calculated with a QP
algorithm.

The norm I]" in the sequel always denotes the Euclidean vector norm or the
subordinate, spectral matrix norm. The weighted norm Ilxll of the vector x has the
definition

(2.19) Ilxll - x Mx IlOxll=.
3. Contact problems. The difference equations for friction4ree contact problems

fulfilled by (q,, ,) are chosen in this section. A numerical procedure for obtaining
it, is suggested for time points t, where the active constraint set is constant, J(t,_)
Jlv(t,), and when contacts disappear, Jr(t,-)Jr(t,), 4i(t,-)= 0, but 4i(t,)>0 for
some f. When a new contact is established at t., the impulse in the system and the
jump in satisfy (2.13) and (2.14). The section is concluded by two examples.

3.1. Advancing the solution in time. The coefficients a, / in (2.16a) are
determined by a member of the Adams-Bashforth family of explicit formulas denoted
by AB-r [15, p. 104]. The method in (2.16b) is a backward difference formula [15,

2p. 217] with/320 1,/3 =0,/" 1, 2,. ., r, abbreviated BDF-r. Replace (2.18) by the
condition (2.6b) in intervals where Jr is constant or indices are dropped from Jr. Let
gr, eJr, form G. Since/0 0, we have by (2.17) and (2.6b) that q, and , are the
solution to the system

1
(3. la) qn =-- bn,

oo

(3.1b)

(3.1c)

1
gin --( hnM-l(fn + GnAn) + b2n),

oo
T. T T.Gnqn >-0, n 0, n Gnqn =0.
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First compute q, in (3.1a). If we let c, denote b 2 + hnM-lfn and temporarily assume
that f=f(q, t), then ((3.1b), (3.1c)) is a linear complementarity problem. The system
((3.1b), (3.1c)) is equivalent to the QP problem (Cottle [6])

(3.2)
Since

A->0.

C h,M-lf, o q,,-i,
i=1

Twe have IIG.cnll- O(h )if h varies smoothly and II;t. II-- o( )in (3.2). The dual problem
to (3.2)is

(3.3) min 1/2vT’TJM’-IGnvn, h.Gr --1 TM G,,v,, + G,, c,, => O,

where G.A. G.v,, (see Dorn [10]). Substitute

G,,A,, h-lM(al,, c,,)

in (3.3) and after dropping unnecessary constants in the objective function and the
constraints we have

(3.4) min Ot qn--i G ,q, >- O.
i=0

There are two advantages to using the complementarity condition on the derivative
of the constraint (2.6b) or (3.1c) instead of (2.6a) or (2.18). The nilpotency of the
system (3.1) is lower (see Petzold [35] for a treatment of these matters) and the
constraint function G is linear in . The disadvantage is that 4(q)= 0, Jr, is
not satisfied exactly. A possible remedy is the stabilization procedure developed by
Baumgarte 1].

How to compute A, is treated in 3.2. Here we shall continue with a discussion
of the properties of the time discretization. In most steps from t,_ to t, the active
constraint set J remains unaltered. Then the constraint on , in (3.1c) is an equality

T.constraint, G,q,, 0. It is shown in [27] that the global accuracy in q,, ,, A, and
T.4(q,) for a constant step size h is O(h r) when G,q, =0. The recursion in (3.1) is

restarted using the first order method (AB-1, BDF-1) for two steps after a discontinuity
in or/. In order to simplify the solution process, the discontinuities in 0" stemming
from the removal of a constraint from J are ignored. Errors proportional to h 3 and
h 2 are introduced in q, and ,, respectively. It does not pay to use methods of higher
order than two, r 2, if the order of the global error is to be the same at points when
J is constant and when constraints are dropped from Jv. We assume that the alterations
ofJ are independent of h. Since these take place at discrete points, the global accuracy
of O(h 2) in . is maintained.

The stepsize h. is chosen such that a weighted norm of the local error I. in q.
per unit step is less than a prescribed tolerance e,

(3.5) IIz. I1 , -<- h.e.

The reason for choosing this error condition is that we can allow certain errors in
to be dealt with later to be of O(e). The local error at t. in AB-1 (the forward Euler

2" 3... 2method) is proportional to h,,q,, and in AB-2 to h,,q.-1 h.(%-1-/-2)+ O(h4) if
h h.-1. The estimate of/’_1 is less accurate when a constraint is dropped from
but is for simplicity used there also.
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The stability of the compound methods (AB-1, BDF-1) and (AB-2, BDF-2) is
studied by means of the scalar test equation

(3.6) ii + dti + ku 0

in [27]. This spring-and-damper equation has stable solutions if and only if k >0,
d -> 0 or d > 0, k => 0. The stability regions for the first and second order methods are
depicted in Fig. 1.

II

FIG. 1. Stability regions for the methods (AB-1, BDF-1) and (AB-2, BDF-2) applied to the test equation
(3.6) are plotted in pictures and II. The methods are stable in the unshaded areas except for the corners
where the difference equation has a double root 1 2, I11- 1.

Suppose that bi(tn-1) > 0 but b.(tn)-< 0 for some/’. Then a collision has occurred
at t,, bi(t,)= 0, t,-1 <t,-< t,, where is discontinuous. The point t, is determined
by inverse linear interpolation between 4j(t,-1) and 4j(t,). The error introduced by
this approximate computation of t, is of O(h2). An example where/ is discontinuous
is when one body in contact with another body slides off the support of the other
body. Another reason for a jump in/ is when f is discontinuous. The crucial point
t, is also here determined by inverse linear interpolation.

The assumption f =f(q, t) is not always satisfied. A linear damper gives rise to
an external force proportional to , ]’=f(q, gl, t). Sufficient conditions for the
existence of a unique solution to ((3.1b), (3.1c)) when f is velocity dependent are
stated below.

PROPOSITION 1. Let f be continuously differentiable in l and let A be defined by

A (I M h Ofc--- -- (q’’ O, t.).
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Assume that A is invertible in a sufficiently large neighborhood O of 4n-1 and let

nA-1Gn.B(Et) 0r

T(3.7) xTBx >=r,x x, r, >0, Q,

then there is a unique solution (ln, An) to ((3.1b), (3.1c)).
Proof. Since A -1 exists when 4 Q, 4n in (3.1b) can be expressed uniquely as

4n un(hn), [9, Thm. 10.2.2].
Furthermore,

Ogl.__2., h___,2A-,(Un(h,,))G A’G,.
Oh. ao ao

Consider the NLCP

(3 8) An > 0, GT Tnqn Gnun(An)>O, A T TnGnun=O.
We find that

0 G,, --G,A2Gn B.

If B has the property (3.7), then there exists a unique h, solving (3.8) according to
[22, Thm. 3.2]. Hence, , is also unique.

Remark. Assume that G, has full column rank. If h, is suciently small then
A-=M-1WhnC [[C[[=O(1) xTGT -1M G,x oXx, Xo > 0, and (3.7) is satisfied. It
can be shown that if Of/O is symmetric and the eigenvalues h of D-r Of/OD-satisfy 1 > h,h/a, then the sucient conditions in the proposition are fulfilled.

The proposed solution process for ((3.1b), (3.1c)) when f=f(q, , t) is based on
functional iteration. The value (o, is predicted by ,-1, the AB-1 or the AB-2
formula depending on the number of available with sucient continuity. Then

(i, f 1, 2,.. is determined by the corrector equation

=(h,M-(f(%,-, t) + GA)+ b), G 0, h 0,
o

(3.9) xa( =0.

The criterion for interruption of the iteration is discussed after the following propo-
sition.
Pooso 2. Let f, =f(q,, , t,) be continuous and differentiable in . Let

C1 and c be constants such that JIM- Of,/O][ c1 in [[-([[<c., If h, is so
small that h,cx/a 1 and [[-(fll <c(1-hnCl/a), then the proposed iterative
process (3.9) converges w the unique solution of ((3.1b), (3.1c)).

Proof. Define Fo and F by

Fo(y) =ayMy-h,y yMb, F(y) =ayMy- h,yf- yMb,

where f’, f(q, x, t,). Define the minimization problems

(3.10a) min Fo(y), G, 0,
(3.10b) minF(y), G, 0.

Let yo be the solution to (3.10a) and Yl yo+Sy the solution to (3.10b). It is shown
in [31, (3.5)-(3.7)] that yo and Y satisfy

(3.11) 8y r(F(y 1) F(yo)) 8y r(Fo(yo) gx(Yo)),
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where VFi, 1, 2, denotes the gradient of F. Then

Yl] -< h,Sy T(fl fo)/a hn(Dy)TDM-I(fl fo)/ a 2o.
Therefore, by (2.19)

ylt -<- h,,llM-l(f-f)llM/O2o.
It follows from [9, 8.5.4] that if Ilxo-)11, < c. and Ilxl-)11 < c=, then

(3.12) Ilyl-Yoll<-_h,clllXl-Xoll,/Oo<llx-xoll,.
If xi =’-1/i) then by (3.4) ()= yi in the iteration process (3.9). The fixed point
theorems [9, Thms. 10.1.1 and 10.1.2] and (3.12) prove the convergence of the
procedure (3.9) to the unique solution of ((3.1b), (3.1c)). [3

Using the suggested predictor methods, it can be shown that for the difference
between the predictor o), and the first corrector solution 4<1), we have

114) -4)11, O(h), k > 1

The sufficient conditions in the proposition can always be met by choosing hn small
enough. However, for problems where Cl is large the step size hn may be intolerably
short. The conditions are the same in a problem without the constraints Gr4 => 0 (cf.
Gear 15, p. 114]).

The error 114.-4s11,. in the accepted solution 0 (s)n of (3.9) is allowed to be at
most 0.1e. This error is multiplied by fl h in the computation of q,+x. The factor 0.1
is chosen in order to make 0.1/lh,+e small in comparison with the local error (3.5)
in qn+l. Let the error Gn6A n(i) in G,A n<i) satisfy

(3.13)

The iterative error in 4(J)n is estimated by

(3.14) II0 4) 11, <ol[0 <d O <2-’) I1, + 0,
1-O

Dahlquist and Bj6rck [8, p. 239]. An approximate rate of convergence p hnc/o
is determined during the iteration. When the error bound in (3.14) is less than 0.1e
for j s, then the iteration is terminated. If ]" is dependent on the velocity 0, then
eo=0.01e. Otherwise, 0n is computed directly in (3.1b), and the required accuracy
eo in GnA is 0.1e.

In conclusion, we give the algorithm for advancing the solution one step from
tn- to

ALGORITHM 1.
1. Compute qn by AB-1 or AB-2 with a step length hn such that the local error

satisfies (3.5).
2. If necessary, predict the value (o), and then compute f =f,(qn, gl( t,).

Determine G,A, to the prescribed accuracy eo and calculate //n
M-l(fn + G,hn) and , by BDF-1 or BDF-2. If f is a function of , this step
is performed iteratively (3.9).

3. Test whether
(i) is discontinuous between tn-1 and tn because there is an external impulse
F S0 in (2.13), or a new constraint becomes active, i.e. (bj(t-l)>0, but
4b(tn)-<_ 0 for some/’;

(ii) " is discontinuous between t,,_ and t, because f or GA is discontinuous,
e.g. due to the loss of support of a body.
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If (i) or (ii) has occurred, then the time t, where or/ is discontinuous is
computed by inverse linear interpolation. If there are several detected jumps

2in or//" in the interval at t,, t,, ., t,, then t, min (t,,..., t,). After a
discontinuity .in the new velocity + in (2.13) is first determined. Then
restart the integration at Step 1 by AB-1 with q(t,), tj(t, +0) and the new
active constraint set JN(t, + 0).

4. Test whether there are any elements Ant in An such that Ant =0 and the
corresponding An in

T.A, Gnqn

satisfies Ant > e. If that is the case then remove j from JN.
5. End of algorithm.

Initially, J at 0 is defined by $ (q (0)) and G (0) as follows"

J {15, 0 and g/4 0 at 0}.

We exclude the possibility of a/" such that St(q(0))< 0, i.e. the initial conditions are
compatible with the constraints. It may be necessary to introduce an impulse in the
system at 0 so that gf4 => 0 for every/" with 4’t 0. In the restart step 4n-1 is not
available for the local error estimate. The first step size hn in Step 1 is instead taken
to be hn-1, the old step size, and when Step 2 has been completed, the local error in
qn is estimated using//’n. If (3.5) is not satisfied, then Steps 1 and 2 are repeated with
a new step size. The threshold value e in Step 4 is chosen to avoid unnecessary
zigzagging; i.e., a constraint that left Jn at tn-1 is reintroduced in Jv between tn-1 and
tn(cf, nonlinear optimization in Fletcher [13, p. 113]). If Ant"e, then Ant=0 and Ant
does not affect the equations of motion, even if/" is not dropped from JN.

3.2. The quadratic programming problem. The velocity 4n can be calculated
directly as the solution to (3.4) without introducing An. It is, however, advantageous
to solve (3.2) for An first and then insert the result into (3.1b) to obtain 4n. The merits
of (3.2) in comparison with (3.4) are

1. An initial, feasible A 0, in an active set algorithm for QP problems is easily found.
2. The QP problem for friction-free systems is a special case of the QP problem

for systems with Coulomb friction.
3. The multiplier vector An is sometimes of interest itself, e.g. in friction problems.
It is well known from classical mechanics that in time-independent problems, the

contact forces cannot be uniquely determined due to the fact that the columns of G
are linearly dependent ("statical indeterminacy"). This can of course also be the case
in dynamical problems. In L6tstedt [30] it is shown that GA in (2.1) is always unique
even if G does not have full column rank.

We shall consider a slightly generalized QP problem (3.2) and study the uniqueness
of the solution and the sensitivity to perturbations. The generalization is motivated
by our Coulomb friction model in 4. The new QP problem is

min 1/2xAAx +xT"A ’d, ai <-_xi <-_b, 1, 2,..., l,
(3.15)

a<-x, i=l+l,l+2,.. .,k,

where A ,nk, d ", a, x k and b . If the objective function in (3.15) is
replaced by IIAx +dll, we have transformed (3.15) to a linear least squares problem
with the same solution x,. If x. is not unique then on the manifold of solutions choose
x. satisfying
(3.16) min x x, x solves (3.15).
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In the perturbed problem ((3.15), (3.16)), denoted by ((3.15)8, (3.16)8), the
quantities A, d, a and b are perturbed by 6A, 6d, 6a and 6b. The next proposition
characterizes the solution to ((3.15), (3.16)) and ((3.15)8, (3.16)8). In order to state
the proposition we need some notation. R (B) denotes the range and N(B) the null
space of the matrix B. Px is the orthogonal projector on the subspace X. Furthermore,
let S and $8 denote the sets of constraints on xN N(A) that must be satisfied as
equalities at the solutions x, and x, +6x, to (3.15) and (3.15)8, respectively. Let us

Tconsider an example. Suppose that 0, n 2, a r (0, 0), x, (0, 0),

(3.17) R(Ar)=(ll)zl and N(A)=(_ll)zz,
where Zl and z2 are arbitrary. Then S {1, 2}. Conversely, if the definitions of R(Ar)
and N(A) in (3.17) are interchanged, then S . If N(A) then of course $ .

PROPOSIa’ION 3. A solution x. to (3.15) always exists and PRAr)X. and Ax. are
unique. IfA has full column rank or if x. also satisfies (3.16), then x. is unique. Define
r/=max (IIAII, IIdll, IIall, IIbll}. Assume that

rank (A) rank (A + 8A),

ai < bi, 1, 2, , 1, and S Ss. Then them exist positive c and 1o such that if q <- 7o
then

(3.18) II x,ll cn,

Proof. The existence and uniqueness results follow from [31, Thm. 1]. The
conditions of [31, Thm. 3(i) and (iii)] are satisfied and the perturbation bound (3.18)
is a consequence of the theorem. 13

The proposition is directly applicable to (3.2) with A D-rGn, x An, d Dcn/hn,
0 and a 0. In contact problems where we are not explicitly interested in a unique

An, it is sufficient to compute the unique GnAn.
The QP problem (3.2) is solved by an algorithm exploiting the fact that the

objective function does not vary much from step to step. The active set method by
Gill and Murray [18] is modified to handle a positive semidefinite ArA in the step
where a new search direction is calculated.

An algorithm similar to that in [18] is described by Lawson and Hanson [25].
The procedure for solving (3.15) with a 0 and 0 is presented below. The algorithm
is justified and a comparison is made in a separate paper (L6tstedt [32]). The index
of a variable belongs to one of the sets F, X, or P. The restriction AF consists of the
columns of A corresponding to an index in F.

F is the set of free variables, xi => 0, such that a QR decomposition of AF with a
nonsingular R is available. X is the index set of the fixed variables xi 0, and P, the
passive set, contains the rest of the indices. The parameter e is an error tolerance.

ALGORITHM 2.
Initialization.
1. If necessary compute a QR decomposition of the maximal number of linearly

independent columns in A. Let F contain the indices of the columns repre-
sented by the QR decomposition and P the remaining indices.

2. Compute the residual r- Ax + d.
Main iteration loop.
3. If F then compute a new descent direction p by solving

(3.19) AAFp/AFr=O.
Otherwise go to 7.
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4. Let 0p, 0 -< 0-< 1, be the maximal step possible in the direction p without
violating any constraints. 0 satisfies

Xi

Pi
s F, {][j F, pj < O},

5. Update x and r

0= min (min "/’i, 1).\ iF.

xi := xi + Opi, F, r := r + OAFp.

6. If ’i > 1, S F,, in Step 4 then go to 7. For each xj reaching its lower bound
in this step, transfer/" from F to X and remove the corresponding column in
the QR decomposition of AF.
Go to 3.

7. Compute the gradient of the objective function

A Ar ArAx +A rd.
8. Find

3, max (-min Ai’ max IAil)iX iP

and an index ] such that 3, =-A,/’ s X, or 3, IAl, ] e. If 3’ > el then the
objective function can be decreased further if xi becomes a free variable.
Transfer/" from X or P to F and add the corresponding column to the QR
decomposition. Go to 3. If 3"-<_ el then an approximate optimum has been
found.

9. End of algorithm.

On termination of the algorithm for the problem (3.2) we have

r D-TGnAn + h- Dc,,.

Thus,

n hnD-lr/ot and GT"qn hA/

The algorithm is initialized with x A,-1, the feasible solution from the previous step.
Another possibility is to use polynomial extrapolation to obtain a start value. At most
time points t,, the optimum is found after the computation of one descent direction
in (3.19). Only in exceptional steps is the lower bound on a variable xi attained and
more than one system (3.19) has to be solved.

The matrix A D-TG, varies continuously in time and not very much from step
to step. Therefore, AF is not factorized at each step, but the old R-matrix is used to
accelerate a conjugate gradient algorithm for solution of (3.19) as described by Bj6rck
and Elfving [3, p. 156]. The convergence rate for AFR -1 in (3.19) is superior to that
of AF if R is part of a recent factorization. The old QR decomposition is updated in
Steps 6 and 8. The column added in Step 8 is a fresh column of A computed at tn.
If/" s X at Step 9, then the corresponding constraint $ is most likely dropped from
JN at Step 4 in Algorithm 1. The QR decomposition is already prepared in Algorithm
2 for this change in J2v. The factorization of A is obtained by Householder transforma-
tions (Businger and Golub [4]), and the determination of its rank is based on Karasalo
[23]. Methods for updating the decomposition are described in Gill et al. [16].

The criterion for computing a new factorization is derived as follows. Denote by
T the total number of calls of Algorithm 2, i.e. the number of steps taken, the cost
in floating point operations of a factorization by Col and the total number of
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decompositions performed by n. Assume that the cost due to the iterative solution
of (3.19) is Co+Crr" s’, Co, Crr, r>0, where s is the number of steps since the last
decomposition and s is the number of cg-iterations per step. This is a reasonable
assumption if (3.19) is solved only once per step. In a steady-state situation, we have
that the cost Cc in one cycle from one factorization up to the next is

fO
TIn

Cc CQR "- (Co q- CIT" S r) ds.

Thus, the total cost is

C(n CoRn + CoT + CiTTr+ln
r+l

The optimal number of steps per cycle is

T (r + 1 Coa)x/t,+x)- r -]
rendering C(n) a minimum. Here we also assume that r 1. A new QR decomposition
is computed when the number of iterations in the cg-algorithm exceeds (2Coa/Crr)l/2.

The conjugate gradient iterations are terminated when the residual v
AfAvp+Avr in (3.19) is sufficiently small. The error 6p in p satisfies

RSp R -TAASp -R-rv.
If the loop in Algorithm 2 is repeated only once, then

(3.20) IIM-’G.6A. I1, IID-G.6A. IIAPll -IIQRPll--< Ilvll IIR-Xll.
Hence, if tlvll in (3.20)is less than  o/llR- ll then the accuracy requirements in (3.13)
are satisfied. IIR-II is estimated according to Cline et al. [5]. The parameter el in Step
8 is taken to be

If the number of active constraints is always small, say 1-3, there is of course
the straightforward method to compute X, by guessing which of the components will
attain 0 and then solving a system of linear equations for the remaining multipliers.
If the complementarity conditions (3.1c) are not satisfied, then we try another probable
combination. This approach can be very slow for larger problems without more
information on which multipliers we can expect to reach 0.

3.3. Computation of impulses. The treatment of the friction-free impulse prob-
lem is almost equal to the treatment of the time-dependent contact problem. The QP
problem (2.14) with/xt--0 corresponds to (3.2), and (2.13) to (3.1b). An impulse A
is computed in Step 3 of Algorithm 1 at each time the external impulse vector F 0
or a constraint/" is included in J. A modification of Algorithm 2 that can handle the
constraints in (2.14), when/x >0, is used to determine A (Gill and Murray [18]). This
modified version is for/xt 0, equivalent to Algorithm 2. The algorithm always works
with the exact QR decomposition. A constraint j is dropped from JN if gNr4+> e,
the same e as in (3.5).

3.4. Examples. The proposed Algorithms 1 and 2 have been tested on two
friction-free model problems. More details about the implementation are given in 5.
In the figures the x-axis is horizontal and x increases to the right. The y-axis is vertical
and y is increasing upwards. In the first example in Fig. 2, the boxes are of dimension
1.5 1 and their density is 1. Since the only external force is the gravity force, [ in
(2.1) is constant. The bodies have no initial velocities except for body 2 where
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Time: 0.0000 Time"

Time: 1.0004 Time:

Time: 1.8010 Time"

0.6006

1.4022

2.2017

Time- 2.6001 Time: 3.0012

FIG. 2. The motion of five boxes piled on each other is simulated when the initial velocity of box 2 is
2.0 in the horizontal x-direction, Ix t 0, e 0.001.

(0) 2. The numbers below each picture indicate the time passed from the initial
state. When the simulation was interrupted, body 1 moved slowly to the right and
the bodies 4 and 5, slowly to the left. In Fig. 3, a homogeneous hexagon is suspended
in a linear spring and damper. Its shortest side is 1.5 and its mass is 7.5. The spring
and damper constants (cf. (3.6)) are both 6. The external forces are the gravity force
and the spring and damper force, f =f(q, t). The body has no initial velocity. On
the ground the hexagon oscillates back and forth until all kinetic energy has been
dissipated by the damper. The velocity in the x-direction at 4.60 is 0.69. The error
tolerance e was 0.001 in both examples.

4. Coulomb friction problems. Coulomb’s friction model for the transverse force
at a contact between two rigid bodies has several undesirable properties (L6tstedt
[29]). The existence of a solution to (2.1), (2.6) and (2.9) cannot be guaranteed, and
if a solution exists it is not always unique even if the columns of G are linearly
independent. A solution may also be very sensitive to small perturbations in the data.
We shall here develop a numerical friction model based on Coulomb’s law. The
equations in our model always possess a unique solution which is reasonably insensitive
to small perturbations. The Lagrange multipliers are determined by a QP problem
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Time: 0.000 Time: 0.7832

Time: 2.1151 Time: 4.6022

FIG. 3. The motion of a hexagon is studied. The body is suspended in a linear spring and damper with
one end fixed in the inertial frame, I txt O, e 0.001.

such that the friction-free problem is a special case of the friction problem. A model
for friction impulses is also presented. Two examples illustrate the method.

4.1. Advancing the solution in time. The discretization methods for the numerical
solution of the system of ordinary differential equations are the same as those selected
in 3. Apply AB-r and BDF-r, r 1, 2, to (2.12) to obtain

1
(4.1b) 4. =-5 (hnM-l(.f. +(Gin --HnOn),ln) -1- b2n).

t o

where b, i= 1, 2, are defined as in (2.17). The discrete equations (4.1) and the
relations (2.6) and (2.9) suffer from the same inconsistencies as the analytical equations
(2.12) and the relations (2.6), (2.9), i.e. nonexistence and nonuniqueness of solutions
and sensitivity to small perturbations. The sufficient conditions in [29] for existence
and uniqueness are not always satisfied by physical systems.

In order to circumvent the difficulties, the computation of (G1, +H,Un)A in is split
into two parts.

The first part, G1hA x,, is the contribution to the equations of motion of the contact
forces and the friction forces at contacts where no sliding takes place. We describe
how GlnA In is determined by a QP algorithm in 4.2. The second part, HnU,A ln, is
the term of the working friction forces in the equations of motion. In the step from
tn- to tn the columns of Hn are those gFi(tn) for which ] SJFw at tn-1. The signs si in
(2.10) are such that (2.9b) is satisfied at t,_. It follows from (2.10) and (2.11) that
the only components of A n involved in the computation of HnUnA in are those normal
multipliers associated with a sliding contact. They are computed by polynomial
extrapolation. If/] is continuous then A can be chosen continuous [30]. Let A lj denote
the approximate value of ANi(ti), Jv, solving the QP problem at i. If / is not

1
(4. la) q. --i- bo
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discontinuous between t,, and t, and 1,n-l, and if A ,,-2 are available, then , is
approximated by h,, in

hn(Ai
(4.2) h ,n h 1,n-1 -[-

1,n-1
,
1,n-2 ).

hn-1
If only h ,,-1 is available due to a restart of the integration algorithm at t,_ (see
Algorithm 2), then

(4.3) h,n ,
1,n-1.

In the very first step or in the first step after a restart because of a discontinuity in, the procedure to obtain h,, is as follows:

1. Compute approximate positions at t, of the bodies involved in sliding contacts,
ignoring the contact constraints, by the formula:

q, qn-1 + hnln --1- 0.5h

2. Compute the corresponding constraint functions b(q,)"at t,.

We have for b(q,) that

qb,(q,) 49, + hgrdl_l +0.5 2 7- 2 2 3hgs,f-i +0.5h 02glv,/oq ln_lln_ " O(h),
Twhere b, gn and c32gNi/c3q 2 are evaluated at qn-l. Since b =0 and gnq,- =0, the

third term in the expression for q, is necessary to include all terms of 0(h2) in 4(q,).
be the force from a spring and damper at the point of contactThen let h ,,

(4.4) h , max {0, -(dg,(q,)(l,-i + kb(q,))},

with suitably chosen spring and damper constants k and d. After a jump in ’, (4.3)
is used. Now that we have h,,, from (4.2), (4.3) or (4.4), substitute

Y’. gF(qn)sh,n, S =--sign (g(tn-1)),
ieJFw

for H,U,,A 1, in (4.1b). If this term from the working friction forces is included in the
sum of the terms explicitly given by the previous time steps b2,, then (4.1b) has the
same form as (3.1b):

(4.5) o(h,M-l(f, + G,A) + b).

Assuming that h l(t) and h ,, are uniquely determined by (2.12), (4.1), (2.6) and
(2.9) initially or after a discontinuity, we shall examine the errors introduced by
replacing hi,, by h,,,, 1, 2,. .. Observe that if both h(t) and hE(t) fulfill (2.12),
(2.6) and (2.9) and AI-A2c?:N(G+HU), then there are two different solutions qx
and q2 to (2.12). If 0" and , are continuous, then the additional local errors in

in (4.2) are of O(h 3) when the quotient h,-1/h, is of O(1). Thecaused by h,,,
additional local error in , is of O(h2,,) when (4.3) is used or when (4.2) is used and, is discontinuous. The order of the local error due to the discretization methods
employed in combination with (4.2) or (4.3) is the same as the order of the local error
due to the approximations (4.2) or (4.3). Hence, the order of the local and global
errors in , and qn is not altered. The local errors introduced in 4, immediately
after a discontinuity in or / are of O(h,). The inconsistencies in the analytical
problem exemplified in [29] occurred after a discontinuity in . Since the solution
may fail to exist after such an event, it is not always meaningful to discuss rates of
convergence for the numerical solution there.
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The time t,, t.<=t., such that gq(t._l)0, jJFw(t.-1), and gq(t.)=0,
JFo(t.), is calculated by inverse linear interpolation. Since 4 in general has a jump

at t., the integration algorithm is restarted from that point. The additions to Algorithm
1 in Steps 3 and 4 motivated by the friction algorithm are:

3. Test whether
T.(ii)’ //is discontinuous between t.-1 and t, because gvlq has reached 0 in the

interval.
If (ii)’ has occurred then update Jvw and Jr0.

4. Test whether there is a multiplier AFj in A 1, such that/" Jvo(t,-a), but [AF ttAr
and Ig,l > e. If that is the case then transfer j from JFO to

4.2. The quadratic programming problem. The remaining task in the time-
marching algorithm is to show how to compute G1.A1. in (4.5). Since we wish the
friction-free algorithm to be a special case of the friction algorithm, we accept A 1. as
the solution to

T Tmin 1/2A TGnM-1GlnA + hlA GlnCn,
(4.6)

Av->0, iJs(t,-1), --a<----AF<----a, iJFo(t.-).

The bound on ]Aril is ai ttA ,,. The Kuhn-Tucker conditions [13] satisfied at the
optimum of (4.6) are

ANi O, gidl,, >= O, ,u,g,4,, O, IAvil <- ai, AFigzi4n O,
(4.7)

(ai-lAFil)gi(t, =0.
These conditions on the friction multipliers are the same as those imposed by
Coulomb’s law in (2.9b) and (2.9c) except for the approximate upper bound on

It follows from Proposition 3 that if A1, solves (4.6) then G1,A1, is unique.
Unfortunately, if G1, does not have full column rank then the components Acj of
are not necessarily unique. Any solution A2,, satisfying the constraints and such that
A1,-A2, N(G1.), is a possible minimizer. Thus, by (4.2) and (4.3), ai in (4.6) and
the substitution for H,U,A 1, are not necessarily unique. As a remedy we introduce
the principle of choosing the A1. among the solutions of (4.6) rendering A ,A1, a
minimum. The actual computation is performed in two stages. Firstly, a A, solving
(4.6) is determined by Algorithm 2 modified in Steps 4, 6 and 8 to allow for upper
and lower bounds on the variables (see Gill and Murray [17]). Secondly, with A, as
the initial feasible starting point, , TA is minimized by reducing the component of
in N(G1,). This is achieved.by the following method.

Compute the QR decomposition of G, by Householder transformations [4]. Let
G1, have the dimension m x and r rank (G1,). If r < then Q can be partitioned
O (O1, O2), Ol G lxr, 02 lx(l-r), where Q2 spans N(Gln [18]. Let Q2Z PN(Gln),
and AR =PR(ol.)A,. The projection AR is unique according to Proposition 3. Then
seek the optimum of

min 1/2z rQQ2z 1/2 zz,
(4.8)

h QzZ + AR satisfies the constraints in (4.6).

The problem (4.8) is a QP problem in z termed the "least-distance programming
problem" [25, p. 159]. The solution z, is calculated by Gill and Murray’s method
[18] adapted to the special properties of the problem. Note that the initial z Q2rA,
is consistent with the constraints. The final solution A 1, to (4.6) and (4.8) is obtained
directly from (4.8) as Qzz,-4c-tR. The quantities GlnAI. and q. in (4.5) are results
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available on termination of the algorithm for solving (4.6); cf. the friction-free case.
The formulation (4.8) of the problem of minimizing A rA requires one QR decomposi-
tion per time step. A method where old decompositions are utilized to accelerate a
conjugate gradient procedure for the problem, is described and compared with the
approach in (4.8) in L6tstedt [32].

If f f(q, , t) in (4.5), then an iterative procedure for solution of (4.5) and (4.6)
corresponding to (3.9) in the friction free case converges to the unique solution ,
of (4.5) under the assumptions of Proposition 2. We shall only sketch the proof of
this assertion here. Let yo, y Y0 t. 6y, fo, and f fo + 8f be defined by

1
yi =__(hnM-l( f,, + GnA n) + bZ), f’ f(qn, x,, t,), O, 1,

Ol o

where , 0, and A n hn + 8A solve the associated problems (4.6). Then apply (3.11)
to (4.6) to obtain

D-TGntA T D-TGlntA __(D-TGlntA TD-Ttf.
It follows from the definition of/Sy and the above inequality that

Hence, (3.12) holds true and the rest of the proof is identical to the last part of the
proof of Proposition 2.

The conclusion from Proposition 3 applied to (4.6) and (4.8) is that under
reasonable assumptions, the solution A an is well behaved when the data is subject to
small perturbations. It is clear from the definition of A., in (4.4) after a discontinuity
in at t., (4.6) and (4.8) that the solution , at t, t. +hn does not blow up as

hn --) 0 even if the analytical solution fails to exist for > t.. Finally, it should be pointed
out that the algorithm presented above for computation of time-dependent systems
obeying Coulomb’s law is not the only possible modification of the law.

4.3. Computation o| impulses. The model for friction impulses is defined by the
QP problem (2.14). By [31, Thm. 1] GA and / in (2.13) are unique. The problem
(2.14) is solved by the modified version of Algorithm 2 mentioned in 3.3.

We shall study the optimal solution of (2.14) by means of the Kuhn-Tucker
conditions when tzr ->0. Suppose that JN {1, 2," , n} and JF {1, 2,.. , k}, k -<n.
Let the variables ANi, AFi be ordered in A such that

AT (AN1, AN2," ANn, AF, AF2," A’).

Then the constraints in (2.14) can be written in matrix form,

o)--[2WA->0, W /zE
\tzE 12

where I1 and 12 are the n n and k k identity matrices and E Rkn, Ej 6j, the
Kronecker delta. The dual problem to (2.14) is (Dorn [10]),

(4.9) minurGrM-1Gu, Wrv=GrM-IGu+GI-+GTM-aF, v>-O.

Since Gu GA by [10], (4.9) is equivalent to

(4.10a) min 1/2(/- (_ +M-aF))rM((I/-((I +M-aF)),
(4.10b, c) Wry G+, v >- 0.



388 PER UTSTEDT

By virtue of (4.10b) and the Kuhn-Tucker conditions [13], A and + fulfill

(4.11) vTWA= A’GI+=O.
Let us interpret (4.10b) and (4.11) for the individual contacts. For k + 1, k +
2,..., n, the relations (2.15) are obtained.

For <- k, Av, > 0 and IAFil </z, ANi, we have vi vn+i V,,+k+i =0 and gfvi4+
gFig+ 0. If ANi 0 then vi > 0 and rgNq+ >= O. The case that differs from the friction
force case in 4.2 is when IA] tzA > 0. If AFi Ari then vi V,+k+ O, V,+ >= O,
and gF4+ --V,+i <- 0, gi4+ =/ZxVn+ => 0. If AF --/zxA then vi vn+ 0, V,+k+i >=

r. >0. Hence, if />0 and the relative0, and gidl+ V,+k+i >--_0, glviq+ P.rV,,+k+i

velocity in the tangential direction between the bodies involved in a contact is nonzero
after the collision, then the contact disappears immediately. The bodies merely
"bounce" on each other. The effect on the kinetic energy T =1/2gTMg before and
after the collision is, taking (4.11) into account,

(4.12)

2AT 2(T+ T_) .Tq+M+ _rM_ (+ +_)rM(+ _)

(+ +_)r(F + GA)

dIT-GA + (dI+ + dl-)TF , Av,gr,t- + Y’. AF,gil- + (dl+ + l-)rF.
iJN iJF

The first term in the resulting expression for 2AT in (4.12) is always nonpositive
since Avi => 0, gi- 0, i Jv. The second term can be positive if there is a ] such
that gf_ 0 and sign (g_)=sign (AFj), e.g. if sign (gg/)=-sign (gF-). HOW-
ever, if gig-= 0 or sign (gi-)--sign (A’Fi), i JF, and F 0 then AT-< 0.

This friction impulse model was chosen for reasons of simplicity and consistency
with the other contact and friction models in 3.2, 3.3 and 4.2. It depends on the
particular application if it is acceptable or not. The choice of model here is important
since the difference in + for different models is of O(1).

4.4. Examples. The method for systems obeying Coulomb’s friction law has been
tested on two model problems. The dimension of the boxes in Fig. 4 is 3 1 and their
density is 1. The friction coefficient/z 0.5 and there is no friction impulse tzt 0.
The gravity is the only external force in both Figs. 4 and 5. Initially, an external
impulse F’ =(FI,,,FI,,F,)=(IO, O,-10) is applied to body 1 simulating a push in
the positive x-direction in the upper left corner. The bodies were at rest in the final
picture in Fig. 4. The system at t=2.0073 is statically indeterminate, since the
G-matrix has 9 rows (three coordinates per body) and 11 columns (two multipliers
per point contact and three per edge-to-edge contact ;. see 5). The configurations in
the first and the last pictures of Fig. 5 are also indeterminate" G does not have full
column rank. The dimension of the boxes is 2 1 and their density is 1. The values
of the friction coefficients are/x 0.5 and/zt 0.8. The initial velocity of body 2 is
(0)= 4. All other initial velocities are zero. The system is at rest in the last picture

in Fig. 5. The error tolerance e was 0.001 in both examples. The first example was
also run with tzt 0.8. With this choice of tzt more zigzagging was observed due to
the effects of the friction impulse model explained in 4.3.

5. Practical considerations. In this section we shall discuss two details of general
interest in the program that produced Figs. 2, 3, 4 and 5. The first issue is how the
constraint functions i and gFg are defined. Then the data structure is described
for the system of rigid bodies subject to contact and friction constraints.

Suppose that the number of corners of each body is k. Since there are k edges
on each body, there are k2 potential point contacts corner-to-edge for each body with
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Time: 0.0000 Time: 0.4038

Time: 0.6067 Time: 1.2002

Time: 1.6004 Time: 2.0073

FIG. 4. The motion of three boxes colliding with each other is simulated when body is given an initial
push in the upper left corner, tz 0.5, #, 0, e 0.001.

Time: 0.0000 Time: 0.3059

Time: 0.5072 Time: 0.6787

FIG. 5. Body 2 has the initial velocity 4.0 in the horizontal x-direction. The motion of the system is
simulated with 0.5, t 0.8 and e 0.001.

respect to every other body. In a system with n bodies, there are k2n(n 1) possible
constraint functions bi between the bodies and then there are kn possible bi between
the bodies and the ground. Therefore, the iniroduction of a constraint in the program
must be done with selection. Initially, one constraint function b is defined for each
point of contact between a corner and an edge. A contact between an edge of one body
and an edge of another body is consequently described by bi at the corner in one end
of the line of contact and by bi+l at the other corner. The user is monitoring the progress
of the simulation interactively on a graphics terminal and introduces a new constraint
b > 0 by a simple command when he discovers a collision risk. A constraint j is removed
only when bj passes a positive threshold value. The bookkeeping of the constraints is
done automatically in Cundall [7]. In order to register a collision a corner must hit the
line defining an edge within the two ends of the edge. Observe that the condition
bj(t,) =0 is only a necessary condition for collision. If /z > 0 and two bodies have
collided at t,, b(t)>0 for < t, but b(t,)=0, then the corresponding friction
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constraint function T
gjq is introduced by the program at t,. In an edge-to-edge contact

the friction constraint ] is associated with two contact constraints Sj $j/1 0. The
upper bound aj for IAFjl in (4.6) is /(AN+ AN.j+I).

The data structure for rigid body systems such as those in the examples must
contain easily accessible information on the properties of the bodies, the properties
of the active constraints and relations between the bodies and the constraints. It should
also be flexible enough to allow for simple creation and deletion of active constraints.
From this data the discretized equations of motion (3.1) and (4.1) are assembled at
each step. The data structure for a simple system is displayed in Fig. 6. Each body
and each active constraint are represented by a vertex in a directed graph. The ground
is a separate vertex. The arcs in the graph correspond to connections between the
bodies and the constraints. The vertex A is the first vertex in the linked list of body
vertices. Similarly, the vertex B is the head of the list of active constraints. For every
constraint vertex there is a Lagrange multiplier to compute in (3.1) or (4.1). Constraints
belonging to the same contact are connected by arcs. There are two arcs from a
constraint to the two bodies involved in the constraint. It is a simple task to update
the data structure when constraints are to be inserted or deleted. The program was
implemented in SIMULA [2]. SIMULA is a general purpose language where graph
structures are manipulated conveniently. With the class concept it is natural to
represent the bodies and the constraints as instances of different classes. Each vertex
in Fig. 6 contains information on the body (geometry, mass, moment of inertia, etc.)
or the constraint (geometry of the contact, sign of/, etc.). The arcs are implemented
as reference variables.

GROUND

IV

I,II

FIG. 6. The data structure in the lower half of the figure represents the mechanical system in the upper
half. The constraints are numbered by roman numerals. The contact constraints are denoted by N and the
friction constraints by F.



NUMERICAL SIMULATION OF CONTACT AND FRICTION PROBLEMS 391

6. Generalizations. The numerical procedure developed in 3 and 4 was tested
on two-dimensional rigid body systems where the bodies had polyhedral boundary.
It is a straightforward generalization to introduce wheels into the systems. Then the
constraint function 4i denotes the shortest distance between the periphery of the wheel
and a corner or an edge of a polyhedral body or the periphery of another wheel. The
friction constraint function gvo is the relative velocity in the direction tangential to the
periphery of the wheel between the points of contact on the wheel and the other body.
Extensions to arbitrary bodies are of course possible, but from a computational point
of view, bodies with a simple geometry of their boundary are preferred.

Other kinds of constraints are possible in the framework of 3 and 4. Since the
holonomic constraint function 4i never appears explicitly in the numerical formulation
(3.1), we can obtain solutions to systems with nonholonomic constraint functions
g’(q)(t by the same method. There are no upper or lower bounds on the Lagrange
multipliers Ai corresponding to bilateral constraints 4i g 0, t->_ 0. In the simple
plasticity model for reinforcement steel bars in [28], there is only an upper bound on
the Lagrange multiplier proportional to the force in the bar. After a few minor
modifications of the algorithms in 3.2 and 4.2, the last two examples of constraints
can also be treated. The third space dimension is essential in many applications. In
three dimensions, M in (2.1) is still symmetric and positive definite almost everywhere
but not constant, M M(q). The algorithms in 3 rely, not on M being constant and
diagonal, but on the existence of a factorization (2.2). Wittenburg [39] has developed
a computational method for assembling M and f in (2.1) such that multipliers
corresponding to bilateral constraints are eliminated. The method can be extended
to include also systems with unilateral constraints. The constraint functions are
defined in a way similar to the planar case, but the geometry of the bodies in three
dimensions is more complex. An example of such a mechanical system is the human
body; see 1. The angles between the upper arm and the forearm and between the
thigh and the lower part of the leg belong to the interval [0, r), and the chin cannot
penetrate the chest. Another potential area is the simulation of industrial robots.
Coulomb friction in three space dimensions requires a nontrivial extension of
Algorithm 2. The natural way to generalize (2.9) is to introduce Av (A 1F, A) 2.
A Fi and A 2v are proportional to the two orthogonal components of the friction force
on the slip surface. The condition on the modulus of AFi that is reduced to (2.9a) in
two dimensions is

(6.1)

The constraint (6.1) on AFi is quadratic, whereas the constraints in (4.6) are linear. In
special cases, the structure of the problem is such that the introduction of quadratic
constraints on the multipliers is not necessary.

Finally, we wish to mention another area of engineering where the governing
equations resemble the equations and relations (2.1) and (2.6): the simulation of
electrical networks. As an example, a simple model for a diode is considered. Suppose
that in a branch of a network we have a diode, a resistor R and an inductance L. The
branch voltage is v and is the branch current. Then satisfies

di
(6.2) L-;7+Ri=v+A, i>-_O, A>-_O, Ai=O.

gt

The Lagrange multiplier A can be regarded as the voltage drop over the diode.
Electrical networks, whose components have this and similar behavior, can be
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simulated by the methods in 3 and 4. In (6.2) the complementarity condition is
particularly simple.
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A GENERAL UPDATING ALGORITHM FOR CONSTRAINED LINEAR
LEAST SQUARES PROBLEMS*

KE BJORCKI

Abstract. Linear least squares problems which are sparse except for a small subset of dense equations
can be efficiently solved by an updating method. Often the least squares solution is also required to satisfy
a set of linear constraints, which again can be divided into sparse and dense subsets. This paper develops
an updating algorithm for the solution of such problems. The algorithm is completely general in that no
restrictive assumption on the rank of any subset of equations or constraints is made.

Key words, sparse least squares, updating methods, constrained least squares

1. Introduction. Updating algorithms for adjusting a least squares solution when
new equations are added have a long history and date back to Gauss, see [4]. Recently
there has been a renewed interest in such algorithms for applications to certain sparse
east squares problems.

Consider the linear least squares problem

(1.1) min lib Ax 112,

where A is a sparse m n matrix. The Cholesky factor R defined by ATA R TR is
essentially unique (apart from row multipliers of modulus one). In particular, the
sparsity structure of R is unique. Therefore the performance of both the method of
normal equations and methods which compute R by orthogonal transformations, e.g.,
[5], depends on the sparsity of R.

A realistic assumption is that R +R T is at least as full as A TA, see [1] and [5].
If A contains some nonsparse rows, then from

ATA aia ri, ai ith row of A,
i=1

it is seen that these rows will cause catastrophic fill in ATA and thus also in R. This
is a fundamental difficulty in the solution of sparse least squares problems. A corres-
ponding complete loss of sparsity does not take place when solving a sparse system
of linear equations Ax b with a few dense rows.

To solve (1.1) when A has a few rows with a relatively large number of nonzeros
it is desirable initially to withhold the nonsparse rows, and then update the solution
taking the omitted rows into effect. Note that in this context it is essential that only
the solution and not the factorization be updated.

Sometimes, e.g., due to theoretically known relationships among the variables,
the solution x is subject to a set of linear constraints. We then have a problem of the
form

(1.2) min lib -Axll2, subject to Cx d.

Again we wish to be able to cope with the situation where some of the constraints
are sparse and some dense. Then we also withhold initially the processing of the set
of dense constraints.

* Received by the editors March 1, 1982, and in revised form March 15, 1983. This research was
supported by the Department of Energy under grant DE-AT03-76ER71030.

5 Department of Mathematics, University of Link6ping, S-581 83 Link6ping, Sweden.
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In [5] an updating algorithm is derived for unconstrained problems, where the
sparse subproblem has full rank. In [6] several other cases are treated, e.g., updating
of an unconstrained sparse problem of full rank when both equations and constraints
are added. A more general updating algorithm is described in [2], where both sparse
and dense constraints are allowed and where the sparse subproblem may have rank
less than n. However, this algorithm is developed using the Peters-Wilkinson algorithm
as the basic method and is therefore more complicated than otherwise necessary.
Also, even this algorithm is not completely general in that the constraints are assumed
to be consistent.

In this paper we will develop a completely general updating algorithm for the
constrained linear least squares problem, based on the use of the QR decomposition
and direct elimination (see e.g. [7, Chap. 21]). Such full generality is perhaps not
often required and no attempt has yet been made to implement the algorithm.
However,. motivation enough is that updating algorithms for any desired special case
can easily be derived in a uniform way from the general algorithm given here. The
number of such special cases of practical interest is largemthere are four sets of
equations (corresponding to the classifications sparse/dense and equation/constraint),
some of which may be empty, restrictive assumptions about rank and consistency may
be made, etc. As an example, several of the six algorithms given in [6] can be derived
in this way.

2. Processing the sparse subsystem. A robust algorithm for the constrained least
squares problem (1.2) should include a check on the consistency of the constraints
Cx d. Therefore it is more practical to allow inconsistency in the problem formula-
tion. We reformulate the problem (1.2) as suggested in [8] as a hierarchical set of
minimization problems

minllb-Ax[[2,
xS

(2.1)
A ren,

S {x minimizing lid Cx I1=},

Cpxn, r=rank(C)A
If r n, then (2.1) has a unique solution. In the case when r < n, there is a unique
solution which minimizes Ilxll=, For many practical purposes it suffices to compute a
(nonunique) basic solution, i.e., one with a minimum number of nonzero components.

In the following we refer to Ax b as "the equations" and Cx d as "the
constraints." We now split the equations and constraints into sparse and dense parts

ml{(As (bs) pl{(es (ds)(2.2)
m2{\Ad]

x=
ba’ p2{\Ca]

x=
da’

where the subscripts s and d stand for sparse and dense respectively. We assume in
the following that the dimensions m2 and p2 are small enough so that dense problems
of size (m2 +p2) n can be readily solved by standard algorithms.

We now describe the processing of the sparse subsystems. Our basic approach is
to use a sequence of elementary orthogonal and elimination transformations.

Step 1.1. Processing of the sparse constraints. Transform the sparse constraints by
a sequence of orthogonal transformations and column interchanges into upper
trapezoidal form,

0 0 C2/’
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where

p =rank (C), Rs upper triangular p p .
If the dense constraints are consistent with the first p transformed constraints

in (2.3), then we can proceed to step 1.3. In general we must first determine the
residual of the transformed sparse constraints before processing the sparse equations.
We put

(2.4) ul Cls -(Rsl Ssl)lX1},[ \

\/X2

where we have partitioned the solution x consistently with (2.3).
Step 1.2. Computing the residuals of the sparse constraints. Combining (2.4) and

the dense constraints we have

Cdl Cd2] X1 \dd]"
X2

We now zero the block Cal in the system above by a sequence of elimination
transformations. The dense constraints are then transformed into

(eo Ce) de, p rank ().
X2

We next transform this system by a sequence of orthogonal transformations from the
left, without any column interchanges, into

(2.5)
kEd x xe2d/

where Bd is p X (n--p[) and has full row rank. We now see that x2 can always be
chosen so that the first p constraints in (2.5) are exactly satisfied. Moreover, since
orthogonal transformations were used in step 1.1 and in the reduction to (2.5) we have

C2s

It follows that IId-Cxll is minimized, when u is the solution to the least squares
problem

(2.6) rn,n ]l(ea) (2) u,II
2

The solution of this problem can be expressed in terms of the SVD of the small dense
matrix Ed2. We now compute modified right-hand sides for the reduced constraints
(2.4) and (2.5)

(2.7) (Rs S "-Cls, Cls’--Cls--Ul,
X2

and

(2.8) Bax2 =e’a, eal =ed--Eaui.
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Step 1.3. Processing of the sparse equations. We first apply the permutations from
step 1.1 to As and partition conformally with Px (xlx2)T to get

(as1 As2)(x 1)=bs.x2

Combining this with the reduced sparse constraints (2.7), we have

As1 As2] x2 k b ]"

We now zero the block AI in the system above by a sequence of elimination
transformations, which transform the sparse equations into

We next reduce A2 to upper trapezoidal form by a sequence of orthogonal transforma-
tions and column interchanges to get

(2.9) O21s2P2 (gos2
where

0 C4s

m=rl-p, and rl=rank As
is the rank of the sparse subsystem. The permutations P2 are applied also to Ss and
x2, and we put

(2.10) Sis1 --SslP2, Px2=(x21.
\x221

After steps 1.1 and 1.3 the sparse subsystem has been reduced to the form shown
in Fig. 1.

S
sl

Ss2 C3s

FIG. 1. Reduced sparse subsystem after steps 1.1, 1.3.

An efficient way to perform the transformations of the sparse subsystem in steps
1.1 and 1.3 is to process the rows of Cs and As sequentially one by one, using Givens
rotations and elementary eliminations. For sparse systems of full rank and without
constraints, such an algorithm has been developed by George and Heath [5]. For rank
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deficient sparse systems, column interchanges may be needed to get the upper
triangular form of the reduced system (see Fig. 1). Such interchanges would destroy
the fixed data structure essential for this method. However, Heath [6] has recently
shown an ingenious way to avoid the column interchanges. This applies in a straightfor-
ward way also to the constrained problem considered here. The rows of Cs and As
are processed one by one in that order. Let/" be the subscript of the first nonzero
component of the row being processed. If row / of the data structure is still vacant,
then the row is placed into row / of the data structure. Otherwise, row/" is used to
annihilate the first nonzero. For this elimination a Givens rotation is used, except
when row/" is a constraint and the row being processed is an equation; then an
elementary elimination is used.

If the above method of Heath is used, then the sparse subsystem will not be
reduced to the exact form in Fig. 1. Instead, it will have a structure schematically
depicted in Fig. 2. The transformed constraints will now not necessarily be located at
the top of the triangle, but may be scattered. Also the (n -rl) zero rows are in general
not at the bottom. However, this does not present any real complications in the
updating algorithm we derive. It is sufficient to keep the indices of the three different
groups of rows corresponding to constraints, equations and zero rows, respectively.
For simplicity, we therefore continue to assume that the reduced system has the form
in Fig. 1.

equations

eouations

constraints

FIG. 2

3. Processing the dense subsystem. In step 1.3 the sparse equations were reduced
to the form (2.9). We now introduce the residual vector

(3.1) /’(2 3s-(Rs2 Ss2)(x21)}m
\X22/

of the m first of these equations. The dense constraints were transformed in step
1.2 to the system (2.8), which we now write

.[X21
(3.2) (B,a Baz)xz2) e’al.

Step 2.1. Reduction of dense constraints. Combining (3.1) and (3.2) we have

0 Bdl BclZ] X21 e/1
x22]
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We now zero the block Bdl by a sequence of elimination transformations. The dense
constraints are then transformed into

(3.3) (lao Jd2)( U2 ) ,dl
X22

We now reduce this system further by a sequence of orthogonal transformations from
the left:

(i) Reduce the block Ba0 to upper trapezoidal form, using column interchanges
only within that block.

(ii) Continue the reduction of the block Ba2, transforming the lower part of that
block into upper trapezoidal form, using column interchanges only within that block.

After these two steps the reduced system (3.3) has the following form (for
simplicity we suppress here and in the following the above column permutations from
our notations):

(3.4) (Tal Sdl)(U2)._.(fl)}P p rank (/ao),
0 Ta2 x22 f2

where Tax and Td2 are upper trapezoidal matrices.
The next step in the algorithm is the transformation of the dense equations

Aax ha, which we want to express in the variables u2 and x22.
Step 2.2. Transformation of the dense equations. This step is similar to the first

part of step 1.2 and the first part of step 1.3. For notational convenience we describe
the transformation as two separate steps. Combining (2.7) and the dense equations
we have

Ssl X1 CIr.
By a sequence of elimination transformations, we zero block Aal and partition and
permute the resulting transformed block Aa to get

(AI Ad:z)(X21=bd.
\X22!

We adjoin this system to (3.1) to get

I Rs2
0 A’cll Aa2/ X21 \b’]’

and continue to eliminate the block AI. We finally get the transformed dense
equations

The form of the dense subsystems after the transformation made in steps 2.1 and
2.2 is depicted in Fig. 3.

4. The updating algorithm. We now formulate the original constrained least
squares problem (2.1) in terms of the transformed system. Since orthogonal transfor-
mations were used in the last part of step 1.3, we have

(4.1) Ilb-Axll --Ilu211 / Ilc4ll,



400 AKE BJRCK

u
2

Td Sdl

AdO Ad2
FIG. 3. Reduced dense subsystem after steps 2.1, 2.2.

where U2 is defined by (3.1). The residuals of the dense equations ra =bd-Aax are
by (3.5)

(4.2) rd b*d --(.,g,dO Ad2)(U2).X22

Finally, to constrain the solution to minimize IId-Cxll, the equations (3.4) must be
satisfied.

Now, assume that x22 is known. Then it follows that u2 must be a solution to the
following problem"

minimize I1(;) 112 subject t
U2 f Sal X22 ]}pj

This problem is a minimum norm problem, where the matrix in the constraints (4.3)
has full row rank. Therefore this problem has a unique solution (ra, u2) which can
be computed from the orthogonal factorization of a matrix with (mE +p) rows

(4.4)
Taxi

O3 (L 0),

where Oa is orthogonal and L is lower triangular, nonsingular and of dimension
(m+p). Using (4.4) the solution becomes

(4.5) (rn)= O3()L_l(d--d2X22)u: [, S,x::
and its norm as a function of x22 is

(4.6) ii (u  )ll
We should now choose x to minimize (4.6), and thus x can be computed as a
solution to the following constrained least squares problem of dimension (ma +p)x
(n -r:
(4.7) rain -Fxll, subject to

X22

where

\Sal]’
g=L-

fx’
and the constraints in (4.7) come from (3.4). This small dense problem can be solved
by direct elimination and orthogonal factorization.
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We remark that we must expect to get x22, the free variables of the sparse problem,
as the solution of a constrained least squares problem. Note that in the special case
when the sparse subsystem is void (we have made no assumptions about the rank of
As and Cs !), then we have

L=L F=Aa, g=ba,

and the constraints Ta2x22 ]’2 are reduced to Cax da. Thus, in this case our proposed
algorithm simplifies in the natural way.

When the problem (4.7)-(4.8) has been solved, we get ra and u2 from (4.5), which
also can be written

U2 0

We finally compute x21 and Xl by backsubstitution in (3.1) and (2.7) respectively,

Rs2x21 C3s u2 Ss2x22,
(4.10)

RslXl Cs-SslX2, x2-e (x21)2\X22/
The solution X22 O the problem (4.7) may not be unique. In that case a minimum

norm solution x to (2.1) may be computed by solving another small least squares
problem of dimension n (n-r).

We remark that the given algorithm is an updating algorithm in its pure sense
only when the constraints Cx d are consistent. In that case c’as c as, and the solution
of the sparse subproblem is given by (4.10) with u2 0 and X22 arbitrary.

5. Conclusions. We have derived a completely general updating algorithm for
constrained least squares problems, without any restricting assumptions about rank
or consistency. Algorithms for special cases are easily derived by specialization. These
algorithms may also be of interest for applications in computational statistics.

An implementation aspect, which we have not discussed here, is that in almost
all steps of the algorithm the numerical rank of certain submatrices has to be estimated.
As pointed out in [6], although this in general is a delicate problem, heuristic rules
provide adequate answers in most contexts. We also refer to the discussion of rank
determination in [3]. However, it is important to stress that an updating algorithm
cannot be expected to be stable in all cases. Stability will be a problem whenever the
sparse subproblem is much more ill-conditioned than the full problem. However such
a situation can be detected during the solution.

We finally point out another possible stability problem, which may occur if the
sparse subproblem is reduced by the method of George and Heath to the form shown
in Fig. 2. This scheme avoids any column interchanges during the reduction. However,
one can show that in general column interchanges are needed when equations of
greatly different weights or constraints are present.
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RANK DEGENERACY*

G. W. STEWARTS"

Abstract. At some point in many applications a decision must be made about the rank of a matrix.
The decision is frequently complicated by the fact that the matrix in question is contaminated with errors.
This paper surveys some of the more commonly used methods for approximating rank, with particular
attention being paid to the effects of errors.

Key words, rank, QR decomposition, singular value decomposition, inverse, cross product, matrix
perturbation theory

1. Introduction. The problem treated in this paper is the following. Let X be
an n xp matrix that satisfies

k --rank (X)<-p <=n.

Suppose further that X itself cannot be observed; rather we are given a perturbed
matrix

where E represents a matrix of errors. From the matrix ,, we wish to
1. determine k

and
2. find an approximation 3 to X that is of rank k.
There are at least two reasons for considering this problem. First, if k <p the

attempt to use X instead of X in a computational procedure may result in, violently
inaccurate results. For example, regression coefficients calculated from X may be
inaccurate owing to the discontinuity of the pseudo-inverse around a rank deficient
matrix 13]. If, however, one can determine k, the use of a rank deficient approximation, may restore the lost accuracy. Thus one reason for solving the problem is to obtain
a regularization procedure for certain ill-posed problems.

The second application occurs in areas, such as bifurcation theory, where the
matrix X depends on a parameter A. In computations for such problems, the normal
state of affairs is that X is of full rank p. However, at certain critical values of A the
rank drops below p, and special computational action must be taken, action that
usually involves, at least implicitly, a rank degenerate approximation ,I (e.g. see 10]).

It is important to realize that the problem as stated may be unsolvable, even
when a fair amount is known about the matrix E. For example, suppose that the
elements of E are known to be bounded by 10-2 and consider the following two
decompositions of the form (1.1):

0.005 0.005 0 0.005 0.005

1.010 -0.005 1 0
+

0.005 0.005 0 0.01 0.005 -0.005

In both cases the matrix ., is the same and the elements of E are bounded by 10-2.

* Received by the editors June 4, 1982, and in revised form April 6, 1983.

" Computer Science Department, University of Maryland, College Park, Maryland 20742.
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However, in the first case k 1, whereas in the second k 2. On the other hand if

x=
oo5 0.00.1’

then under the assumption that the elements of E are bounded by 10-2 we can say
definitely that k 2.

There are two conclusions to be drawn from these examples. First, we must know
something about E to say anything at all. Second, unless we have very precise
information about E, we can only obtain lower bounds on k, usually by showing that
X could have come from a matrix X whose rank is equal to the lower bound. The
decision to accept this lower bound as a "numerical rank" must be made by considering
its consequences ]’or the speci]ic problem being solved. The failure to appreciate this
simple fact has, in the author’s opinion, resulted in many misguided attempts to
determine rank automatically, perhaps the most notorious examples being pseudo-
inverse programs with built-in tolerances that are invisible to the user.

Because of the difficulties introduced by the matrix E, the next four sections of
this paper will be devoted to describing how to compute indicators of possible rank
deficiency. Throughout these sections, we shall use the terms like "sufficiently small"
without specifying precisely what we mean. Only in the last section will an attempt
be made to say how small is small.

Throughout this paper we shall let I1" I1= denote the ordinary Euclidean vector
norm defined by

or the spectral matrix norm defined by

Ilxll= max IlXxll=.
Ilxlh

The symbol [[. [ will denote the Frobenius matrix norm defined by

Ilxll x =
i trace (XrX).

For more on matrix and vector norms see [12].

2. The singular value decomposition. Perhaps the most widely recommended
tool for detecting rank degeneracies is the singular value decomposition. It can be
shown (e.g. see [12]) that there are orthogonal matrices U and V such that

(2. aa) UrXV=[ ]0

where

(2.1b)

with

diag (/1, 1#2, Sp)

(2.1c)

It is sometimes more convenient to write the decomposition in the factored form

(2.2) X UxVr,
Most numerical analysts would write where we have written . However, this usage is impossible

for statisticians, to whom means a variance. Since is little used in either camp, we have adopted it
here. As a mnemonic take O to stand for "psingular" value.
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where Ux comes from the partition

(2.3) U (Ux Up)

with Ux having p columns.
The singular value decomposition is closely related to the spectral decomposition

of the cross-product matrix

(2.4) A =XrX.
Specifically, from (2.2) and the fact that UcUx ! it follows that

(2.5) A V"kt2 VT.
Since A is symmetric and V is orthogonal, the squares of the singular values of X
are the eigenvalues of A. The eigenvectors are the corresponding columns of V.

From (2.1) and (2.2) it follows that rank (X)=rank (). Consequently if Ok+l,
/k+2, ", I/tp are sufficiently small and Itk is sufficiently large, it is natural to accept a
rank k approximation to X. The best such approximation may be obtained as follows.
Let

=diag(Ol, 02, ’’’, Ok, 0, "", 0),

and in analogy with (2.2) let

(2.6) " Ux’’.
Then a classical result of Eckart and Young [8] states that

I+1 q-’’’ -- p2 [[X -l[7-- mi_n IIX -Zll,
rank (X) k

Mirsky [9] has proved the corresponding result for the spectral norm:

I/tk +1 --l[X "112 mi_n [IX
rank (X)<--_k

In applications one must compute the singular value decomposition of .. not X.
Even if X is exactly rank degenerate, will not be, and the sizes of the singular
values of X corresponding to the zero singular values of X will depend on the
properties of E (e.g., none of them can be larger than IIEII=). Thus something must
be known about E before we can decide which singular values of X to ignore.

Once a decision has been made about the rank of X, that is, once one has decided
on a value of k, one can work with the approximation , in (2.6). In practice it is
important to remember that " will be the best approximation to ’, from which it
has been computed, not to X, which is unobserved. Nonetheless, this approximation
may be good enough in many cases.

In most problems it will be unnecessary to compute X explicitly; rather it can
be manipulated in the factored form (2.6), with considerable savings in computations.

3. The QR deeomlmsition. A second very effective tool for detecting rank
degeneracy is the QR decomposition. Specifically, it can be shown [12] that given any
permutation matrix J, there is an orthogonal matrix Q such that

where R is an upper triangular matrix with nonnegative diagonal elements. Moreover,
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jr may be chosen by the method of column pivoting [3] so that

k-> Y’. rZk (k=/’,/’+l ,p).(3.1) r,
i+1

As with the singular decomposition, the QR decomposition can be written in a factored
form

(3.2) XJ OxR,

where Qx is taken from the partition

O=(Ox Oe)

with Ox having the same dimensions as X.
The QR decomposition can also be related to the cross-product matrix A in (2.4).

Specifically, from (3.2), it follows that

(3.3) jTAJ R TR.

Since R is upper triangular, R TR is the Cholesky factorization [12] of A with its rows
and columns symmetrically permuted according to J.

The application of the QR decomposition to the problem of detecting rank
degeneracy goes as follows. Let R be partitioned in the form

R [Rll Rxz]
0 R22J’

where Rax is k k. If rk+x,k+a is negligible, then (3.1) assures us that each column of
R22 also has negligible norm; indeed

(3.4) P -= IIR2211, <--(p k)a/2rk+l,k+l.

Moreover, if rkk 0 and we set

then

(3.5b) 2 QxlJT

is an approximation to X that has the following properties [15]:
1. X is of rank k.
2, IIx-211  IIR=211F,
3. XJ and XJ differ only in their last p-k columns.
4. If Y is any matrix satisfying 1 and 3, then IIX-11 --> IIR2211 ,
According to the fourth property, which is an analogue of the Eckart-Young-

Mirsky result, the rank degenerate approximation (3.5) is the best that can be obtained
by altering only the last p- k columns of X. When k =p- 1, the number O in (3.4)
has a particularly nice interpretation" it is the norm of the smallest perturbation, of
the last column of Xjr that will make X exactly degenerate. By computing p rpp for
a sequence of permutations J that moves each column of X to the last, one obtains
a set of numbers

(3.6) {px, 02, "", Pp},
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corresponding to the columns of X, which tell how much each column must be altered
to make X degenerate. These numbers can be efficiently computed from the upper
triangular factor of the QR factorization of X by means of the LINPACK subroutine
SI-IEX [3].

It is unfortunate that there seems to be no simple, sharp relation between the
number p in (3.4) for the QR decomposition with column pivoting and the last p- k
singular values of X. When k p-1, there is empirical evidence that will be of the
same order of magnitude as qp [14]. Moreover, it can be shown that

(3.7) p -< min pi <-- POp,
where the pi are the numbers appearing in (3.6). The general folklore says that the QR
decomposition with column pivoting is about as good as the singular value decompo-
sition.

The practical considerations that arise in using the QR decomposition are similar
to the ones discussed in the section on the singular value decomposition. There is,
however, one additional point. It frequently happens that once a value of k for which
O is negligible has been determined, the problem can be recast entirely in terms of
the first k columns of XJ, with a potentially large saving in work.

4. The inverse cross-product matrix. We have seen [cf. (2.5) and (3.3)] that the
singular value decomposition and the OR decomposition are intimately related to the
cross-product matrix A XrX. Since many procedures for solving problems involving
X form A-1 explicitly (e.g. the solution of least squares problems by means of inverting
the normal equations [11]), it is natural to ask what can be learned about rank
degeneracy from A -1.

The principal result is that
(-1) -2(4.1) ajj =pj

where a1) denotes the jth diagonal of A-1 and pi is the ]th member of (3.6).
To see this, suppose that J has been chosen so that the jth column of X is the last
column of XJ. If R is partitioned in the form

then from (3.3)

(jT.Aj)_I= R, r R, r

0 pj 0 p
(-) isFrom this it is easily seen that the (p, p)-element of (JrAJ)-a, which is just aii

-2equal to pi

In view of (3.7) and (4.1) it is possible to detect rank degeneracy by examining
the diagonal elements of A-. However, one cannot determine a numerical rank
without further calculation. One possibility is to determine an index/" for which pi is
minimal and then use a Gauss-Jordan SWEEP operator [1], [6], to compute the
inverse cross-product matrix for a matrix corresponding to X with its th column
deleted. Iterating this process leads to a sort of reverse pivoting algorithm, whose
properties are not well understood at this time. (For anyone who wishes to pursue
this matter, we note that this algorithm is essentially equivalent to calculating the
Cholesky decomposition ofA- with pivoting. We also note that there is an equivalent,
but more stable algorithm that works with R instead of A-a.)
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5. Computational properties. There are two aspects to the algorithmic realization
of a general procedure: the amount of work required and the effects of rounding error.
We shall consider each in turn.

Most algorithms for computing the singular value decomposition are based on a
preliminary reduction to bidiagonal form followed by an iteration for the singular
values [3], [5]. Although the amount of work required is O(np2), the order constant
is rather large, so that, in the author’s opinion, the singular value decomposition
should not be calculated explicitly unless there is a specific need for it.

In fact, the QR decomposition can often be used in place of the singular value
decomposition. There are essentially three methods for computing a QR decomposi-
tion" the Gram-Schmidt algorithm with reorthogonalization [7], the Golub-House-
holder method [4], and a method based on plane rotations [3], [4]. The first two
require that X be maintained in high-speed memory. The last permits the formation
of R by bringing in X a row at a time; however, column pivoting is not possible, at
least directly, and the storage of the rotations requires as much memory as the storage
of X. All the methods require O(np2) work, but the constant is much smaller than
the one for the singular value decomposition.

An important composite algorithm for the singular value decomposition can
considerably reduce the amount of work required when n >> p. Specifically, it follows
from (2.5) and (3.3) (with J I) that the singular value decomposition of R is given
by

W’RV ,
where V and are as in (2.1). It further follows from (3.2) that

X (QxW)XtVT

is the singular value factorization of X. This suggests that to get the singular value
factorization of X one first compute the QR factorization of X and then the singular
value decomposition of the small p p matrix R. A program implementing this
approach is given in [2].

A similar approach can be used to compute the QR factorization with column
pivoting of X when n is so large that X must be brought into memory by rows (or
groups of rows). Namely, the R-factor of the QR factorization without column pivoting
is first computed, say by plane rotations. Then the QR decomposition of R is computed
with pivoting; i.e., WTRj -R’. It then follows that

XJ QxWR

is the QR factorization, with pivoting, of X.
The computation of the cross-product matrix A requires less work than the

computation of either the QR or the singular value decompositions. Moreover, it can
be computed in the form

(5.1) A Xix’T,,
i=1

which allows the rows x of X to be brought into main storage one at a time. Great
savings can be effected when X is sparse, since if x0 is zero, the row xxT in the sum
(5.1) need not be accumulated in A.

Once A has been computed, its spectral decomposition may be computed to get
the singular values and the singular vectors V [cf. (2.5)]. Alternatively, the Cholesky
factorization of A may be computed to get the R-factor of X (cf. (3.3)). Finally, A
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may be inverted. Of the three alternatives, the last is the most common; however,
the author has a predilection for the first or second for reasons that will be given shortly.

In discussing the effects of rounding error on the decompositions, we assume that
the calculations are carried out in floating-point arithmetic and that no overflows or
destructive underflows occur. Using standard techniques from rounding-error analysis
[17], it can be shown that the computed QR decomposition of X satisfies

(5.2a) QT(X+F)j=[R]0
where

(5.2b) IlFll <-- b (n, p).

In (5.2b) the number et is the rounding unit for the arithmetic in question; e.g., if
thirteen decimal digits are carried in the calculation, then et will be about 10-13. The
function 4 is a slowly growing function of n and p. A similar result holds for the
singular value decomposition.

The kind of result embodied in (5.2) has two important implications. First, it may
be possible to choose et so that F is much smaller than the error matrix E. If this is
done, then the entire effects of rounding error can be regarded as coming from an
insignificant perturbation of E. Since any reasonable procedure must be insensitive
to minor changes in E, about which not much is known, the effects of rounding error
can be ignored.

The second implication is that when X is known exactly, one can tell a true rank
degeneracy from a spurious one by increasing the precision. For example, suppose
that the singular values of X are computed at precision et and p is of order et.
Then there is some question as to whether Op is nonzero or if the value observed is
due to rounding error. If computation is reperformed in double precision (e t e)
and the resulting singular value ff is of order et, thenX cannot have been degenerate.
On the other hand, if is of order et, then there is strong reason to believe that
the true singular value is zero and that the computed nonzero values are due to
rounding error. It is very important to remember that in applying this technique the
elements of X must be computed to the same or greater precision as that in which
the singular values are computed; otherwise errors made in computingX will comprise
the larger part of the errors in the singular values.

An example will make this point clear. Consider the matrix

[3.1426.285](5.3) X=
2.718 5.436

which is assumed to be known exactly. If p from the QR decomposition of X is
computed in four decimal digit, floating-point arithmetic, the computed value is
p 10-3. This is near enough et 10-4 so that we cannot tell whether it is zero or

-8not. If the calculations are repeated with et 10 the results are p’ 6.542.10-4.
This is nowhere nearly as small as et and hence X is of full rank.

On the other hand, let X in (5.3) be regarded as a four-digit approximation to
the matrix

e 2

When the procedure is applied in four digit arithmetic, the result is the same as before.
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However, when the procedure is repeated in eight digit arithmetic, we must work
with the matrix

[3.14159276.2831853]2.7182818 5.4365637

which is an eight digit approximation to (5.4). The result is p’= 10-8, which is
convincing, although not rigorous evidence that the rank of the matrix (5.4) is one--not
two.

Rounding error has more serious effects on the cross-product matrix than on the
singular value decomposition or the QR decomposition. To see why this should be
so, assume that all the elements of X are roughly the same size, and consider the
effects on the singular values of rounding the elements of X with rounding unit
The resulting matrix X’ =X +F will have an error matrix F with IIFll= ,,, and
this will introduce a perturbation of the same size in p [12]. Thus as long as

(5.5) >e,

rounding errors will leave some accuracy in
Now suppose that A =xTx is rounded at the same precision et, giving A’=

A + G, where [Ia[l=, (since IIAII=-). The corresponding perturbation in the
smallest eigenvalue qtp2 of A will be of order IIGII=. Hence to retain any accuracy in
,p, as computed from A’, we must have

(5.6) >

A comparison of (5.5) and (5.6) shows that the second condition will be violated
before the first. For example, if e 10-, then the condition (5.5) requires that
/> 10-, whereas condition (5.6) requires that /1> 10-. The general con-
clusion to be derived from this is that it requires twice the precision to accommodate
the same range of singular values when one works with A instead of X.

The matrix X of (5.3) furnishes a nice example. Its smallest singular value is
about 3 10-. On the other hand, the smallest eigenvalue of the matrix

(5.7) ft, [17.26 34.52]34.52 69.05

which is XrX rounded to four digits, is 2.10-3. This gives the unacceptably large
value of 4.5 10- as an approximation to 2.

If passing from X to A can loose some of the information about X, passing from
A to A-a can loose all of it. For example, the inverse, rounded to four digits, of the
matrix A in (5.7) is

[400.1-200.0]B=
-200.0 100.0

The exact inverse of B is

B-l=[ 10 20 ]20 40.01

which bears only a passing resemblance to At, which it is supposed to approximate.
Phenomena like this will occur whenever (5.6) comes near to being violated. In general,
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one should use the inverse cross-product matrix only if one is prepared to compute
in high precision, and even then only with safeguards.

6. How small is small. In this section we shall treat the problem of determining
when a singular value is negligible. The principal problem is that we must work with
the singular values 1, .2,""", p of ., not those of X. In particular, we should like
to know what values of p are consistent with the hypothesis that 0.

The basic result that will be used is a characterization of $p by means of
a perturbation expansion. Suppose that 0p-1 and Op are well separated relative to E,
say 0p--1 0p > 511E[12. Then 16]

(6.1) T )2 T 22p (p + upEp +llU;,Ell2 + O(OllEll),
where Up is the matrix in the partition (2.3).

In order to apply this result, something must be known about E. We shall examine
a simple but revealing model in which the elements of E are assumed to be independent
random variables with mean zero and standard deviation tr. It is also assumed that a
rough estimate of the size of r is available.

The expected value of the second term in (6.1) is

E (11 uEv I1) (n p)o-2.

Hence if Op2 is significantly greater than (n p)tr2, then
Tp Op + u pEvp.

The term upEvp has standard deviation tr, which is a fortiori small compared to 4%
Thus in this case, Op and 0v are not likely to differ by much, and we are justified in
concluding that p # 0 if we observe a value of p that is significantly greater than
(n -p)tr2.

On the other hand, if O, then ignoring the O(OpllEIl) term in (6.1), we have

E(2p)= (n -p + l)r2.
Thus values of 2p near ntr

2 are not inconsistent with Op being zero. However, any
decision to treat 0 as if it were zero must be made in the context of the problem
being solvedas we were at pains to point out in the introduction.

The assumption of a common standard deviation in the above analysis has
important implications for the scaling of. Specifically, ifthe elements oreare assumed
to be independent, then the rows and columns ofXmust be scaled so that all the elements
of E are roughly equal. The failure to observe this dictum can result in spurious
indications of degeneracy, a phenomenon sometimes referred to as artificial ill con-
ditioning.

To see how artificial ill conditioning arises, consider the behavior of the matrix

as approaches zero. Let

x, X, tx)

be the R-factor of Xt. Then it can be shown that the smallest singular value ffpt) of
X, is asymptotic to tp"
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(’) satisfiesMoreover the right singular vector v p

(6.3) Vp 1

" X,v’711X,v " ll2 satisfiesand consequently the left singular vector Up p

, x -X,R-lr olim,_.o u [I--,R1_ up.

Now the error matrix E, associated with Xt inherits the scaling of X; that is, E, may
be written in the form

(6.4) E,=(E, te).

Assuming E, 0, we have

(6.5) lim IIE, II= --IIE.II= > 0.
t0

Ct) arbitrarilyIt follows from (6.2) and (6.5) that by taking small enough we can make ffp
smaller than IIE, II=. The same kind of analysis shows that pt, will also be small compared
with IIE, II=, from which an inexperienced person might conclude that Xt is degenerate.

The fallacy in so concluding may be exposed by considering the perturbation
expansion (6.1). From (6.3) and (6.4) it follows that

Etv p(t) t(e -E,R-,r)=- t(.

Consequently,

+ u E,-o + v I1 tE(p + u e)+ Ull].

Now the components of e are independent with variance tr2(1 /IIR rll). Hence if

p >> [(n -p)(1 / IIR Xrll)]
then the perturbation introduced in 4’p by Et is small relative to ,p, and it is not
reasonable to conclude from a small value of ’) that $(f could have been zero.

We conclude this section with a caveat. Although the analysis given here is quite
successful as far as it goes, there are many problems to which it does not apply. The
sticky point is the assumption of the independence of the components of E, which is
patently false in many applications. Consider, for example, a polynomial regression
problem in which a polynomial of degree p- 1 is to be fit to ordinates yl, y2," ,
observed at distinct abscissas tl, t2," , t,,. The resulting regression matrix X has rows
of the form

2xr= (1, ti, ti, t- (i-l,2,...,n).

Now suppose the ti are determined with errors ei. The resulting regression matrix will
have rows of the form

/r=[1, ti+ei, (ti+ei)2, "", (ti+ei)P-1].
Clearly the errors in the ith row, depending as they do solely on e, are correlated,
and the analysis given above does not apply. This can be verified independen.tly from
the fact that, no matter how small the singular values of X are, the matrix X cannot
become degenerate unless the errors e are large enough to allow the ti to cluster into
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a set of fewer than p distinct points. The problem of how to make decisions about
rank in the presence of highly structured errors is an open question that needs further
research.
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OPEN BOUNDARY CONDITIONS FOR FORCED WAVES
IN A ROTATING FLUID*

LARS PETTER ROEDf AND OLE MARTIN SMEDSTADt

Abstract. Previous studies on open boundary conditions in unbounded rotating fluid flows have concen-
trated on how to accurately simulate the outflow of free waves through an open boundary. In most limited
area integrations of rotating fluids, however, the generated waves are forced rather than free, in which case
the Sommerfeld radiation condition, applied in previous studies, is not valid. A new open boundary condition
applicable to rotating stratified fluid flows is suggested below, which allows the fluid to be forced everywhere,
including the open boundaries. To prove the applicability of the suggested open boundary conditions, some
numerical experiments with a fluid contained within an infinitely long channel are considered. The new
open boundary conditions are applied at two cross sections along the channel.

.Key words, open boundary conditions, rotating fluid, channel flow

1. Introduction. In numerical simulations of geophysical fluid motion the condi-
tions used at "open" boundaries may play a crucial role. An open boundary differs
from a physical boundary, like a rigid wall, etc., in that it does not confine the fluid
to be contained within the imposed boundaries. Thus, the waves propagate and the
fluid is free to advect through the boundary. This paper considers in what way one can
accurately simulate the outflow of forced dispersive long waves from a domain with
open boundaries.

Because numerical simulations of geophysical fluid motion by necessity have to
be confined to a finite domain, open boundary conditions frequently occur. One of
the first realistic studies was made by Charney et al. (1950), integrating the barotropic
vorticity equation for a limited area.

The problem considered here is of hyperbolic nature, which makes it natural to
apply the Sommerfeld radiation condition at the open boundaries, viz.,

(1 1) 0b 0b+C,=0.
Ot Os

Here c is the local phase speed associated with the dependent variable b. The
derivatives are with respect to time, t, and the coordinate perpendicular to the open
boundary, s, respectively. This type of boundary condition has been widely used in
analytical studies as well as numerical integrations of hyperbolic flows. See for instance
Elvius and Sundstretm (1973) and also the thorough discussion by Engquist and Majda
(1977), (1979). A practical and realistic implementation of (1.1) is given by Orlanski
(1976) (henceforth IO). He used the Sommerfeld condition on a prescribed open
boundary. To demonstrate the applicability of the implemented condition he integrated
two models: the collapsing bubble and the spatially growing Kelvin-Helmholtz instabil-
ity. Camerlengo and O’Brien (1980) (henceforth CO) used a modified version of IO’s
boundary condition to simulate the outflow of Rossby and Kelvin waves from an
equatorial domain with one open boundary. The idea of IO and CO is to evaluate the
local phase speed, for each dependent variable, close to the boundary by means of
(1.1). If the local phase speed is positive, a boundary value is extrapolated from the

* Received by the editors May 17, 1982, and in revised form February 4, 1983. This research was
supported by the Norwegian Office of Naval Research.

" Institute of Geophysics, University of Oslo, P.O. Box 1022, Blindern, N-Oslo 3, Norway. Present
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$ Institute of Geophysics, University of Oslo, P.O. Box 1022, Blindern, N-Oslo 3, Norway.
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interior values close to the boundary. If the local phase speed is negative, the boundary
value is either specified or unchanged.

For a review on open boundary conditions see Haltiner and Williams (1980),
Reid et al. (1975) and CO.

Open boundary conditions for oceanic flows have been used by Hurlburt (1974)
and also by Busalacchi and O’Brien (1981) who used the CO condition for their
ten-year simulation of the equatorial Pacific forced by observed winds. However, they
had to use explicit smoothing at the boundary in order to prevent noise from being
generated at the boundary (A. J. Busalacchi, private communication).

The Sommerfeld condition (1.1) is only valid for free waves, and as such does not
work properly when external forcing is present at the open boundary. A new condition
which allows forcing to be present even at the boundary itself is proposed, and some
results from successful numerical experiments applying the new condition are presented.

The motivation for this kind of work mainly comes from considerations of ocean
models where long dispersive and nondispersive edge waves are present. The results
reported below are confined to numerical studies of the response of an ocean, confined
between two parallel walls, to wind forcing. The integration is limited to a finite portion
of the channel, applying open boundary conditions at two cross sections defining the
limit of the integration area.

2. Definition of sample problem. To be considered is the response, to wind
forcing, of a stratified fluid in an infinitely long channel of constant width. The depth
of the channel will be a function of the cross channel coordinates only, so as to generate
dispersive as well as nondispersive long waves. The perturbations from the rest state,
where pressure and density are functions of depth only, are assumed to be small, so
that a linear analysis can be applied. Also the perturbations are assumed to have
horizontal scales large enough for the "hydrostatic" approximation to be valid. Thus,
the motion can be separated into normal modes (see Gill and Clarke (1974)). The
response of each mode is the same as for a homogeneous fluid with an appropriate
"equivalent depth." It is therefore sufficient to consider the response of a barotropic
model. It is important to realize that each mode has to be treated similarly; that is,
the open boundary conditions must be applied to each mode separately. Some of the
modes may propagate toward the open boundary and some inward, away from it.
When summed, they provide the complex boundary condition applicable to the total
solution.

Let (x, y, z) be .rectangular coordinates such that the z-axis points upwards and
the sides of the channel are parallel to the y-axis (Fig. 1). The axes are fixed in a frame
that rotates uniformly about the vertical axis with angular velocity 1/2f. Thus f is the
Coriolis parameter. Let r/ be the upward displacement of the free surface from its
equilibrium position and g, the gravitational acceleration. Within the framework of
the above mentioned assumptions, the velocity is then independent of depth. The
governing equations may therefore be integrated to yield equations for the volume
flux components (U, V) corresponding to the coordinates (x, y). If the undisturbed
depth of the fluid columns are represented by H(x), the governing equations are the
momentum equations

7"x
(2.1) O---U- fV-gH OI+--,

ot ox p

7.Y
(2.2) oV_ fU-gHOrl+

ot Oy p
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FIG. 1. Sketch of channel with coordinate system. (a) Top view, (b) side view. Open boundary conditions
are applied at two cross sections along the channel axis marked A-A and B-B in (a).

and the continuity equation

(2.3)
at ax ay

Here (rx, rr) are the components of the stress exerted by the wind on the free surface.
For the present study the bottom stress has been neglected.

These equations are the familiar linear "shallow water" equations extensively
used in both analytical and numerical models, and it therefore seems proper to apply
them in a study on open boundary conditions. Note that each normal mode satisfies
a similar set of equations, with the equivalent depth being H. Initially the fluid is at
rest with a prescribed free surface deviation, and the response of the fluid will be
stu.died by means of a numerical integration of (2.1)-(2.3) for a specified bottom
topography, H, and wind stress, (rx, r). Open boundary conditions will be applied at
two cross sections separated by a distance equal to twice the width of the channel.

Equations (2.1)-(2.3) are approximated by a finite difference scheme, where a
staggered grid for the discretization in space is used. The grid corresponds to lattice
C of Mesinger and Arakawa (1976, p. 47). A forward difference in time is used in
the continuity equation (2.3), and a backward time differencing in (2.1) and (2.2)
except for the Coriolis term in (2.1) (Sielecki (1968)). This scheme is stable even when
there is no bottom friction and has no numerical dissipation, provided the CFL condition
is satisfied. There is some numerical dispersion, but for waves which are well resolved
the dispersion is small. For a detailed description of the scheme the reader is referred
to Martinsen et al. (1979). The actual bottom topography and wind will be specified
in each case below.

3. Open boundary conditions.
3.1. Theory. The condition (1.1) is appropriate for free waves. Thus it is valid

only for a subset of (2.1)-(2.3) with the forcing terms excluded, i.e. the terms containing
r and ry. The terms in (2.1)-(2.3) which contains derivatives with respect to y carry
information across the open boundary. Thus these are the terms which require a
boundary condition to be specified at the artificial boundaries. It is therefore suggested
to split the dependent variables into two modes, one mode which contains the local
contribution, including the local forcing by the wind, and one mode which carries
information about events generated at nonlocal positions. Formally, this may be done
by defining

(3. ].) U UI -[- U2, V Vl Jv V2,
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where subscripts 1 and 2 denote "local" and "global" modes, respectively. The local
mode is defined so as to satisfy a local system of equations. Let the open boundary
be perpendicular to the y-axis. Then the local mode is defined by

,x
(3.2)

0g
fV gH

0 rl + --,
19t 19x p

(3.3)
19 V

fU1 -t---
19t p

and

(3.4) 1901

These equations do not require any boundary conditions to be applied at any section
perpendicular to the y or channel axis. Their solutions can be computed at any section,
including the open boundary section, independently.

The global parts may now be found by subtracting (3.2)-(3.4) from the original
set of equations (2.1)-(2.3) to give

(3.5)
19 U2

fV2 gH 19r1___2
19t 19X

(3.6)

and

01/2
-fU2- g--y g.---y j

(37)
19r/___22 19U2
19t 19x 19y LyJ"

If the forcing (’x, ry) is independent of y, then the local solution is independent of y
from (3.2)-(3.4), and the bracketed terms in (3.5) and (3.7) are zero. In these
circumstances, the set of equations (3.5)-(3.7) constitutes the free wave equations.
Hence, the appropriate boundary condition required for the global part is the Sommer-
feld condition (1.1).

In order to find the value of the dependent variables at the open boundaries,
Sommerfeld radiation condition (1.1) is applied to the global part, for each time step,
in a manner similar to that described by IO or CO. The local values at the boundaries
are computed by means of (3.2)-(3.4). The "correct" boundary values for the depen-
dent variables are found by simply adding the so-computed global and local values.

First, when the forcing is zero, the local parts are identically equal to zero and
the solutions at every point, including the boundary points, are given by the global
values alone. Second, when the forcing is everywhere independent of the along-channel
coordinate, y, the governing equations degenerate to the local equations, and thus the
global parts of the solution are zero. This is to be expected, since by definition they
should carry information about events propagating towards the boundary from interior
points.

The separation into local and global modes also has a slightly different interpreta-
tion. The terms containing derivatives tangential to the open boundary are retained
in the definition of the local mode. Thus, that part of the wave which travels along
the boundary is part of the local mode. In this sense the term "local" applies to whole
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cross sections or strips parallel to the open boundary rather than to a single point.
Only that part of the wave which propagates across these strips is termed global. Note
that this global part is also unforced except for the bracketed terms in (3.6) and (3.7).
As will be described below, the global modes are not computed by means of a numerical
integration of (3.5)-(3.7), thus avoiding the evaluation of the bracketed terms in (3.6)
and (3.7).

3.2. Numerical implementation. The local fields are computed by means of a
finite difference representation of (3.2)-(3.4) similar to that used to represent (2.1)-
(2.3) (Martinsen et al. (1979)). Figure 2 provides a sketch of the staggered grid close

u

FIG. 2. Grid stencil close to open boundaries. Grid points marked B are boundary points while grid points
marked B-1 and B-2 are interior grid points adjacent to the open boundary.

to the boundary. The local fields are only computed at the boundary point, B, and at
the two adjacent points, i.e. B-1 and B-2. At the two interior points B-1 and B-2
the global fields are found simply by subtracting the local values from the total values.
At the boundary the global values are computed by applying the method of IO or
CO. Let b denote the global dependent variable in question. Then from a finite
difference representation of (1.1) consistent with the finite difference approximation
of (2.1)-(2.3), it follows that the local phase speed associated with b is given by the
formula

(3.8) c
AX t -1B --t n-1

B-1

where the notations are given in Fig. 3. If c6 is positive, then the boundary value of
the dependent variable, b+1, is either extrapolated by repeated use of (3.8) with B-1
replaced by B and n by n + 1 as in IO, or simply by the value at the point next to the
boundary at the previous time step as in CO, viz.,

(3.9)
(co),

(IO).
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FIG. 3. The time levels and grid close to the open boundary conveniently defining some of the notations

used in the text.

If c6 is negative, no change in the boundary value is experienced, i.e.

(3.10) c,t, < 0::: t n+l

which is in accordance with both IO and CO. The discrimination between a positive
and negative value of the local phase speed is based on the different physics involved.
When c6 is positive, it entails advection or propagation of interior events toward the
boundary. When c6 is negative, information is carried away from the boundary, in
which case the dependent variable in question must either retain its value at the
boundary or be specified according to a given exterior solution. This applies only to
the global part of the solution.

4. Adjustment under gravity in a rotating channel. Dispersive as well as nondis-
persive waves can be set up in a number of different ways. In this first simulation, no
forcing is applied and the adjustment towards a geostrophic equilibrium from an initial
state with a single jump in the surface elevation is considered. This problem has been
treated analytically by Gill (1976). It therefore conveniently serves as a test of the
applicability of the chosen finite difference scheme and the implementation of the
Sommerfeld condition (3.9) and (3.10). Gill showed that adjustment was accomplished
by dispersive Poincar6 waves and nondispersive Kelvin waves propagating outwards
from the initial jump in surface elevation. The actual values given to the parameters
of this simulation and those to follow are listed in Table 1. The channel has a constant

TABLE

Parameter Symbol Value assigned

Width of channel L 600 km
Viewport of channel 2L 1200 km
Depth of deep channel H 1600 m
Depth of shallow channel H 160 km
Coriolis parameter f 1.32.10-4 -1

Density of water p 1.0 10 kg m-3

Gravitational acceleration g 9.8 m/s
Gridsize As 20 km

deep channel " At 100
Time step I, shallow channelJ At 300
Rossby deformation radius:

a) for deep channel

b) for shallow channel

(gH) 1/2

(gH)/2

950 km 1.6L

300 km 0.5L
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depth and is fairly shallow. The ratio of the channel width to the radius of deformation
approximates two, so the channel is wide enough for rotational effects to be appreciable.
Since no forcing is applied, only the global mode contributes to the solution, and hence
the Sommerfeld condition can be applied directly. Only the CO condition is used,
since some initial test simulations show no appreciable difference in the physical solution
when the channel has a constant depth. An illuminating comparison between the
methods of IO and CO will be discussed in the next section.

The solutions are represented by Figs. 4a and b, which depict the deviation of the
surface elevation from its equilibrium position at times t= 3 and 32 hours. Initially
the jump was 0.1 meters and Fig. 4a shows the front, made up of the Kelvin wave
and the fastest Poincar6 waves, moving toward the artificial boundaries. The front is
followed by the slower moving waves. Figure 4b depicts the almost adjusted solution,
where most of the waves have passed the open boundary. The striking similarity
between these solutions and those of Gill (1976) is satisfying. Thus, the chosen scheme
and the implementations of the open boundary conditions work satisfactorily.

,=oo , ooF- ?

1000

/’-, / /I r’>
’F", / ’l-i I’

r #’
600 600

 lt /

,oo .o,__]
0 0--’

(a) (b)

FIG. 4. Solid (positive) and dashed (negative) curves give the deviations of the surface elevation away

from its equilibrium position in meters. The open boundaries are shown by straight dashed lines whereas the
parallel channel walls are solid straight lines. Initially the jump was 0.1 m and positioned in the middle of
the viewport. (a) The solution after time t- 3 hours, (b) 32 hours. For details see text. Contour interval is

0.05 m.

5. Wind generated waves and shell topography. In this case the channel has a
fairly shallow shelf extending about one-third of the channel width from the right-hand
channel wall, followed by a deep part extending all the way to the left wall (look at
Fig. 1). When the ocean is impulsively forced, this topography generates continental
shelf waves, which are trapped to the shelf and are highly dispersive (Martinsen et al.
(1979)). Also a nondispersive Kelvin wave mode is generated, but it does not "see"
the shelf. For the deep channel the ratio of the channel width to the radius of
deformation is only about 0.6, which entails a fairly narrow channel. The Kelvin wave
is therefore not appreciably affected by rotation, a fact evident in the solutions below.
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Because of the presence of the highly dispersive shelf waves, this setup constitutes
a suitable test case for comparing different open boundary conditions for free waves.
With this purpose in mind the lower boundary section is closed by means of a rigid
wall, while the upper boundary section is kept "open." The waves are generated by
applying a stress along the channel axis over the lower half portion of the channel, viz.,

(5.1) r =0, rY
f{0, y>=L,
’0 tanh a y L), y < L.

Here ’0 2.0 Nm-2, L 600 km and a As 0.2. The wind stress is turned impulsively
on for 8 hours and then abruptly set to zero. For comparison reasons the model is
first run with a closed channel basin extended along the channel axis. The closed
channel is so long that the fastest wave and its reflection will not disturb the solutions
within the region of interest during the computations.

The sequence of events is illustrated by Fig. 5. In order to adjust to the new
environments, a Kelvin wave is generated when the wind stress is turned on. This
Kelvin wave rapidly propagates away from the forced region. In Fig. 5a, which depicts
the solution after 6 hours, the Kelvin wave has almost propagated out of the viewport
region. Shelf waves have steadily been gerrerated in the wake of the Kelvin wave and
are clearly visible in Fig. 5a. As is evident from Fig. 5b, after 8 hours these shelf waves
are dispersive. Hence the region they "cover" is stretched as time progresses. At 8
hours the wind forcing is turned off and a new Kelvin wave is formed which rapidly
propagates through the shelf waves and out of the viewport region. The Kelvin waves
may clearly be seen in Fig. 6. In Fig. 5c, after 11 hours, the shelf waves covers the
whole shelf within the viewport, while at Fig. 5d after 17 hours, a substantial portion
of the shelf waves have propagated out of the region of interest. Finally, in Fig. 5e
displaying the solution after 32 hours, all the waves have propagated out, and most
of the disturbances initiated by the impulsive wind forcing have levelled out.

Two more runs with the same forcing and geometry, but with an open boundary
at y 2L, are depicted in Figs. 7 and 8. For comparison reasons only the deviations
of the surface elevations from the previous are shown. Figures 7a and b show these
anomalies after 32 hours with the open boundary condition adapted from IO and
implemented as described in 3. As is evident from Figs. 7a and b, the IO boundary
condition tends to remove fluid from the viewport basin. However, the solution
compares favorably up to about 14 hours, after which fluid is steadily removed from
the integration area compared to the "true" solution.

The open boundary conditions suggested by CO behaves similarly (Figs. 8a and
b), but recovers and does not remove fluid appreciably. It is therefore concluded that
the simpler version of the open boundary condition suggested by CO, with this particular
setup, more accurately simulates the outflow of dispersive waves on an f-plane.

6. Forced waves at the open boundaries. In order to test the applicability of the
new open boundary conditions suggested in 3, the final experiment was set up in
much the same way as the experiments described in the previous sections. The channel
depth is constant and the lower (y =0) as well as the upper (y 2L) boundary are
open. The forcing is adapted from 5. Afterwards the fluid was allowed to adjust
towards its geostrophic equilibrium. Again, in order to adjust to the new environment
brought to the fore by the wind, free Poincar6 and Kelvin waves propagate away from
the forced region towards the open boundary at y 2L. At the same time forced
Poincar6 and Kelvin waves propagate towards the boundary at y 0. The sequence
of events is illustrated by Figs. 9a-d. In the forced region, 0 <_-y-<_ L, the surface tilts
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FIG. 6. The solid curve shows the time dependence of the deviation of the surface elevation away from
its equilibrium position at the grid point (29, 57) in meters (see Fig. 5a). Time is indicated along horizontal
axis in hours.

in order to establish a pressure gradient to balance the wind forcing. The development
of this tilt is a combination of Ekman drift and the forced Kelvin and Poincar6 waves.
As time progresses (look at Figs. 9a-c) this gradient grows almost linearly with time.
In the upper unforced region the free Kelvin wave is clearly depicted and carries the
information of the wind in the lower half portion of the channel towards the upper
open boundary. As revealed by Figs. 9a-c, even the forced waves are accurately
simulated to propagate out at the lower open boundary. At time 8 hours, the wind
is turned off and the adjustment is allowed to take place. After time 16 hours (Fig.
9d) a geostrophic flow has developed which is stationary except for inertial oscillations.
This is to be expected. When the wind is turned off the motion is governed by the
equations

(6.1)
OU

fV -gH
q

Ot Ox

(6.2) +fU -gH
t Oy

and

(6.3) o U oV
ot Ox

As shown by Gill (1976), the potential vorticity, as given by

oU oV
---t-+nOy Ox

(6.4) P
H(. +H)

is conserved for each fluid column individually; i.e., each column conserves its initial
potential vorticity. For large times as oo it may be shown that U-= 0, and thus from
(6.1) follows

(6.5) V= _gH drt
f dx"
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FIG. 7. (a) Solid (positive) and dashed (negative) curves show the anomaly of the surface elevation

compared to that shown by Fig. 5e, i.e. after time 32 hours. Dashed curves indicate a relative lower surface
elevation. In this case, the IO open boundary condition has been used. Contour interval is 0.02 m. (b) Solid
curve shows the time dependent anomaly of the surface elevation as compared to that of Fig. 6 for the grid
point (29, 57) (see Fig. 5a). The IO open boundary condition has been applied.
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FIG. 8. (a) Same as Fig. 7a. However, in this case the CO open boundary condition has been used.
(b) Same as Fig. 7b. However, in this case the CO open boundary condition has been used.

The apparent ambiguity in the choice of V and r is resolved by the conservation of
potential vorticity (6.4) which gives a unique solution for V and r/, provided the initial
potential vorticity is known. Figure 9d depicts a solution to (6.5) such that the potential
vorticity given to the fluid by the wind during the first 8 hours of the simulation is
conserved.

7. Discussion. A new open boundary condition for hyperbolic flows of an
unbounded stratified rotating fluid is suggested which allows forcing to be present at



OPEN BOUNDARY CONDITIONS FOR FORCED WAVES 425



426 LARS PETTER ROED AND OLE MARTIN SMEDSTAD

the open boundaries. This is accomplished by splitting the dependent variables into
two modes, termed local and global modes. The local mode does not require any
boundary conditions to be imposed and may be computed everywhere, even at the
boundaries. The global modes consist of free waves and may therefore be assessed
using the Sommerfeld radiation condition (1.1) as previously considered by Orlanski
(1976) and Camerlengo and O’Brien (1980). The stratification is handled by a separ-
ation of the dependent variables into vertical modes (Gill and Clarke (1974)) and thus
only the barotropic mode is considered. However, it is important to realize that each
vertical mode has to be treated separately in order to satisfy the conditions at an open
boundary.

Also considered is a comparison between the method of Orlanski (1976) and the
modification of this method made by Camerlengo and O’Brien (1980). The comparison
for long dispersive edge waves seems to be in favor of the simpler version of Camerlengo
and O’Brien (1980), especially for long simulations.

The applicability of the suggested open boundary condition is shown in a sample
problem. The sample problem considers the response of a fluid, contained within an
infinitely long channel, to wind forcing. The new conditions are applied at two cross
sections along the channel. Both the forced waves and free waves are reasonably
accurately simulated to propagate out of the region.
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AN INTERVAL ARITHMETIC APPROACH FOR THE
CONSTRUCTION OF AN ALMOST GLOBALLY CONVERGENT
METHOD FOR THE SOLUTION OF THE NONLINEAR POISSON

EQUATION ON THE UNIT SQUARE*

HARTMUT SCHWANDT?

Abstract. The discretization of the nonlinear Poisson equation on the unit square with Dirichlet
boundary conditions leads to very large systems of nonlinear equations for small mesh sizes. The use of
interval arithmetic enables us to develop a Newton-like method with an interval "fast Poisson solver." This
method converges to the solution of the discretized problem provided an initial inclusion vector is known.
The latter is easy to compute. We therefore speak of almost global convergence. Our method competes
very well with known algorithms like the generalized conjugate gradient method and others with regard to
global convergence, storage requirement and computation time.

Key words, nonlinear Dirichlet problem, fast Poisson solvers, interval arithmetic, Newton-like methods

Introduction. We consider the nonlinear Dirichlet problem

Au=f(u) on I [0,1] [0,1],

(0.1) u =g on the boundary F of L
g continuous on F, fu continuous and fu => 0 on I O,
where O_ is an open interval.

It is well known that (0.1) has a unique solution (see for example [3, Chap. II, 7]).
The discretization of this boundary value problem (BVP) even in the case of the
simplest five-point formula leads to very large systems of nonlinear equations if one
uses realistically small mesh sizes. In this paper we discuss an iterative method that
converges under the above conditions to the unique solution--see [14, Thm. 4.4.1]--of
the discretized problem. For this purpose we need an interval vector including the
solution. As this vector is easy to compute and is furthermore the only prerequisite
for the convergence to the solution, we could even speak of global convergence. This
particular aspect distinguishes the method to be discussed here from well-known
methods for the numerical solution of (0.1) that often suffer from convergence problems
(e.g., most of the Newton-like methods are only locally convergent). Most of the
well-known globally convergent methods are either time consuming or need too much
storage (see [14, Chaps. 10, 12-13], [2, Chaps. 19 and 22] or [18]). One of the first
successful algorithms combining a faster method with the property of global conver-
gence was the nonlinear block SOR method (NBSOR) where convergence was con-
trolled by a numerical strategy [12]. The simple structure of problems like the Poisson
equation on rectangles permits us, however, to incorporate fast direct methods into
algorithms for nonlinear equations. Concus, Golub and O’Leary developed a very
efficient generalized conjugate gradient (CG) method for nonlinear equations where
the "residual" equation can be solved approximately by a fast direct method. Conver-
gence can be ensured by periodically restarting the iteration after a minimization along
a line [7]. The range of applications of that method goes far beyond the Poisson
equation discussed here.

* Received by the editors July 7, 1982, and in revised form April 20, 1983.
t Technische Universitit Berlin, Fachbereich 3-Mathematik, Berlin, West Germany.

427



428 HARTMUT SCHWANDT

We should also mention the multigrid methods developed in the last years which
have also been applied to nonlinear equations--but without a proof of global conver-
gence [10], [11]. The method presented in this paper profits from the use of interval
arithmetic. The latter guarantees not only the convergence to the solution of (0.1) by
consecutive inclusion, but also permits the design of a fast Poisson solver applicable
in the present nonlinear problem as part of an iterative method. This method converges
rapidly to the solution of the discretized problem without an excessive storage
requirement.

Section 1 contains the notation and some fundamental rules of interval arithmetic.
In 2 we discretize (0.1) to obtain a system of nonlinear equations. In 3 we present
some results for the interval Gauss algorithm needed in later sections. In 4 we develop
a special "poisson solver" for systems of equations with interval coefficients and linear
form (see 3). This method is an important part of the iterative method developed
and discussed in 5. The methods and results of 4 and 5 can be extended to more
general situations. This will be done in a subsequent paper.

In 6 we consider both our interval method and a few other (well-known) methods.
We examine their implementation on a computer and discuss their applicability to the
BVP (0.1). More specifically we compare our method with some other interval methods,
the nonlinear block SOR method (NBSOR) in a version of Hageman and Porsching
[12] and the generalized CG method of Concus, Golub and O’Leary [7] (the latter
being to our knowledge the fastest of the known algorithms for the numerical solution
of (0.1)). Section 7 presents results of some numerical experiments. We computed
systems up to a size of 16129 16129. Section 7 is followed by a glossary of abbrevi-
ations for algorithms used in this paper.

1. Notation and basic results. Our notation of interval arithmetic is very similar
to that in [2, Chaps. 1-4 and 10]. We refer therefore to that source.

We denote by:
I() the set of: the compact intervals in ,
Vv() the point vectors with N real components,
Vv (I(O)) the interval vectors with N components

belonging to I(),
Mmv() the real N x N-point matrices,
Mm(I()) the N x N-interval matrices with coefficients

belonging to I([).
We denote by a,. , z the elements of , by A, , Z those of I(), by .,. , .

those of V(), by z,..., those of V(I()), by .M,..., . those of Mmv() and
by M,..., Z those of M(I()).

Point methods use only real numbers and real coefficients. In interval methods
real numbers may be replaced by intervals, and real operations are replaced by the
corresponding interval operations.

For elements of I(), Vm(I()) and Mmv(I()) we denote by d(.) the (vector,
matrix of) diameter(s), by l’l (that of) the absolute value(s), by m(.) (that of) the
midpoint(s) and by q(.,.) (that of) the distance(s), p(.) denotes the spectral radius
of a real matrix.

Coefficients of N x N-matrices and vectors with N components are specified by

NA N ,9_..(aij)7_l,j=l .9__(aij)N.a (a)N=,, z ,),=,, i=1,7=1.

Intervals A I() are written as [_A, A], a real number a will be identified with the
interval [a, a], F(A) describes the boundary {_A, } and A the interior (_A, ) of an
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interval A. For Mnn(I(R)) we also write M=[_M,<] with M=(Aq)n n
i=l,j=l

analogously for s and for vectors. The elements of sequences ()o and--("),o
are given by " (Xk))k,, and ")=(M!.)N,..., ,=,v=. We define convergence by

(") * Mnn(I(R))(n )

: j///(") j//*, j//(") d/t*(n - c) and u//t*
_

d//("+1) _d//(") Vn6o

and analogously for vector sequences. A vector :v Vn(I(fl)) can be decomposed as
follows"

N=pq, v=(:v,,...,:vq), :v,=(Xa,...,Xp) Vie{1,...,p}.

Writing . .- .07/or @(. )- .’- .a# for a matrix or .5/(. ), we mean the decomposi-
tion into its diagonal strictly lower left respectively strictly upper right part.. is the identity matrix, .6 (e) the matrix (vector) of zeros. Block tridiagonal
interval matrices are described by (with N pq)

We use the natural (componentwise) partial ordering on Vn() and Mnn(). For
example, . > .g means xi > yi for all { 1,. , N}. A matrix .M Mnn(fi) is called an

L-matrix if aq <= 0 for # j and a, > 0 for j,
M-matrix if aq <- 0 for # fi .M-1 exists and .M-1 _> ..

An L-matrix .M is an M-matrix itt there is a vector . > o. such that . > o.(1 1) [9].

A matrix is called an interval M-(L-)matrix if all are M-(L-)matrices.

An interval L-matrix t is an interval M-matrix if there exists an M-matrix
(1.2) . such that ._<- [16, p. 15].

A map from Vn(R) into Vn() is denoted by a point, for example/’., and its values
are specified for all . Vn() by

/(.) =(,(x x,))‘i=1.
If we replace operands by intervals, standard functions by interval standard functions,
if possible, and operations by the corresponding interval operations, and if the resulting
vector belongs to Vn(I()), i.e. all operations provide values in I(), then we write
this vector as

,/() (j(X,,’’’, XN))L

and call it the interval extension of ./’ in . We further need for ., .9’ Vn(R)

I. (.1. (fi(Xl, Xi--1, Yi, YN))//V=I
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The following relations (1.3)-(1.8) are easily deduced from the rules in interval
arithmetic,

(1.3)

(1.4)

(.5)

(1.6)

(1.7)

(1.8)

(1.9)

subset property

d@, q , {+, -, }=> 1.
_
@* ,

A B, C
_
D, 0 : D=,A/C

_
B/D;

(+)+,(+)+,
(+)=+,(+) +;
Qe , Q or d()= Ild(), d()= d()ll;

d() d();

d(4) [ld(), d() d()[l;

e and

Ilp()p() ([9, Whm. 2.83).

Let I be an iterative method producing the set {(.k)k e I} of sequences converging
to the solution . of a given problem. We measure the asymptotic convergence rate

of I by the R1-factor
k 1/kRI(I, g) sup {limk_.Sp I1. I(.,),o I}.

(See [2, App. A] and [14, Chap. 9].).
The relations (1.3) and (1.4) play the most important role in interval arithmetic.

(1.3) enables one to explore inclusion properties by means of interval arithmetic; (1.4)
can be regarded as an important deviation from the ordinary real arithmetic. It explains
why the unreflected use of intervals often yields too large intervals, i.e. useless results.
The main difficulty of all interval methods is therefore the appropriate application of
the interval arithmetic.

2. Five-point discretization of the boundary value problem. The discretization
of (0.1) is carried out by using the central difference quotient and the mesh size
h 1/(m + 1), m N, for both coordinate directions"

Xq-I--2Xq+ Xq+I Xi-ly--2Xq+ Xi+lj

h2
h-

h2 "-fq,

(2.1) Xo/= go g(jh, 0), x,+l/= gin+l g(jh, 1),

Xio gio g(O, ih), xi,+l g,,+a g(1, ih),

with .- (.a,. , .,), .- (xi," ", x) and

This yields the system

(2.2)

fq f jh, ih, xq)

for 1 =< i, j- m.

(.x) =e where .(.x) .d//.x+ .(.x) V.xe VN(),

and P(.x) (t])k/(Xk/))k,n=l isa vector with the N m2 components, Ck/(Xk/)
h2fk/"- bk/where bk/stands for a boundary value belonging to (k, y) and for
0 otherwise.
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Thus we have

where ’(.) is a diagonal matrix with diagonal coefficients OChkj(Xkj)/OXkj and .J/ is an
M-matt:ix. (2.2) has a unique solution x (see the introduction). We further have

’(.) => . q. 0 because of fu =>0 on 0 and therefore .’(:v)>= . for x 0 if we use
a suitable interval extension of .’(. in v. .’(. is a diagonal matrix. Therefore/’.’(x)
is an interval M-matrix for v O by (1.2).

3. Interval-arithmetic Gauss algorithm (IGA). The interval-arithmetic Gauss
algorithm (IGA) plays an important role in 4. We therefore collect some properties
(see also [1] and [2, Chap. 15]). IGA solves the following problem

Given

g MNN(I(R)), VN(I(ff)), .,-1 exists for all
(3.a)

we seek an inclusion :v VN (I(E)) of the set of solutions

(, ,) defines what we will call a system of equations with interval coefficients and
linear form.

In this paper we need the following version of IGA, where the nonvanishing
coefficients of s are stored in an N x (2m + 1)-matrix @ defined by

l<-i<N, -m<=]<=m, ]+i>0,
Dii :=

O, otherwise.

(3.2) IGA for band matrices (bandwidth 2m + 1)

reduction part

k:= I(1)N- 1

i:= k + 1(1) min (k + re, N)

C := Di,k-/Dko

Yi:= Y- Yk. C

j:= k+l-i(1) min (k+m,N)-i

D0 := D0 Dk,-k+i" C

solution part

YN :-- YN/DNo

i:= N- 1(-1)1
j:= 1(1) min (re, N-i)

Y:= Y-WY,./

Yi := Yi/ Dio.

The vector gives us the desired inclusion v of LM, for which we write

x IGA (sO,
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For our iterative method in 5 we apply a simplified version of (3.2) which can be
found in 6. The division in IGA are well defined if 0 Dko Akk. As the Dk0 are
altered, this condition is not automatically fulfilled. But we may apply the following
criterion to ensure that IGA can be carried out, even without pivoting. Let . be the
matrix defined by

[m(A.)-d(A.)/2,bq= (-IAql
l<=i,j<=N.

i#j,

THEOREM 3.1 [1]. If . is an M-matrix, the interval-arithmetic Gauss algorithm
can be carried out with . No pivoting is necessary.

If IGA can be carried out then we immediately deduce from the subset property
(1.3):

LEMMA 3.2. If d, Yd e MNN(I(R)), , e VN(I(R)), then

ag c_c_ 9a, a c_ 9,=:> IGA (ag, v) c_ IGA (ga, ).

Remark 3.3. Due to the continuity of the interval operations (+,-, *,/), IGA
itself is continuous" assuming that IGA can be carried out, we have

a(k) - a4*, dk _+ d,( k - oo) :=> IGA (a(k>, dk) _+ IGA (ag*, *)( k oo).

4. Reduction method for interval matrices. While solving (2.2) we have to operate
with large matrices of a special structure. We now develop a reduction method for
the computation of an inclusion vector for the set of solutions of a system with interval
coefficients and linear form whose matrix has the given structure. Comparing this
method with the Gauss algorithm we will notice a remarkable reduction of the number
of arithmetic operations and of the storage requirement (see the numbers, for problem
(2.2), of the iterative methods using IGA and of those using the reduction method
(Tables 2 and 3, 7)). Our reduction method is an important part of the iterative
method to be presented in the next section.

In (3.1) we replace ag by the matrix

(4.1)

e MNN(I())

with g e Mpp(I(N)), e Mpp(l),

.s.$-= .if.sO for all

N=pq, q=2k+-l, k, peN.

We will develop an algorithm formally similar to the Buneman algorithm for linear
point systems (see [5] and [17, 8.8]).

We first choose . e and . e/ and consider the system
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With .M() := .M, .3-(0) := .3, .y():= . this system can be written as follows:

With .o := .x2.+, :=e an equivalent formulation is

.,-(0).j--2 -F" .(O):zj-1 .+. 3-(0)X/ 0
j-1,

.(0).Xj + .(0).j’t- .’(0).Xj+I ----.S 2<J <2+-2,=

3-(O)xj + 5(O)xj+I -F" .’(O)xj+2 S%l.
Then we multiply the equations j-1 and j+ 1 by .3-(0) and equation j by -.M(), and
add. For .3(1):=(.3())2 and .M(1):=2.3-(1)-(.M())2, the relation .M.3-=.3-.M gives
M(1)3-(1)= 3-(|)M(|). With

3-(0) 0 0 ,Q(0)0.s := + )- j:= 2(2)2k+l,llllS--1 s+l s, -2,

we obtain the reduced system

which can again be reduced as described above.
We now suppose that in the (r- 1)st step, 2<-r -< k, we have obtained the equations

r--1 r--1 2r-1)2k+l r--1.’( 1). j-2r-l"F" .(r-1). j-F" .’(r-1). j+2r- . j:= 2 -2

We multiply the equations j-2’-1 and j+ 2’-1 by .3-(’-1) and equation j by -.M(’-1),
and we add these equations. We define

.-(r) := .(r- 1))2, .(r) := 2(r)__(.(r-l))2,

.; :__. -(r--1)( r--1 r--I 1).r--1 2’ 2k+1--2r..j_2 "F .j+2r-l) .,(r-- j :__ (2r)

In view of (r--1)3-(r--1)= 3-(r--1),(r--1) we deduce the relation

,(r) 3-(r) 3-(r) ,Q(r)

and obtain again a reduced system"
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For r k the system

remains to be solved. The reduced systems of the steps r-0,. , k- 1 can be solved
in reversed order with respect to the subvectors .j composing the solution .: we solve
for .j

r:= k-1(-1)0, j:= 2r(2r)2k+l 2’:
(4.2)

ff-( aT 2 -t- 4 aT + OT-(. .j+2 .j.

In order to avoid multiplications with the matrices .sO (r), we replace the vectors

.g7 by new vectors. The computation of the new vectors only requires the solving of
systems of linear equations with the matrices .sO (r). Instead of computing the g’, we write

0.7:= .o, .j:=$j, j:= 1(1)2’+’-1,
and define

.+1 :__ )(e. ;__(4(r))-l{.-(r)(. _2,_t_. 7+2r)__ .},
r+l -(r){f -( r+l
j := j-2’+.j+2,-2 )//j }, r:=0(1)k-1 j:= 2r(2r)2+-- 2r"

Using (4.2) it can be shown by induction that

(4.3) r:=O(1)k,j:=2r(2")2’+1-2r" .j’= .Se(r)//r+r.j.j.
Later we will substitute (4.3) into (4.2). Multiplications by (r) will be replaced by
the solution of linear systems of equations. We therefore factorize

(4.4) s4(’)=-H s4+ 2cos zr .3
f=l 2r+l

The way of solving the system .A/. .g as done above leads us to the interval-arithmetic
reduction algorithm for the system (,

(4.5) Reduction algorithm for interval matrices (IBU).
o o(o := .3, s/() := s, ; := e, ; := .,

}r) := s+{2 cos ((2j- 1)r/2r+l)} .if,

reduction part

r:= l(1)k"

.(r--1) :__ .(r--2))2 (if r > 1)

j:=2r(2r)2’+l--2r"

2 r--1 zr-1 -l’ r--1:=IGA(g(r:d) .(r--1)()j_2r-l-l-l,j+2r ]--j

/:= 2r-l-- 1(--1)1

:= IGA <gr-),+a)
r--1, :=/

r--1 r--1
tj:: g(r--1)(lj_2r +fj+2,-,--2.(r-

j:= l(1)2k+l- 1,

r := O(1)k, j:= 1(1)2r.
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solution part

For point systems . =$ this algorithm degenerates to an algorithm similar to
Buzbee’s extension to the case .ff .ff. of Buneman’s algorithm [6]. However, our
algorithm needs fewer arithmetic operations.

First of all we show that the vector v =(Vl," ",Vq) includes the set LM of
solutions of (, ). We write

v IBU (, ,).

THEOREM 4.1. Suppose IBU is applicabletoproblem (3.1) modified by (4.1). Then

LM
___
v IBU (,

Proof Let .J// , . and .J//. .go. We apply IBU simultaneously to (.J//, .)
and (, ). Of course the representation (4.5) and the factorization (4.4) are also
valid for point matrices and point vectors. Step by step we show for all indices

(4.6) .ej, .jj, .jet3j

using Lemma 3.2 and the subset property (1.3). We then have

and finally . IBU (., .)e IBU (, ,)= v.

As e M and $ e g are arbitrary, we conclude

LM
_
v IBU (, ).

The next theorem gives a criterion for deciding if IBU can be carried out.
THEOREM 4.2. Let the matrix . Mpp() be defined by

Aii h- 2{cos ((1 2-(k+l))Tr)}tii,
A, + 2{cos (2-(k+l> 7r)}tii,

-a max Aq + 2 cos / r tq
1_1--2

j, Aii > O, tii O,

i=j, Aii>O, t.<O,

If . is an M-matrix, then IBU can be applied to (, ). No pivoting is necessary for
the applications of IGA in IBU.
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Proof. The question of the applicability of IBU only arises where IGA has to be
used.. being an M-matrix, we have bii > 0 for 1 <= =< p. With

r <_-2cos[\ 2r/1 7r <_--2COS <2

for j e { 1,. , 2r}, r e {1,. , k}, we conclude that for e {1,. , p} and each 4 e M

)]hNa,+2 cosk ,+1 tii ifA,0, h0

and

0 < Aii W 2 cos tii <: aii W 2 cos 2r+l 77" tii if Aii >: O, tii < O.

Fori#jand 1-<I-<2r, 1-<_r=<k, wehave

{ /21-1 )} { /2/-1 )}b[ -> Aiy+2 cos\ 2r+i "rr tij >= aij+2 cos\ 2r+l 7r tiy.. being an M-matrix, there is a vector . > e such that .. > e. This means for all
ie{1,...,p}, re{l,... ,k}, le{1,... ,2r}

aii + 2 cos
2r+l 7r" tii ui >= Aii

-> <max max Ai + 2 cos
2r+l

77" ti]
j=l l=r<=k l<=s<--2r

>-- . aq+2 cos 2;+1 r o uj

if Aii > O, lii > 0 (analogously for the other case). Following [1, proof of (1.2) and
Thm. 1], we conclude from the above chain of inequalities that IGA can be carried
out with the matrices M and }r) without pivoting. Consequently IBU can be carried
out.

Remark 4.3. Like IGA, IBU is continuous in the following sense:

(k) __> ,, k __> *(k --> oo) =:> IBU ((k), y)IBU (*, *)(k - oo).

Remark 4.4. If /is an interval M-matrix, then it can be shown that all coefficient
matrices arising in the reduction part are also interval M-matrices. We therefore know
the signs of many interval bounds while carrying out IBU. This fact immensely simplifies
interval operations. The applications in 6 will lead us to interval M-matrices.

5. An iterative method for systems of nonlinear equations. The system (2.2) can
be imbedded in a more general framework for 5-7:

(5.1)

Given a function ./" 0-> VN(N), 0 c__ VN(N),/continuously
differentiable in O, and an interval vector s Vs (I(N))
contained in O and including exactly one zero . of ./"

.0
_

O,

we seek ..
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Then, for all c_ :v and all ., . :v, there is a vector q :v such that

(5.) ./(.)- ./(. ’()(-.
0(5.3) We further require the existence of an interval extension of ’(.) in

If ’(T) is invertible for all T o, we can transform (5.2) into

=-’(q-(
with =. If IGA can be applied to ,(o), the subset property (1.3), Lemma 3.2
and the fact that show that

(5.4) T-IGA (’(), (T)).
We can define the

(5.5) Interval-arithmetic Newton method (ING)
k+l )-IGA (:= {m( /’ ), (m()))} for all k e No.

Decomposing ’(. (. )-(. )- (. (see 1), a similar development leads to the

(5.6) Interval-arithmetic Newton-Gauss-Seidel method with intersection after each
component (INESVKD)

i:= ()N,

{xl/,) :-- m()- L,()(m(XJ)) -..x(/’))
\j=l

+ Y U(z,)(m(XJ))-XJ))+f(m(z,))
/=i+1

/Dii(vk)}Xk) for all ko.

Under certain conditions INESVKD and ING converge to .g (see [2, 19, 22]).
There the convergence of ING to . is ensured by using an auxiliary sequence. Applied
to the system (2.2), INESVKD requires a relatively small number of arithmetic
operations per step, but the total computation time is much too high. If ING converges
to ., the convergence is quadratic. However, the iteration steps are too expensive for
large systems.

In order to be able to compete in computation speed with methods like NBSOR
or the generalized CG method, we replace IGA by IBU in ING. But ./"(.) does not
have the form required by IBUsee (2.2) and (4.1). We therefore define

0

(5.7) 4() (Aik(v))Pi=l =1 by

Aik(:V)=[min {Aiki(:c)[1 <----j<--q}, max {Aiki(v)[1 <--j<--q}]
and replace ./"()=( ., .(), .)q (with .=-. for (2.2)) by

(5.8) -() .o-, (), ),,.

Hence
o(5.9t ’(:v) c__ (z,) Wv

_
v
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The q diagonal blocks () of ’() are now identical. So we can take advantage of
the results of 4 in order to apply IBU:

(5.10) Interval-arithmetic Newton-like method with IBU (INB)

VkNo: .
k+ -IBU ,.’(aT k k k:={ ), g( ))} n.

Analogously to (5.3) we conclude from (5.2) and (5.9) that

(5.11) e-IBU((x),g()) V Ve

We therefore can show by induction:
LEMMA 5.1. If INB can be carried out, all the components of the sequence (k)k

computed by INB include " ke Vk0.
Due to the intersection in each step we thus have a sequence with

k k-1 0

This guarantees the existence of

* lim=
k ko

with *. The following considerations will lead to conditions that guarantee z* *,
i.e. *. An example shows that the latter equality is not obvious for methods like
INB or ING.

Example 5.2. The map .22 defined by

g() (-x + y- 1, x- y) v
has the real zeros ((1 +4)/2, (1 +)/2). Thus the starting interval

0 ([1.I, 1.9], [1.1, 1.9])

for the positive zero does not include another zero. We obtain

0([-3/88, 90771/12584], [7/8, 5801/1144]) m()-IGA (’(), (m(0)))
hence 0= ING terminates on the starting vector.

In order to force the converge of ING and INB to , we add auxiliary steps (but
only if necessary). After a finite number of steps the diameter of each component of
the iterates falls below a given bound eps. To terminate the iteration we therefore use
the criterion

(5. 2) d() I1 < eps.

Auxiliary steps are necessary only if the diameters of the components of two consecutive
iterates do not differ enough. As a decision criterion in the (k + 1)th main iterative
step, we take"

i(, N): d(R+’) d(X),
(5.3)

with given a < 1, a 1 (see (5.14)).
Before we can apply (5.13), we have to know if the condition d(k+)) < eps is already
fulfilled. In this case a further decrease of the diameter is either not desirable or not
possible.
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If, however, auxiliary steps become necessary after the kth main step, we set
0 ;2k+1 k+l :l.:= and compute a number of auxiliary iterates. Then we set v We

require >-g, where g is an estimate for the quotient of the number of arithmetic
operations of a main and an auxiliary step. The auxiliary steps are computed by a
modification of INESVKD (5.6), in which the interval expressions computed for the
partial derivatives needed for a main iterate v are used for all corresponding auxiliary
iterates with 0= k+a. This is done in order to reduce the computation time.

As we consider the special system (2.2) in this paper, we have ’(.)=. +’(.) V. VN() with the diagonal matrix ’(.). Hence .(.) ., (. are

indelendent of .. Using the second part of (1.4") the modification of INESVKD can
be simplified. The number of auxiliary steps is determined by _-> g and the condition
d(+l)<ad(k).

In order to avoid unnecessary steps, the condition I1]1< eps with i< g also
terminates the whole process. We now define

(5.14) INB with a modified version HINESVKD of INESVKD as auxiliary method
(INBHIN)

0 0.

k k+l k/lVkGto’k+l’.-’{. k--IaU(e(k),(, k))}c E

If no auxiliary steps are necessary,
~k+llhen + := +1 +:=

else o:= +1., o:=. +’. i:= O;

repeal

]:= I(1)N
j-1

7(i+1)Z’+1) := }’)- f_., ,#.....,,. f__., u#Z’)+ dm’)+ ch(li))
r=l r=j+l

/(dj+ 6,(x’k)))} CIZ’i)" z(i+I) i+1.
rrtj Zj

i:-i+1

until (i > g and d() < ad(vk))or IId(  )ll  eps;
k+l i. k+l ~i

v .-- ,. .--..
Computing :2k+l as in ING, we obtain the method INGHIN. The next theorem
concerns inclusion and convergence properties of INBHIN.

THEOREM 5.3. Given problem (2.2) and (5.1), the following assertions are valid

for the sequence (ty, k)k[o computed by INBHIN with the starting vector

k1) . Vko,

2) :vk.y (kc).
kThe . k k No) are arbitrary.

Proof. Assertion 1. Because of (5.1) we have . E v. We assume that for a k No
we have shownv for all i<=k. Hence ,k+ by (5.11). If no auxiliary steps are

k+lnecessary in the (k+ 1)th step, we have v’k+a =k+l thus

See list of abbreviations at end of paper.
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Otherwise we note that g s :k+l Then, because of n s./ there is a vector
u.. o such that

and we conclude step by step

(5.15) j:= 1(1)N

./(4o) ./,(.)(4o_ .),

Y
j+

{ (FO)
j--1

brzl)--Z
j+

\/

zo>+ d,o+ 6.o>)
/ ,, } z’’(d + 6,(X )) n z’).

thus 1, .-1 ,1C ,0 k+l. If .g i for an eN, then we replace in (5.15) 0 by
i+1and get n view of

i i--1 0
This finally means that k+l.

k+l k+lAssertion 2. If d(TM) d(k) for all k o, then thus

(5.16) d(k+’) < ad(k) Vk o.
Otherwise there exists a k o such that auxiliary steps have to be added with o k+l

Then we show that
k

(.17)
d(’+’) = (+’( ))-’(g+ )d(’)

( +’())-’(+)().
Since k o we urther show with (1.3) and (1.9) (see [17, p. 256]) that

(5.18) p((. + .’(k))-’(.+ )) <- p(@-l(.+ .)) cos <1 Vk, meNo.
m+l

o)The diagonal elements of ./"(v have the form

D, x) 4 + h2f jh, ih, X. )).
Since fu >= O, this means 0 D,(v) Vi {1,. , N}. By arguments very similar to those
in [2, 22, proof of Thm. 1], we now obtain i .k’ (i ), hence

(5.19) :liNo VjNo, j>-i: d(J)<ad(vk).
With j:= max {g, i} we can write :/7

k+l := J and conclude that

(5.20) d(TM) < ad(xk).
(5.16) and (5.20) show that

(5.21) d(x
k OO) and finally, asBecause a < 1, this means d( e (k k k

(k -).
The subset property (1.3) allows us to prove

(5.22) IBU ((x), (.))
_
((())-1_ (())-1).(.)
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for all x
___
x0 with ./ and a vector . . We use (5.22) to prove for INBHIN the

inequality

(5.23)

Choosing a so close to 1 that

> p((()-)-’),
we obtain the following bound for the asymptotic convergence rate of INBHIN:

(5.24) RI(INBHIN, y) -< min {p((((/))-I (-.y))-l)l./"(.y)l), a} < 1.

The above discussion concerns the solution of (2.2). We can apply INBHIN and another
method of this kind not presented in this paper to more general problems, for example
general rectangles instead of [0, 1][0, 1], different mesh sizes in the x- and y-
directions, three-dimensional problems, or under suitable conditions (a(x)u,)x+
(b(y)uy)y =f(x, y, u(x, y)). INBHIN profits from the fact that IBU can be applied to
matrices with .3-= a C, a . Generalizations of this kind will be treated in a forth-
coming paper.

6. Implementation of the methods. We want to compare the following methods
numerically: INB (respectively INBHIN), ING (respectively INGHIN), INESVKD
(as an example for a Gauss-Seidel type method), the nonlinear block SOR method
(NBSOR) and the generalized conjugate gradient method (GCG). The numerical
experiments were carried out on the CYBER 175 of the Wissenschaftliches Rechenzen-
trum Berlin (WRB)--cycle time: 25 ns, storage available for computations: 128 K
60-bit words with a 48-bit mantissa--in PASCAL (compiler version 2.2 of the ETH
Zfirich).

Due to the lack of an interval arithmetic at the machine level of the CYBER 175
of the WRB, the interval arithmetic had to be simulated by PASCAL procedures at
the program level. This caused a considerable increase of computation time for the
interval methods. Each interval-arithmetic operation involves a procedure call, a
number of extra arithmetic operations, storage operations and branchings to simulate
the correct rounding. Numerical experiments for the PASCAL 2.2 compiler of the
CYBER 175 showed that one interval-arithmetic operation (+,-, ,/) requires ten
to seventeen times the computation time of the corresponding floating-point operation.
This fact, however, should not be a reason to reject immediately the use of interval
methods. Machines are already available with a suitable arithmetic and compilers
avoiding this situation. At the universities of Karlsruhe and Kaiserslautern in West
Germany, for example, PASCAL and FORTRAN compilers have been developed,
together with a suitable machine arithmetic, for several computers, that offer the
necessary facilities for interval arithmetic [13].

Interval operations are implemented including a correctly rounding arithmetic.
As the interval bounds do not have to be addressed and rounded separately, an interval
operation is executed even faster than two corresponding floating-point operations.
Such an arithmetic can be developed for every microprogrammable machine. A fair
comparison with "ordinary" floating-point methods should take account of this fact.

The procedures for the interval operations (see [2, App. B]) are programmed in
such a way that the computation time is reduced as much as possible. We do not use
a rounding function in order to avoid unnecessary function calls and to be able to
round individually in each case. The above mentioned compiler requires the rounding
B1 from [2, App. B]. Because of the rounding, machine- and compiler-dependent
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numbers enter into the programs. It is possible to enter these numbers in octal format
on the CYBER 175. We use a procedure GLOB to do this. The numbers are

MINPOS := 0001 4000 0000 0000 0000B

smallest machine number a with a + a > 0;

FAKTORB := 1717 7777 7777 7777 7777B

largest machine number <1;

FAKTORC := 1720 4000 0000 0000 0001B

smallest machine number > 1.

As we often need the number r, we use an octal inclusion < 7r < - with

_Tr := 1721 6220 7732 5042 0550B, := 1721 6220 7732 5042 0551B.

A data type INTERVALL simplifies the computations with intervals:
INTERVALL RECORD U, O: REAL END. The number of point operations in
the sometimes complicated procedures for interval-arithmetic operations depends on
the interval operands and cannot be predicted. Therefore if we want to compare several
interval methods with each other and also include floating-point methods in our
discussion, then the only meaningful criterion of comparison that remains is the
compution time.

On the CYBER 175 there is a system functions CLOCK to measure the computa-
tion time. We do not consider I/O-time. The programming of the discussed methods
benefits from the known structure of the systems of equations to be solved. The
programs can be written in such a way that only the really necessary operations take
place..,(’ (v), (v) and (v) being interval M-matrices, we can apply special interval
procedures requiring that the signs of some interval bounds be known in advance.

Numerical experiments have shown, for example, that the reduction method IBU
using these procedures needs only about eight times the computation time of the
well-known Buneman algorithm using floating-point arithmetic.

In view of the above-mentioned problems concerning interval arithmetic, it seems
reasonable to divide the observed computation times for the interval methods by at
least a factor of four in order to obtain a realistic comparison with floating-point
methods.

As a convergence criterion for the floating-point methods we use (see [12])
k+l k 0--6.(6.1) I1. -. I1<1

For interval methods we use

(6.2) ii.q(+ k) k+l k k+l k 0-6v ]] max 111 - I1, I1 - I1} < 1

to compare them with the point methods. Note that under the condition ::/7
k (k )

we have q(vk/l,vk)o. (k)c:,d(:z,k/l)o. (ko) (see [2, App. A, Lerma 1]).
The second part of 6 contains details of the methods applied in this paper and

of their programming.
GCG. We programmed several versions of the generalized conjugate gradient

method following the description in [7, p. 324-6]. The programs GCG I + II do not
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include convergence safeguards; i.e., no line searches and no restarts take place. This
reduces the computation time, although convergence cannot be guaranteed. In order
to compare INB and GCG directly, we solve the linear systems occurring in the GCG
method by the Buneman algorithm, while INB uses the reduction method IBU. Other
methods were possible for GCG as well as for INB. In view of the Poisson equation
to be discussed here, they should not substantially change the results of the comparison
between INB and GCG.

The programs GCG I and GCG II correspond to INB with IBUM I and IBUM II
(see the description of INB). GCG II stores intermediate results from the reduction
part of the Gauss algorithm for tridiagonal matrices used in the Buneman algorithm;
in GCG I this Gauss algorithm is always entirely carried out. The program GCG II +
RESTART modifies GCG II by periodically restarting the iteration, carrying out one
line search per cycle with the Newton method. During each iteration the convergence
safeguards given by Lemma 2 and 3 in [7] are verified.

NBSOR. NBSOR is programmed as described in [12]. We apply a special Gauss
algorithm for tridiagonal matrices of the form (- 1, 4 + di, 1) di ->- 0, { 1," ", m},
in the Newton steps (compare the description of INB).

ItlNESVKD. To carry out auxiliary steps with HINESVKD in the (k + 1)st main
step of INBHIN or INGHIN, we use the diagonal part .(k) of ,(k) for all auxiliary
steps relative to 2k and store .(::z k) in a vector of the dimension [1... N]
INTERVALL. For ING we take the version (3.2) of IGA for band matrices../"(v)
being an interval M-matrix, we can consider known signs for the bounds of the matrix
coefficients.

INB. The implementation of INB requires more detailed explanations. The m- 1
numbers 2 cos ((2/- 1)r/2r+l), 1 _-< 1_-<2r, 1 _-< r_-< k, are independent of the iteration
process. We compute them before the iteration loop by an interval version ICOS of
the cosinus and store them in a [1... m- 1] x INTERVALL vector.

We construct the matrix M(vk) by (5.7). The matrix/"(v k) for the problem (2.2)
is constant except for the diagonal part. Therefore the trahsformation/’(v k) (vk)
concerns only the diagonal part .(vk). As we do not need the matrix ".(v k) again in
INB, we do not want to store it, and we proceed as follows to carry out (5.7):

(6.3) ]:= l(1)m

compute Ajjl(xk)
Aj.i( k) := Ajl(k

l:-2(1)m,j:-l(1)m

compute A(k);
A() :-- min {A(), A(k))
Ai(k) :-- max {A(k), A(k)).

We store the intervals Ajj(x k) in a [1... m]INTERVALL vector. We thus only
have to know m =x/ coefficients if we apply IBU to the matrix (vk). Note that
m p q in (2.2).

The simple structure of the matrices .r) appearing in IBU in the problem (2.2)"1

enables us to simplify IGA in (3.2). Let

v := IGA (4, )
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where M := (-1, Di,-1),,, Di => 2 (1 =< =< m), is an interval M-matrix. We replace (3.2)
by

(6.4) TRIGAM.

k:= 2(l)m

Dk := Dk 1/Dk-
X,, := X,, + X,,_ / D,,_

Xm := Xm/D,.

k:= m- 1(-1)1

Xk := (Xk + Xk+l)/ Dk.

In some steps IBU requires that IGA be applied several times with the same
matrix but with different right-hand sides. Therefore we compute in a procedure
TRIREM an auxiliary [1.. mix INTERVALL vector containing the new Dk’s of the
reduction part which are independent of the right-hand side. The two vectors with the
old and the new Dk’s will then be used to carry out in another procedure TGASTF
all operations concerning the right-hand sides.

The vectors , x,/}), r)--see(4.5)--do not appear simultaneously in the compu-
tations of IBU. We define a [1.. mix[1., m]xlNTERVALL vector u2 first to
transfer in IBU and later to leave IBU with x. We also need a [1.. (m-l)/2,
1.. mix INTERVALL auxiliary vector . The following table illustrates for k 2,
hence m 7, N 49, the values of o and in the course of the execution of IBU.
"-" means void, "x" no change compared to the previous line.

TABLE
Memory organization for IBU.

1 2 3 4 5 6 7 1 2 3

1 2 3 4 5 6 7
x x x x
x x x x x x x x
X X X 4 X X X X X X

X 2 X X X W6 X X X X

X 3 X 5 X 7 X X X

0 Begin of IBU
Reduction part

2 Reduction part 2(1)k
2 Solution part k(-1)l

0 Solution part r=0

We define two versions, IBUM I and IBUM II, constructed only for problem (2.2)
and differing by the application of TRIGAM, TRIREM and TGASTF. In IBUM I we
apply TRIREM once and then TGASTF m times in the reduction part for r 1 and
the solution part for r=0. For r=2,..., k in the reduction part and for r= 1,..., k
in the solution part we apply TRIGAM (k- 1)m + k + 1 times. The matrices q3) r) have
to be recomputed for each application of TRIGAM. However, this requires only m
interval additions per matrix. In IBUM II we compute once, using TRIREM, all
intervals needed for the solution parts of IGA for r 2,. , k in the reduction part
and for r 1,. , k in the solution part of IBU. This requires an additional auxiliary
[1". (m 3)/2] x [1 m]xlNTERVALL vector oo:

r:=l(1)k-l,j:=l(1)2r,

oo := TRIREM (3))
r-1

with jj:=j+ Z 2.
i=1
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For r { 1,. , k- 1} only TGASTF has to be carried out. For r k there is--in both
parts of IBU---only one right-hand side to be treated. Thus TRIGAM will be applied.

For the methods INGHIN and INBHIN with possible auxiliary steps, we need an
additional [1.-N]xlNTERVALL vector containing the diagonal .(ak) of /,,(k).

k kIn executing INBHIN, the intervals sgjjt( of .( appear while we compute (k).
The initial inclusion 0 of the solution .1 of (2.2) can be determined using [14, Thm.
13.4.6, part c]"

(6.5) :0:= -l(e)l, o:=-,
Fr__om f, >= 0--see 2uwe conclude the isotony of ./required in 14]. The point vector
0.

a: s computed by a point version PIBUM I of IBUM I without an interval arithmetic
and stored in where a: is the [1 N] x INTERVALL vector containing the iterates

one after the other:

:= I (e)l, := PIBUM I (., as), a: := [-:e,

PIBUM requires an additional [1 (m- 1)/2, 1 m] vector .. Table 2 shows the
storage needed by the methods we discuss. We consider only arrays of a minimum
size of rn-1. For INB we consider three different choices for the vectors

versionM" . :=m(a
k kversion O" . := x for all k No.
k kversion U" m :=

TABLE 2
Storage requirement.

m 63 m 127

GCG (also with restarts)
GCG II (also with restarts)

6.5N + 9.5m 26,397 106,045
7N + 8m 27,405 110,109

NBSOR 3N+ 16m 12,915 50,419
INESVKD 2N + 10m 8,568 33,528
ING (4m + 7)N + 10m 1,028,601 8,307,705
INGHIN (4m +9)N + 10m 1,036,539 8,339,963

INB + IBUM M 6N+ 19m 25,011 99,187
INB + IBUM O/U 5N+ 19m 21,042 83,058
INB + IBUM II M 7N+ 16m 28,791 114,935
INB + IBUM II O/U 6N+ 16m 24,822 98,806

INBHIN + IBUM 8N+ 19m 32,949 131,445
INBHIN + IBUM II 9N + 16m 36,729 147,193

Table 3 gives the number of interval-arithmetic operations per iteration step for
interval methods and the number of floating-point operations per iteration step for
the GCG method. These numbers do not include convergence tests and auxiliary steps,
whose number cannot be predicted (i.e., for the interval methods with HINESVKD,
GCG with restarts and NBSOR, the latter always use inner iterations). Neither do
they include the problem-dependent values for the evaluation of functional expressions.
Despite the fact that on modern computers the computation time is, in most cases,
not proportional to the number of arithmetic operations--even if the different kinds
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TABLE 3
Total number of arithmetic operations per iteration step (INBHIN, INGHIN and GCG without auxiliary

steps; all methods without tests of convergence criteria).

m 63 m 127

INESVKD 11N- 4 43,655 177,415
HINESVKD 9N-4 35,717 172,161
ING (HIN) 2N2+(-m+)N-m-4 32,452,388 527,920,788
INB (HIN) + IBUM (7k + 14)N-(6k-4)m-(Sk + 11) 192,807 899,119
INB (HIN)+ IBUM II (4k + 20)N- (7k + 6)m- (3k + 7) 156,155 703,555
GCG with al, bl (7k + 26)N-6km-(Sk / 11) 240,183 1,092,164
GCG II with 31, bl (4k + 32)N- (Tk + 10)m-(3k + 7) 203,531 896,595

of operations are counted separately--and in spite of the strong variations in computa-
tion time of the various procedues for the simulation of interval operations, this table
may serve as a first orientation.

7. Numerical results. We have chosen the following examples:
ai) f(s,t,u)=lOiu3/(l+s2+t2),(s,t)I,u,i=--4(1)4

s=O, t[O, 1]or t=O, s[O, 1],

u(s,t)= 2-e, t=l,s[O, 1],

2-e t, s=l,t[0,1].

b) f(s,t,u)=u3, (s,t)eI,uN,
u(s,t)=O, (s, t)er.

c) f(s,t,u)-O, (s,t)eI ueN

u(s,t)=O, (s, t)er.

d) f(s,t,u)=e u, (s,t)eI ueN

u(s,t)=s+2t, (s, t) e r.
Example ao) can be found in [2, 22], Examples b)-d) in [12] and [15].

The boundary functions are continuous and we have fu->_0 on I xN. Thus (0.1)
and (2.2) have unique solutions. From 2 we conclude .’(s) => .msee (5.1)--and
Ajj(a) _-> 0 for the diagonal coefficients

Aj() 4+ h[min {f,(jh, ih, Xl)li {1,..., m}},

max {f,(jh, ih, X)li 1,. , m}}]

of .(o). We we can summarize:
1) /"(s) is an interval M-matrix, (o) is an interval L-matrix;
2) ". _-< ,"(s) _-< (
It follow by (1.2) that ;(:v) is also an interval M-matrix, an important condition

for IBU in INB and INBHIN. The convergence properties of NBSOR have been
investigated in [12], those of GCG in [7]. The convergence of INESVKD (and also
of HINESVKD) to $ follows from [2, 22, Thm. 1 ], considering the proof of assertion
2 in Theorem 5.3.

For all interval methods we chose . := m(:v for all k e No. INB was also
k :zk kcomputed with m. := for all k No (version O) and . := for all k No (version
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TABLE 4
Numerical results for the examples al, a2, a_3, b, d

(upper rows: computation time, lower rows: number of iteration steps).

Example ao al a-3 b d

m 63 127 63 127 63 127 63 127 63 127

NBSOR 173 326 158 313 176 326 204 342 186 338
174 1,000 137 1,040 138 1,030 246 1,700 243 1,820

INESVKD* 3,600 12,000 3,100 10,500 3,700 13,000 3,800 13,000 3,400 12,000
1,000 15,000 880 12,600 1,040 15,000 720 10,000 700 10,000

ING* 4 4 5 5 3 3 4 4 4 4
400 6,400 520 8,400 300 5,200 400 6,600 400 6,600

GCG al, b 7 6 16 15 3 3 8 7 7 7
5.0 18.7 11.5 46.8 2.2 9.4 5.6 21.6 5.4 23.3

GCG II aa, ba 7 6 16 15 3 3 8 7 7 7
4.6 16.8 10.6 41.7 2.0 8.4 5.2 19.3 5.0 21.1

a2, b2 7 7 13 11 4 4 6 6 7 7
5.2 21.7 9.6 34.2 2.9 12.3 4.3 18.3 5.5 23.2

al, bz 21 16 9 7 95 30 13 12
15.4 49.2 >150 >150 6.6 21.4 68.5 91.3 10.1 39.1

GCG II +
Restart 5

al, bl 7 6 11 10 3 3 7 7 8 8
7.4 26.3 11.9 43.7 3.2 13.7 7.3 30.2 8.9 37.4

ae, b2 7 7 12 12 3 3 5 6 8 8
7.8 31.7 13.5 55.8 3.4 14.4 5.3 27.9 9.4 39.5

al, be 7 7 13 12 3 3 7 7 9 9
7.7 31.4 14.4 55.3 3.4 14.3 7.7 31.6 10.7 45.4

GCG II +
Restart 10

al, b 7 6 13 14 3 3 7 7 8 8
7.0 24.7 13.0 57.5 3.2 13.7 7.0 28.7 8.1 35.4

a2, bz 8 7 16 15 3 3 5 6 8 9
8.5 30.5 16.7 65.8 3.4 14.4 5.2 26.7 9.0 42.1

a, be 7 8 22 13 3 3 9 9 13 13
7.4 34.1 22.5 56.6 3.4 14.3 9.3 38.3 14.5 60.6

INB+ M 5 5 8 8 3 3 4 4 7 7
IBUM 4.5 20.1 7.3 32.9 2.7 11.3 3.2 14.5 6.4 25.5

INB+
IBUM II

M 5 5 8 8 3 3 4 4 7 7
3.9 17.2 6.3 28.0 2.4 10.7 2.7 12.5 5.5 22.6
7 7 16 17 3 3 5 5 12 12O

5.4 24.1 14.3 59.6 2.4 10.6 3.4 15.8 8.4 38.8
8 8 18 19 3 3 4 4 13 14U

6.2 27.5 15.8 66.5 2.4 10.7 2.8 12.3 9.1 44.9

U)../"(o) being an interval M-matrix, IGA can be carried out. Thus INGHINconverges
to ./ by Theorem 5.3.

(o) is also an interval M-matrix. We further have the inequalities

(7.1) (-1, 2,-1),, =<1(v)-2 cos 2r+l 7r .
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with m-’2k+l--1 for all v___ v, r{1, k},/{1, ,2r}. The eigenvalues Ai
2(1 -cos (i,tr/(m + 1))) of the matrix . := (-1, 2, -1),, are positive. As from a positive
definite symmetric L-matrix . is an M-matrix. From (1.2) and Theorem 4.1 we
conclude that IBU can be applied to ,(v). The remarks concerning the convergence
of INGHIN to are also valid for INBHIN.

The examples were computed for N N-systems with N m2 and m 3, 7, 15,
31, 63, 127 are far as the storage requirements could be fulfilled and the computation
time was acceptable.

Due to the choice of simple functions f and g in our examples, we could use
instead of (6.7) easily computed approximations for the starting vector v required in
the interval methods"

0 := ([-1, 2])/N_-I in examples al)-a3),
o

v := (([-1, 3])n=l, ([--1.5, 3])/N=m+l) in example d).
For examples b) and c) we chose the first vector. GCG and NBSOR were computed
with .o= (-1)=1, (2)=1, (50)’=1.

Tables 4 and 5 contain the number of iteration steps and the computation time
in seconds needed to fulfill the convergence criterion. For the reasons we explained

TABLE 5
Numerical resultsfor example ai ]:or several different values of and m 63.

-4 -2 0 2 4

INB+ 3 3 5 13 35
MIBUM II 2.7 2.7 4.5 11.7 31.0

NBSOR 176 176 173 134 92
136 136 134 119 85.5

GCG II + al, bl 3 4 7 19
Overflow

Restart 5 3.3 4.2 7.4 19.6

az, b2 3 5 7 19 39
3.3 5.4 7.8 20.9 43.2

al, be 3 5 7 22
Overflow

3.4 5.4 7.7 24.8

GCG II +
Restart 10

al, bl 3 4 7 15 40
3.3 4.2 7.0 15.0 37.2

a2, be 3 5 8 29 46
3.3 5.4 8.5 29.8 48.0

al, b2 3 5 7 27 37
3.4 5.3 7.4 28.2 38.3

GCG II a 1, b 3 4 7 40 112
2.0 2.7 4.6 26.3 74.0

az, bz 4 4 7 20 42
2.9 2.9 5.2 14.9 31.2

al, bz 7 11 21
5.1 8.0 15.4 > 110 >200
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in 6, we divided the computation times for interval methods by four. In the tables
we note the results only for m =63 and m 127, the other values of m being too
small for practical problems. For GCG and NBSOR we note only the results for
T =(2)/N=l. NBSOR does not seem to be very sensitive to changes in the starting
vector. For GCG (and also INB) bad starting vectors increase considerably the
computation time. There was no noticeable difference between the results for the first
two starting vectors for GCG.

In the present examples we never needed auxiliary steps for INB. By cancelling
the auxiliary method HINESVKD we saved 2N words of memory. This enabled us
to solve larger systems. All versions of GCG were computed with the parameters
(a, bl), (a2, bl), (a, b2), (a2, bz)msee [7]. (al, bl) and (a2, b) always needed the
same number of iterations and the same computation time. GCG II + RESTART was
tested with restarts after every 5 and every 10 iterations.

For the slower version GCG I we only note the results for (al, bl), for INB with
IBUM I only the results for the version M. The results for INESVKD and ING are
estimated from the values for rn 7, 15, 31 in view of an excessive storage requirement
by ING and unacceptable computation times for both.

Table 5 demonstrates for rn 63 the effect of increasing nonlinearity on NBSOR
and the faster versions of GCG and INB. For example c), which we do not note in
the tables, INB and GCG always needed the minimum number of two iterations.

We make the following observations:
1. Despite their quadratic convergence property, ING/INGHIN cannot be used

for problems of this kind because of excessive storage and time requirements.
2. NBSOR and INESVKD need only a relatively small number of arithmetic

operations per step; the moderate storage requirement is appealing, too. However,
their asymptotic convergence speed is quite low. The asymptotic convergence rates
can be estimated by

R(INESVKD )=<cos (see 5.18),
m+l

2-cos (/(m+ 1))-2/1-cos (Tr/(m + 1))
R (NBSOR, .) <= (see [ 16, 4.5]).

2-cos (zr/(m + 1)) + 2x/1 cos (Tr/(m + 1))

Both estimates tend to 1 for m
With strongly increasing nonlinearity the computation time of NBSOR decreases

while that of INB and GCG increases. In examples of the kind discussed here NBSOR
was always clearly slower than INB and GCG. NBSOR is not as sensitive as INB or
GCG to modifications of the starting vector. Different choices of the starting vector
confirm this fact. On the other hand, suitable starting vectors for INB and possibly
also for GCG can be computed using [14, Thm. 13.4.6]. A starting vector near the
solution does not guarantee a higher convergence speed for NBSOR.

Example al) with m 15 has a solution .9’ ([-0.1, 1]) = 1,

.o TM (2)=1 computation time 19.8 s,

.o TM (50) ’= computation time 19.0 s.

3. INB and INBHIN require for m => 31 four or five times as many arithmetic
operations as INESVKD and two or three times as much memory as INESVKD and
NBSOR. However, the numerical results reveal a behavior similar to superlinear or
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quadratic convergence. Due to the rules of interval arithmetic the estimate (5.24) is
rather crude. It shows, however, that the asymptotic rate of convergence of INB and
INBHIN tends to zero for d(()) .and is zero i___n the linear case for all m
(example c). We add results for the choice .k := a:k /k lN0 and . :=__/k 10
because in these cases we do not have to store the vector .. This choice of . leads
to numerical results worse than those for the midpoint vector.

On the other hand, this choice offers some advantages which we shall examine in
another paper: a better approximation of the asymptotic rate of convergence than
(5.24), no need at all for an auxiliary sequence to ensure the convergence to

The difference between the versions M and O! U grows with increasing diameter
or the diagonal coefficients of o(. ). The diameter increases with increasing nonlinearity,
for example. With increasing diameters of the coefficients of (.) INB becomes slower
(compare Table 5). For linear problems, INB reduces to a simple application of IBU.
The results for example c), however, show the necessity of two steps, the second being
necessary for the examination of the convergence criterion. NBSOR behaves like a
linear block SOR method for systems with a small nonlinearity.

We computed example d) for several values of m with starting vectors determined
by (6.7). In the worst case the computation of the starting vector required about 1%
of the total computation time. Note that INB requires only a starting vector which
includes the solution to ensure the convergence to the latter. As this vector is very
easy to compute, we can even speak of global convergence.

4. The generalized CG method showed a behavior in a certain sense similar to
that of INB. The versions GCG I and GCG II without restarts, i.e. without guaranteed
convergence, need more floating-point operations per step than INB with IBUM I and
IBUM II need interval-arithmetic operations per step. Even with an optimal micropro-
grammed or hardware interval arithmetic INB should be slower than the generalized
CG method without restarts if both need the same number of iterations (examples
a-4), a-3), d)).

In examples with a stronger nonlinearity (a0), al), a2), a4), b)) the number of
iteration steps for INB is sometimes considerably smaller than that for GCG. The
difference increases with increasing nonlinearity. Despite the higher complexity of
interval arithmetic, the smaller number of steps results in a shorter computation time
for INB--provided a sufficiently fast arithmetic is available. The choice between the
parameters (al, b), (a, b2), (a2, bl), (a2, b2) for GCG (see [7]) is not obvious. (a, b)
and (a2, b), which produced the same results, seem to be the most reliable. The
parameters (a2, b2) produced sometimes slightly better, but often considerably worse,
results than the above ones. The parameters (a, b2) gave the worst results. For strongly
nonlinear functions (examples a3), a4)) divergence or an overflow occurred several
times with (a, b2) and (a2, b2); in example a4) even for (a, bl) and with restarts an
overflow took place.

The comparison with GCG I and GCG II is a theoretical one as they do not
guarantee convergence. A realistic comparison involves the version with periodical
restarts and the convergence safeguards described in [7]. The convergence safeguards
clearly increase the computation time per step. This affects, in particular, examples
which need only a few iteration steps. For examples which do not necessarily converge
without the safeguards the latter naturally have a positive effect on the computation
time (example a2), a3), a4)).

The computation time is also determined by the length of the restart cycle. This
length has to be guessed from experience since there exists no rule for an optimal
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cycle length. The number of steps as well as the computation time (modified for INB)
for GCG with restarts always remained higher than those for INB with IBUM II
(version M).

5. In all the examples that we tested, INB never needed auxiliary steps to ensure
convergence. The auxiliary method for INB has the advantage that it does not have
to be carried out regularly. Auxiliary steps are executed only if the iteration process
seems to stop on an interval vector whose diameter in each component is greater than
the prescribed precision, which was never the case in our examples.

The version M of INB never needed a larger number of iteration steps than any
of the GCG versions. The versions of GCG with convergence safeguards were always
slower than INB +IBUM II (version M). Note that, whether necessary or not, the
safeguards have to be carried out periodically, and a parameter control must be carried
out in each step.

One drawback of GCG consists in the necessary choice of the optimal length of
the restart cycle and the optimal choice of the step length formulas which are repre-
sented by the parameters (ai, bj), i, j {1, 2}.

6. For the range of applications of INB (which is certainly smaller than that of
GCG), this interval method seems to be a good alternative to the well-known floating-
point methods. In almost all of our examples INB was superior to NBSOR even with
a simulated interval arithmetic. In order to compete with the generalized CG method,
an optimal, or at least nearly optimal, arithmetic like the one developed in [13] is
recommended.

7. Another advantage of INB results from the fact that the interval bounds are
always rounded in the outside direction (seen from the interval): INB theoretically
converges to the solution. Computed until the desired precision is obtained, the bounds
of the final interval vector enable us to recognize immediately the correct digits.

Remarks. 1) Section 7 contains some characteristic results from [16]. A more
detailed comparison and a PASCAL program can be found in [16].

2) Recently other interval-arithmetic algorithms have been developed which are
based on Newton-SOR and Newton-ADI methods [8]. For examples of the type
presented in this paper they seem to require more computation time than our method
and need more storage. They are, however, applicable to more general equations, for
example irregular regions, that do not lead to matrices of the special type required by
our method.

Abbreviations for programs and algorithms.

GCG I, GCG II, Generalized conjugate gradient method [12, 6]
GCG II + Restart

HINESVKD Modification of INESVKD as an auxiliary method (5.14)
IBU Reduction algorithm for interval matrices (4.5)
IBUM I, IBUM II Special versions of IBU for the Poisson equation 6
IGA Interval-arithmetic Gauss algorithm (3.2)
INB Interval-arithmetic Newton-like method with IBU (5.10)
INBHIN INB with the auxiliary method HINESVKD (5.14)
ING Interval-arithmetic Newton method (5.5)
INGHIN ING with HINESVKD (5.14)
NBSOR Nonlinear block successive overrelaxation method [12, 6]

Acknowledgment. I wish to thank Professor Dr. G. Alefeld for his helpful sugges-
tions.
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COMPARISON OF SOME DIRECT METHODS FOR COMPUTING
STATIONARY DISTRIBUTIONS OF MARKOV CHAINS*

W. J. HARRODf AND R. J. PLEMMONS"

Abstract. The purpose of this paper is to report on a comparison of an implementation of a simple
direct LU factorization method, suggested by Funderlic and Mankin [SIAM J. Sci. Stat. Comput., 2 (1981),
pp. 375-383], with other direct methods recommended by Paige, Styan and Wachter [J. Stat. Comput.
Simul., 4 (1975), pp. 173-186], for computing stationary distributions of Markov chains. A backward error
analysis is developed and conditioning problems are addressed. The method is stable without pivoting, it is
numerically efficient and it lends itself to symmetric pivoting to preserve sparsity.

Key words, direct methods, error analysis, LU factorization, M-matrix, Markov chain, probability
distribution vector, sparsity schemes, stochastic process

1. Introduction. This paper is concerned with methods for computing the station-
ary distribution vector p of an ergodic Markov chain with probability transition matrix
O. Here Q is an n n irreducible, row stochastic matrix and p is an n-vector with
positive probabilities satisfying

(1.1) O’p=p,
where T denotes the transpose. Since Q is an irreducible nonnegative matrix (Q >_-0),
by the Perron-Frobenius theory (see, e.g., Varga [1962, p. 30] or Berman and
Plemmons [1979, p. 27]), p is the unique positive vector satisfying i=l Pi- 1.

The computation of the stationary distributions of a Markov chain is of widespread
interest (Kemeny and Snell [1960], Golub and Seneta [1973], Paige, Styan and Wachter
[1975], Meyer [1975], W. J. Stewart [1978], G. W. Stewart [1980], Hunter [1982],
Kemeny [1981]). More generally, the stationary distribution vector p satisfying (1.1)
is important in many areas of the mathematical sciences, including queueing networks
(e.g., Kaufman [1983]), input-output economic models (e.g., Berman and Plemmons
[1979, Chap. 9] and Duchin and Szlyd [1979]) and in compartmental analysis tracer
models (e.g., Sheppard and Householder [1951] and Funderlic and Mankin [1981]).
Such computations are also related to the discrete Neumann problem in partial
differential equations (e.g., Plemmons [1976]). Techniques for computing p where Q
is large and sparse have traditionally been iterative and often involve some variation
of the power method for computing eigenvectors (see, e.g., W. J. Stewart [1978]),
although more recently methods based upon matrix splitting such as the Gauss-Seidel
method have been investigated (see Kaufman [1983] for an interesting study of such
methods). Combined direct-iterative methods have recently been considered by Koury,
McAllister and Stewart [1984] and by Funderlic and Plemmons [1984]. Our interest
here is in a direct method based upon an LU factorization of a certain M-matrix (see
2 for definitions) by Gaussian elimination without pivoting.

Paige, Styan and Wachter [1975] have considered a variety of direct methods for
computing the stationary distribution vector p for an ergodic Markov chain with rate
transition matrix Q. They recommended two methods which are based upon the
transformation of I-Q" into a nonsingular matrix by a rank-one modification,

* Received by the editors September 7, 1982. This research was supported in part by the U.S. Army
Research Office under contract DAAG29-81-K-0132 and the National Science Foundation under grant
MCS-82-19500.

" Departments of Mathematics and Computer Science, North Carolina State University, Raleigh, North
Carolina 27650.
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followed by the solution of an associated nonsingular system of linear equations.
Specifically letting e 7- (1, , 1), it follows that if x is any n-vector such that e 7‘x 0,
that is, if x is not in the range of A, then

(1.2) I-QT +xe7‘
is nonsingular and p is then the solution to the nonsingular system of linear equations

(1.3) (I-- QT + x eT‘)p x.

We note that this rank-one modification concept has recently been extended to more
general problems by Hunter 1982], Kemeny [1981 and Harrod [1982].

Based upon the numerical comparison of a collection of direct methods for
computing p available at that time, Paige, Styan and Wachter [1975] recommended
the use of the nonsingular system (1.3) with two possible choices of x. We name these
methods as follows (here ej denotes the jth unit vector):

PSW method 1. Solve

(1.4)

PSW method 2. Solve

I 0 7‘ + 0 7‘
ej e T‘ p OT"e,

[I-QT + e)e
7‘]p e).

Note that in PSW method 1, the vector x in (1.3) is the jth row of the stochastic
matrix Q while in PSW method 2, x is the ]th unit vector. Paige, Styan and Wachter
recommended the solution of (1.4) or (1.5) by Gaussian elimination with row pivoting
for numerical stability. Notice that these nonsingular rank-one modifications may
produce a more dense matrix than I- Q, and also that row pivoting is now, in contrast
to the Funderlic-Mankin scheme, generally required for the LU factorization of (1.2)
since the column diagonal dominance of I-QT- can be lost (see 2). We will remark
further on these topics in 4.

Other direct methods, such as replacing the jth row v of I- Q7- by e 7‘ (1,. , 1)
and then solving the resulting nonsingular system

[I OT _}_ e/( e v) Tip ej,

were considered by Paige, Styan and Wachter. They also considered the use of
generalized matrix inverses, but they found that PSW methods 1 and 2 performed
best, in terms of accuracy and numerical efficiency, of all the methods they examined.

Our purpose in this paper is to provide a simple alternative to the nonsingular
rank-one modification methods of Paige, Styan and Wachter. This method, which was
suggested first by Funderlic and Mankin [1981] for the solution of compartmental
tracer analysis problems, involves the direct LU decomposition of I-QT‘ or some
symmetric permutation of I-Q. The algorithm is developed in 2, and a complete
backward error analysis is also given. The scheme essentially corresponds to one step
of inverse iteration as described in Wilkinson [1965, p. 619] for a certain eigenvector
problem. Numerical comparisons of this method with PSW methods 1 and 2 on a
variety of test examples are reported in 3. These examples involve some actual data
from queueing network analysis and the problems vary in the degree of ill-conditioning
and sparsity. Some general observations about the results of these comparisons are
given in 4 along with some comments on conditioning. We conclude that this direct
LU factorization method for I-QT‘ provides at least as much accuracy as the nonsin-
gular PSW methods 1 and 2. Moreover, this scheme requires no pivoting for numerical
stability and facilitates the use of symmetric pivoting to preserve sparsity.
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2. The partition tactorization method. As defined in 1, Q denotes an irreducible
stochastic probability transition matrix of order n associated with an ergodic, finite
Markov chain. Let

(2.1) A=I-QT.
In this context, our purpose is to compute the unique stationary probability distribution
vector p (Pi), Pi > 0, --1 P 1, which solves the homogeneous system of linear
equations

(2.2) Ap=O.

The coefficient matrix A has several useful properties. First, A is an M-matrix. By an
M-matrix we mean a matrix with all nonpositive off-diagonal entries and with all
eigenvalues having nonnegative real parts. Since A is irreducible, it has rank n-1.
Moreover,

eA e(I Q) e-eQ e-e=0,
so that A is column diagonally dominant. In particular,

aii aij, 1 <- <= n.

(For a discussion of the theory and applications of M-matrices in the mathematical
sciences see, e.g., Berman and Plemmons [1979, Chaps. 6-10].) It follows that each
principal submatrix Ak formed by deleting the kth row and kth column of A is a
nonsingular M-matrix.

Although the coefficient matrix A in (2.1) is singular, (2.2) can always be solved
in a stable way by Gaussian elimination on A, as described by Funderlic and Mankin
[1981] or Funderlic and Plemmons [1981]. Indeed, A has an LU factorization

(2.3) A=LU

where L is an M-matrix with unit diagonal and U is an M-matrix of rank n-1 with

Unn 0. The following simple algorithm can thus be used to compute the stationary
probability distribution vector p. It essentially corresponds to one step of the inverse
power method with en as the right-hand side.

Let

DIRECT FACTORIZATION METHOD.

1. Factor A LU by Gaussian elimination.

Ull U12 Uln
U22 U2n

(2.4) U ""
Un:l,n

2. Solve Uy e, by back substitution.
3. Scale y to p=(1/i__ y)y.

It was shown in Funderlic, Neumann and Plemmons [1982] that the elements of
A do not grow during the elimination phase of step 1 of the algorithm. In particular,
we see that the growth factor

max,,, lal.k)l,
(2.5) gA =- 1
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where a denotes the i, j entry of the unreduced part of A before the kth step of
Gaussian elimination. Thus the method is stable. In particular, suppose the algorithm
is executed on a machine with unit roundoff error tz in floating point arithmetic. Then
a simple backward error analysis, using Wilkinson [1965, p. 215] and Stewart [1973,
p. 150], shows that the computed solution/3 to Ap =0 satisfies exactly a perturbed
homogeneous system of linear equations (A + E)/3 0. Bounds on E are given in the
following theorem, which corrects Funderlic and Mankin [1981, eq. (8)], who inadver-
tently did not take into account the back substitution phase of the algorithm. The
theorem is given in a slightly more general form than is necessary in the context of
this paper.

THEOREM 1. Let A be an n n irreducible, column diagonally dominant singular
M-matrix. Suppose the homogeneous systems of linear equations Ax 0 is solved for
the positive vector x by Gaussian elimination on A without pivoting in floating point
arithmetic with machine unit roundoff error tx. Then there exists a matrix 13 eq) such
that the computed solution to Ax 0 satisfies exactly the homogeneous system

(2.6) (A+E)=0

where for 1 <= i, j <- n

(2.7) [eq[ _<- tzi(3.02 + 1.01 n) max a,.

Proof. Consider the LU decomposition of A by Gaussian elimination without
pivoting. From Wilkinson [1965, p. 215], there is a matrix F=(fq) such that the
computed factors and /] satisfy

where

1) max
<

i,j,k
if j>=i,

Thus by combining these inequalities in terms of and applying (2.5) and the fact that
A is column diagonally dominant, we have

(2.8) Ifql <-- 2.01/zi max a..

The algorithm for the LU decomposition of A by Gaussian elimination yields

Set

/’11 /ln

an_l,
1
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Next, if Ax =0 is solved using U in the back substitution step 2, then by Stewart

[1973, p. 150] there exists a matrix G (gij) such that the computed solution to
Ux en satisfies the system

(2.9) (+G)=e,
where, since [ijl <--max, a,,, for all and L
(2.10) Igi[ =< 1.01ix(n + 1) max art.

Then multiplying (2.9) on the left by/ we have

(J+G) e,, e,

so since

and , 1, it follows that

T

(0+)=o.
Thus 2 satisfies the homogeneous system

(A+F+G)=O.
Let

E =F+LG.

Then for each and j, we have

le,l--<lfl / Y Illgl
k=l

and, as I1 <--1 for each and k,

k=l

Then applying (2.8) and (2.10) we have

[ei[ =< 2.01ixi max a,, + 1.01i(n + 1) max at,,

which yields inequality (2.7).
Observe that the matrix I-QT, where Q is an irreducible stochastic matrix,

satisfies the hypotheses of the theorem. Moreover, lal -< 1 for each and j. This
establishes the following corollary, which provides a backward error analysis for the
computation of stationary distributions by the direct factorization method.

COROLLARY 1. Let Q be the rate transition matrix for an ergodic, finite Markov
chain. Let be the approximation to the stationary probability distribution vector p,
computed by Gaussian elimination on I-QT" without pivoting, in precision ix floating
point arithmetic. Then there exists a matrix E such that satisfies the homogeneous system

where for 1 <= i, } <-_ n,

(1-O+E)=O,

le[-<- ixi(3.02 + 1.01 n).
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We proceed now to describe the general algorithm for computing stationary
distributions to be compared in this paper with the PSW methods 1 and 2, which were
described earlier. First we recall that it was established by Funderlic and Plemmons
1981] that any M-matrix A whose rows can be scaled to produce a column diagonally
dominant matrix has the property that for each permutation matrix P, PAPT has an
LU factorization PAPT= LU, where L is an M-matrix with unit diagonal and where
U is an M-matrix. A converse of this result was given by Varga and Cai [1981].

As before, let O be an n n, irreducible stochastic matrix and set A I-OT.
For any 1 =< k -< n, let Ak denote the principal submatrix obtained by deleting the kth
row and the kth column of A. Accordingly, let P denote the permutation matrix
(introduced for notation purposes only) such that PAPT has the partitioned form

(2.11) pApT=[Ak Yk]Z Olnn

Here Ak is an (n 1) (n 1) diagonally dominant, nonsingular M-matrix and Yk is
an (n- 1)-dimensional vector with nonpositive entries.

The following general scheme for computing p is based upon the partition form
(2.11).

PARTITION FACTORIZATION METHOD (PF method)
1. Choose 1-< k <-n and partition A into the form (2.11).
2. Solve Ak. --Yk for (Xl," Xn_l) T by Gaussian elimination on Ak without

pivoting.
3. Set x, 1 and p (1/"i=1 Xi)PTX"
Observe that since Ak is column diagonally dominant, pivoting for stability is

unnecessary in the LU factorization of Ak by Gaussian elimination in step 2. Indeed
the growth factor gAk is one for each 1 _<-k-< n. Also, observe that the partition
factorization method with k n is mathematically the same as the direct factorization
method applied to A, which was given earlier. To see this, note that if Ak is factored
into Ak =LkUk by Gaussian elimination, then Uk is the leading (n-1) (n-1)
principal submatrix of , given by.(2.4), while Llyk is the first n-1 entries of the
last column of . Thus the matrix U given by (2.4) in the direct factorization method
has the partitioned form

_f [ Uk L- yk]0 1

More generally, for 1 <-k <-n, it follows that the partition factorization method using
the submatrix Ak of A is mathematically the same as the direct factorization method
applied to PAPT, where the permutation matrix P is given by (2.11). Thus the backward
error analysis given in Theorem 1 for the direct factorization method also holds for the
partition factorization method.

There are some possible advantages of the flexibility of choosing an arbitrary
principal submatrix Ak to factorize in the solution process for p. First, one might
choose an Ak having a particular sparsity pattern. For example, if A has a dense row,
then it could be excluded from the solution process. Secondly, the condition numbers
IIAkll IIAlll may differ widely for 1 <-k <_-n, so one might expect better numerical
results if a well-conditioned Ak were chosen. However, as we shall note in the test
results of 3, the choice of Ak in the partition factorization method appears to have
little effect on the numerical accuracy obtained, up to the precision of the machine.
As a partial explanation for these observations we give the following theorem, which
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relates the smallest singular values of the (n- 1) (n- 1) principal submatrices Ak to
the smallest nonzero singular value of A.

THEOREM 2. Let A I- Q, where Q is an n x n irreducible stochastic matrix and
let Ak denote the principal submatrix obtained from A by deleting the kth row and the
kth column for 1 <= k <= n. If tr,_l denotes the second smallest singular value of A and
cr(k)_l denotes the smallest singular value of Ak then

(2.12)

Proof. Without loss of generality it will be assumed that k n. Then A can be
written in the partitioned lorm

(2.13) A=[A" Y"]T
Z ann

Let tr(ArA) {tr}’=l denote the eigenvalues of AT"A where 0 tr, < or,_ <-. =< trl,

and let tr(A 7"A,)= denote the eigenvalues of AA,, where 0 < On_ On_2Ol j.j=
< al, and let tr(A,,A,, + z,z) Y1i= denote the eigenvalues of A z,,z

where 0 <_- 3’,-1 <-- Y,-2--<" "-<- ’1.
The matrix AA, + z,,z , is a principal leading submatrix of the symmetric matrix

AT"A. Thus by the interlacing property

(2.14) 0 O" Yn--1 O"n-1 " Yl O’1"

Also, applying Wilkinson [1965, pp. 97-98], it follows that

2 2 Tyj-aj=mj(znz,) for]=l,2,. ., n-1
n--1where 0 =< mk -< 1 and k=l mk= 1. Hence

Applying (2.14) it follows that

for j= 1,2,. , n-1.

O<-ai<= yi<-_trj forj=l,2,...,n-1.

In particular, if j n- 1, then

0 On-- O’n_

The result follows. [q

Note that Theorem 2 shows that if the smallest nonzero singular value of A is
small, then such is the case for the smallest singular value of each Ak. This implies
that if the total problem of solving Ap 0 is ill-conditioned, then any choice of Ak in
the partition factorization method can lead to an ill-conditioned problem, a situation
that has been observed in our test problems. These and other observations concerning
the test results are discussed in 4.

3. Nulaericai comparisons. Numerical comparisons were performed or the parti-
tion factorization (PF) method and the Paige, Styan and Wachter (PSW) methods 1
and 2. Note that in computing the stationary distribution vector p for a stochastic
matrix of order n, in each of the three algorithms being tested there are n possibly
different systems of linear equations that can be used to obtain p.

The computer program for each algorithm was executed on an IBM 3081 computer
at the Triangle Universities Computation Center. The software was written in
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FORTRAN and compiled using the IBM Extended Optimizing Compiler in single and
double precision floating point arithmetic.

The relative error was computed by comparing the single precision result with
the double precision approximate solution, found by using the IMSL subroutine
EIGRF. The relative error reported was computed as IIp-ll/llpll, where p is the
double precision approximation and will be referred to as the exact solution, and/3 is
the single precision approximation computed by one of the three algorithms. The
vectors p and/3 are both normalized so that [[pll 1 and IIHII 1. Hence the relative
error is bounded above by 2. The residual error computed was -O11 and would
theoretically be 0 if/ p.

One of the problems associated with the PSW methods is that the sparse structure
of the matrix A may be modified and the resulting updated matrix may no longer be
sparse. In order to measure this effect, the numbers of nonzero entries in the matrix
A and in the rank-one modified matrix in the PSW methods 1 and 2 are reported
when A is sparse.

Various test problems were used to compare the three algorithms being considered.
One type of matrix used is a nearly completely decomposable (NCD) matrix. The
stochastic matrix

O Q* + eC

where e > 0, Q* is a block diagonal stochastic matrix and C has row sums zero, is
called a nearly completely decomposable matrix. If Q* has m diagonal blocks, then Q*
has 1 as an eigenvalue of multiplicity at least m. Therefore the matrix Q has at least
m- 1 eigenvalues close to 1. The parameter e is called the degree of coupling and is
a measure of the decomposability of the matrix Q. Such matrices often arise in the
analysis of queueing networks (e.g., Koury, McAllister and Stewart [1984]).

The following test problems were used to compare the PF method and the PSW
methods 1 and 2.

Test problem 1. This matrix is of order 10 and the condition numbers for the
submatrices Ak O order 9 range from 2.046 E+01 to 2.090 E/ 17.

Testproblem 2. This matrix is of order 8 and is commonly called Courtois’s Matrix
(see Courtois [1977]). Although the entries in the sixth row do not sum to 1, it has
been used to test several algorithms (e.g., Stewart [1980] and Vantilbourgh [1981]).
It is nearly completely decomposable, and the degree of coupling is 0.001.

Test problem 3. This matrix is of order 6 and the condition numbers for the
submatrices Ak Of order 5 range from 1.644 E+01 to 1.425 E/07.

Test problem 4. This is a class of matrices of order 10 which are nearly completely
decomposable. This particular class of matrices was used by Paige, Styan and Wachter
[1975] for test purposes.

Test problem 5. This matrix of order 84 is banded and sparse. It arose from the
queueing network analysis of a job line production model, studied in the Industrial
Engineering Department at North Carolina State University.

Special notation. If B is a square matrix, then N(B) denotes the percent of nonzero
entries in B. If B is also nonsingular then the term K(B) denotes the condition number
of the matrix and is defined by KI(B)= IIBIIIlIB-111 .

The term maximum relative error means the maximum of all the relative error
terms in the one norm, for the n possible different linear systems for a particular
problem and algorithm. Similar definitions are applied to the terms minimum relative
error and maximum and minimum residual errors.
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Test problem 1.
Matrix O:

-.2 0 0 .6 0 0 0 0 0 .2
0 .1 0 0 .6 0 .3 0 0 0
0 .1 0 0 0 0 0 .8 0 .1
0 0 .6 0 .3 0 0 0 0 .1
0 .5 0 0 .5 0 0 0 0 0
0 .5 0 0 .2 0 0 0 .3 0
0 0 0 0 .7 0 .2 0 0 .1
.1 0 .9 0 0 0 0 0 0 0
0 .1 0 0 0 .8 0 0 0 .1

_0 .4 0 0 0 .4 0 0 0 .2

Exact solution"

p=(3.18129230 E- 16, 3.13420278 E-01, 2.93617551 E- 15,

3.07485879 E- 16, 5.43805217 E-01, 7.88809424 E-03,

1.17532604 E-01, 2.56247898 E- 15,

2.36642827 E-03, 1.49873790 E--02)T.

Second smallest singular value of A: 1.424 E-01.

PF PSW PSW
method method method 2

maximum
relative 2.525 E-06 2.479 E-06 3.676 E-06
error

minimum
relative
error

PF PSW PSW
method method method 2

1.454 E-07 1.757 E-07 6.856 E-08

maximum
residual
error

PF PSW PSW
method method method 2

4.452 E-06 7.882 E-07 7.881 E-07

minimum
residual
error

PF PSW PSW
method method method 2

4.555 E-07 1.827 E-07 1.830 E-07

N(A)=33%, maxN(A+(OTej)eT)=51%, maxN(A+ejeT)=40%,

min KI(A]) 2.046 E +01, max KI(A]) 2.090 E+ 17.
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Test problem 2.
Matrix O"

.85 0

.1 .65

.1 .8
0 .0004
.0005 0
0 .0OOO5
.00003 0
0 .00005

.149 .0009 0 .00005 0 .00005

.249 0 .00009 .00005 0 .00005

.0996 .0003 0 0 .0001 0
0 .7 .2995 0 .0001 0
.0004 .399 .6 .0001 0 0
0 0 .00005 .6 .2499 .15
.00003 .00004 0 .1 .8 .0999
0 0 .00005 .1999 .25 .55

Exact solution"

p (8.92826528 E-02, 9.27576375 E-02, 4.04883120 E-02,

1.58533191 E-01, 1.18938207 E-01, 1.20385481 E-01,

2.77795252 E-01, 1.01819266 E-01)

Second smallest singular value of A" 1.906 E-04.
Degree of coupling" 0.001.

maximum
relative
error

PF PSW PSW
method method method 2

1.710 E-04 1.180 E-03 1.097 E-03

minimum
relative
error

PF PSW PSW
method method method 2

3.957 E-05 3.905 E-04 1.111 E-04

maximum
residual
error

minimum
residual
error

PF PSW PSW
method method method 2

1.149 E-06 1.009 E-06 9.946 E-07

PF PSW PSW
method method method 2

1.891 E-07 7.152 E-07 7.860 E-07

N(A) 62%, max N(A + (QTej)eT) 83%, max N(A + eje T) 69%,

min KI(A) 1.021 E +04, max KI(A) 2.041 E +04.
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Test problem 3.
Matrix O"

0.999999 1.0 E-07 2.0 E-07 3.0 E-07 4.0 E-07
0.4 0.3 0 0 0.3
5.0 E-07 0 0.999999 0 5.0 E-07
5.0 E-07 0 0 0.999999 5.0 E-07
2.0 E-07 3.0 E-07 1.0 E-07 4.0 E-07 0.999999

Exact solution:

p (3.15217329 E-01, 1.95652135 E-07, 9.81883865 E-02,

2.35144881 E-01, 3.51449206 E-01) :r.
Second smallest singular value of A" 1.007 E-06.

maximum
relative
error

PF PSW PSW
method method method 2

2.265 E-02 3.888 E-02 2.265 E-02

minimum
relative
error

PF PSW PSW
method method method 2

1.313 E-02 6.115 E-03 1.313 E-02

maximum
residual
error

PF PSW PSW
method method method 2

3.040 E-08 4.172 E-07 3.636 E-07

minimum
residual
error

PF PSW PSW
method method method 2

5.900 E-09 3.576 E-07 3.576 E-07

min KI(Aj)= 1.644 E +01, max KI(Aj)= 1.425 E +07.

Test problem 4.
Matrix Q: Let

O(e)

.1 .3 .1 .2

.2 .1 .1 .2

.1 .2 .2 .4

.4 .2 .1 .2

.6 .3 0 0
e 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.3 e 0 0 0 0

.4 0 0 0 0 0

.1 0 0 0 0 0

.1 0 0 0 0 0

.1 0 0 0 0 0
0 .1 .2 .2 .4 .1
0 .2 .2 .1 .3 .2
0 .1 .5 0 .2 .2
0 .5 .2 .1 0 .2
0 .1 .2 .2 .3 .2
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If sj denotes the inverse of the sum of the entries in the jth row of the matrix
O(e) and D =diag (sl, s2," , sn), then O(e) DO(e) is a nearly completely decom-
posable stochastic matrix of order 10. Let A(e) I- O(e).

Degree of coupling" e/ (1 + e ).

Second smallest singular
value of A(e)

1.0 E-01 4.211 E-01
1.0 E-03 4.898 E-04
1.0 E-05 4.898 E-06
1.0 E-07 4.899 E-08

maximum
relative
error

minimum
relative
error

PF
method

PSW
method

PSW
method 2

1.0 E-01 4.417 E-06 6.738 E-06 7.304 E-06
1.0 E-03 2.320 E-04 5.506 E-04 2.876 E-04
1.0 E-05 1.586 E-02 2.501 E-02 3.901 E-02
1.0 E-07 8.294 E-01 *

PSW
method

PF
method

PSW
method 2

1.0 E-01 1.661 E-06 1.177 E-06 2.052 E-06
1.0 E-03 6.453 E-05 6.164 E-05 7.774 E-05
1.0 E-05 8.296 E-03 7.814 E-03 7.034 E-03
1.0 E-07 6.424 E-01 8.167 E-01 8.167 E-01

maximum
residual
error

PF
method

PSW
method

PSW
method 2

1.0 E-01 8.102 E-06 1.143 E-06 1.512 E-06
1.0 E-03 7.825 E-06 1.501 E-06 1.262 E-06
1.0 E-05 7.946 E-06 1.281 E-06 1.352 E-06
1.0 E-07 6.395 E-06

minimum
residual
error

PF
method

PSW
method

PSW
method 2

1.0 E-01 4.395 E-07 6.556 E-07 6.034 E-07
1.0 E-03 4.145 E-07 5.997 E-07 6.631 E-07
1.0 E-05 5.772 E-07 5.557 E-07 6.631 E-07
1.0 E-07 2.236 E-07 5.774 E-07 5.848 E-07

N(A) =48%,

e min K1 (Aj) maxjK (Ai)

1.0 E-01 7.494 E +01 1.755 E+02
1.0 E-03 6.284 E+03 9.216 E+03
1.0 E-05 6.261 E +05 9.135 E+05
1.0 E-07 6.261E+07 9.134 E+07.

max N(A +(Qrej)er) 74%, maxN(A+ejer)=56%.
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Test problem 5.
Matrix Q (zero nonzero structure)" See Fig. 1.
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Zero/nonzero structure of the PSW matrix A + QTe43)eT for test problem 5"
See Fig. 2.
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Second smallest singular value of A" 3.305 E-02.

maximum
relative
error

PF PSW PSW
method method method 2

2.293 E-05 3.319 E-05 3.038 E-05
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minimum
relative
error

maximum
residual
error

minimum
residual
error

PF PSW PSW
method method method 2

7.735 E-06 1.974 E-05 1.952 E-05

PF PSW PSW
method method method 2

9.756 E-06 5.388 E-06 8.509 E-06

PF PSW PSW
method method method 2

1.449 E-06 2.358 E-06 5.841 E-06

N(A) 5%, max N(A + (OT"ej)e 7") 14%, max (N(A + eje T) =6%,

min KI(Ai)= 1.125 E+02, max KI(Ai)= 1.108 E +03.

4. Concluding remarks. The paper is concluded with some observations concern-
ing the performances of the nonsingular rank-one modification methods recommended
by Paige, Styan and Wachter [1975] (PSW methods 1 and 2) and our partition
factorization (PF) method. We comment first about the particular test problems
considered in the preceeding section and then give some general observations.

1. In test problem 1 all three algorithms produced 5 or more decimal digits of
accuracy in IBM single precision in each situation. (Here the PF method was tested
using each of the 10 principal submatrices Ak of A having order 9. The PSW method
1 was tested using each of the 10 rows of O and the PSW method 2 was tested using
each unit vector e, 1 _-< j <_-10.) Some fill-in to I-O occurred as a result of PSW
rank-one modifications. Notice that the one-condition numbers of the Ak range up to
near 2 x 1017. However, the PF method still obtains uniformly good results using each
Ak. The second smallest singular value of I-Q7" is near .14, and thus the overall
problem of computing p is apparently well-conditioned.

2. Test problem 2 is Courtois’s matrix which is nearly completely decomposable.
Here the three methods obtain moderately accurate results in IBM single precision
(between 3 and 6 decimal digits) in each situation.

3. Between only 1 and 2 decimal digits of accuracy are obtained by the three
methods applied to test problem 3. However, the residual error is small in each case.
Observe that the second smallest singular value of I-Q is around 10-6.

4. Test problem 4 represents a class of test situations involving a nearly completely
decomposable matrix in which the degree of coupling decreases from 10-1 to 10-7,
resulting in a comparable decrease in the second smallest singular value of I-Q.
Here the PF method produces the smallest maximum relative error in each case.

5. For the job line production model in test problem 5, all three methods obtained
relatively accurate results. However, the PSW methods 1 and 2 destroy the sparse
banded structure of I-Q, as we illustrate.

6. In general for all the problems tested, the residual error was between 10-6

and 10-9 even though in many cases the relative error was large. Thus the residual
error may not be good measure of the accuracy of the approximation to p here, for
ill-conditioned problems.
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7. Recall that pivoting generally is necessary in the LU factorizations of the
nonsingular rank-one updates of I-QT- in PSW methods 1 and 2. However, the PF
method requires no pivoting for numerical stability. Thus it facilitates the possible
application of symmetric pivoting to preserve sparsity (see Funderlic and Plemmons
[1984]) without the use of any threshold pivoting parameter.

8. Finally, we observe that the three methods all obtained comparable accuracy
on each test problem. In particular, the PF method obtained uniformly good or
uniformly poor results on a given test problem (depending upon the magnitude of the
second smallest singular value), even though there was often a considerable variation
of the condition numbers of the principal submatrices used in the PF method. This is
in agreement with Theorem 2, and it leads us to infer that the accuracy obtained by
the PF method is relatively independent of the choice of principal submatrices, up to
the constraints of the machine precision. Thus the choice of the principal submatrix
Ak for the PF method could be based upon other considerations, such as sparsity. For
example, if Q has one dense column, say the kth, then the extreme fill-in in computing
the LU factorization might be avoided by using Ak in the PF method.
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GENERATING CORRELATION MATRICES*

GEORGE MARSAGLIA" AND INGRAM OLKIN:

Abstract. This paper describes a variety of methods for generating random correlation matrices, with
emphasis on choice of random variables and distributions so as to provide matrices,with given structure,
expected values or eigenvalues.

Key words, random correlation matrices, random numbers, Monte Carlo, simulation

1. Introduction. A correlation matrix is a symmetric, positive semi-definite matrix
with l’s on the diagonal. Numerous papers have been devoted, in whole or in part,
to the problem of generating random correlation matrices, but usually with a particular
application in mind. Papers concerned with correlation matrices having a particular
structure are those of Tucker, Koopman and Linn (1969), Herzberg (1969), Dempster,
Schatzoff and Wermuth (1977) and Ryan (1978), while Bendel and Afifi (1977),
Chalmers (1975), Bendel and Mickey (1978), Johnson and Welch (1980) are concerned
with eigenvalues of the generated matrices.

There seems to be need for a discussion of general methods that may be used to
generate random correlation matrices which meet various requirements such as struc-
tural, distribution of elements, expected values or eigenvalues, with emphasis on
possible choices of the random elements at each stage to achieve the desired objective.
The following three sections describe methods classified in three ways: random correla-
tion matrices with given expected values; in the form TT’; with given eigenvalues.

2. Random correlation matrices with given mean. Let C be a given correlation
matrix and let X (xij) be a random symmetric matrix with zeros on the diagonal and
with means E[xij] 0. Then C +X will be a random correlation matrix with expected
value C if, and only if, the eigenvalues of C +X are nonnegative. Viewing X as a
perturbation of C, we may use well-known results: adding the symmetric matrix X to
C cannot change the eigenvalues of C by more than Ilxll=, the 2-norm of X. See,
e.g., Stewart (1968). Since X is symmetric, its 2-norm is its spectral radius, which is
bounded by both IlXll =[E x]/ and IlXll= IlXll=max, Elx,[. Thus if any one
of Ilxll=, Ilxll or Ilxll, -Ilxllo is less than A, the least eigenvalue of C, then C+X
will be positive definite.

This provides a variety of methods for generating random correlation matrices
C +X with expected value a given positive definite correlation matrix C with h the
least eigenvalue of C:

2.1. Let A (ai) be a symmetric matrix with zeros on the diagonal such that
IIAIl-maxi Yla,l< x. For j> i, generate x such that the marginal distribution of
each xi is in the interval Ix, l < aij and such that E[xij] 0. Then, with xii 0 and x# xij
for > j, R C +X will be a random correlation matrix with expected value C. A
simple way to do this is with xi independent uniform in Ix < ]a,l, i< j.

2.2. For < j generate x12 x13, Xn_l, with a radially symmetric distribution
in (or on) the unit n(n- 1)/2-sphere. Then R C + 2-1/2AX will be a random correla-
tion matrix with expected value C.

* Received by the editors August 11, 1982, and in revised form February 10, 1983. This research was
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2.3. Using the method described in 4, generate a random correlation matrix R
with eigenvalues in the interval (1-,, 1 + )), where is the least eigenvalue of C.
Then C +R- I is a random correlation matrix with expected value C.

3. Random correlation matrices of the form TT’. In the method of the previous
section the matrix C was given, and a random matrix X was then chosen so that C +X
was positive definite. An easier way to guarantee definitiveness (but with less control
on the distributions) is to form TT’ from a random n m matrix T, m-> n. In order
that the result be a correlation matrix, the rows of T must have length one, and thus
the problem may be put in geometric terms: TT’ is a random correlation matrix if,
and only if, the rows of T are random points on the unit m-sphere.

This leads to a variety of methods. Probably the easiest is one that merely generates
a matrix T of independent uniform variates, and then forms TT’ after normalizing by
dividing each row by its root-mean-square. A faster method requires about half as
many variates by starting with T lower triangular (tij 0 if i< j). There are two easy
ways to make an initial row Xl,’’’,Xm of T a point on the unit m-sphere by
normalizing: root-mean-square,

and root-absolute-mean,

x, ,- +/-(Ix, I/y Ixl) 1/2,

with the + optional. For two initial rows xl,..., Xm and y," , y,, the two kinds of
normalization lead to marginal densities in TT’ for a ratio or a sum of ratios:

2(3.1) (E + xiy)/(E xj E y)l/e
and

(3.2) [E

If the initial elements of T are uniform or exponential, the distribution of (3.2)
is more tractable than that of (3.1). If the initial elements are standard normal variates,
then the distribution of (3.1) may be given explicitly; we will do so below. The central
limit theorem is more readily applied to the sum in (3.2), but since (3.1) approaches
the ratio of normal variates, both cases lead to the elements of TT’ being approximately
normal for m large. Choosing a random + when normalizing the rows will center the
densities at the origin.

Monte Carlo experiments to compare methods for generating the initial elements
of T and normalizing procedures should be worthwhile. In order to have exact
distributions against which Monte Carlo results may be compared, we will give explicit
densities for the case that the matrix T is initially chosen with nonzero elements
independent standard normal, then its rows projected onto the unit m-sphere by the
root-mean-square normalization (3.1). This will include triangular or any other n m
matrix T. For example, if an initial T has the form:

i
0 0 b c 0)s u 0 0
v 0 w 0 x

with nonzero elements standard normal, and if each row is then made a point on the
unit 6-sphere by dividing by its root-mean-square, what are the marginal densities of
the elements of TT’?
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k X/2 n y/2]1/2 0 < k < m < n, with the X’s andTHEOREM. If Z E Xi Yi/["
Y’s independent standard normal random variables, then Z2 is distributed as the product
of beta variates"

12,- [ l/2,(n_l)/2[ k/2,(m_k)/2

and the density of Z is, for -1 < z < 1"

r(1/2n)r(1/2m) zm)(n-3)/my(k-m)/ (m-)/2-1(r- y) at"

When k m, Z2 is the single beta variate 1/2,(n--1)/2, with corresponding density for Z.)
Proof. We may view Z as an inner product, a/3’, with a and/3 independent points

on the (m + n-k)-sphere. For example, when k 2, m 3, n 4 and

a=(X,,X,X3,0, O) X /3 =(Y,, Y_, O, Y3, Y4) Y
then the random point a is the projection of (X,, X2, X3, 0, 0) onto the 5-sphere, so
that c is independent of Y X2 and, similarly, /3 is independent of Y yZ. Thus, in
general, Z=a’ is independent of the product X2y Y. The latter product is
distributed as the product of independent gamma variates:

xmi Y’i 4 Y,/2

kIt follows that, with V , Xi Yi,

E[ZZr]E[ yr../z]E[’),r../2] E[Zzryr../z’),r/:z] E[ vmr].
Thus E[zZr] E[vmr]/E[rm/zrn/2] and, using the moments of V2 from the lemma
below,

E[zmr]=F(1/2k + r)F(_+ r) F(1/2n)F(m)
F(k)F(1/2) F(n + r)F(m + r)"

If /3a,b is a random variable having a beta distribution with parameters a and b,
then E,b B(a + r, b)/B(a, b). Since Z2 is a bounded random variable, its distribu-
tion is determined by its moments, namely, Ezmr=Efl[/2,(n_l)/mflrk/2,(m_k)/2 The
density of Z2 is obtained from the density of a product and of a square root. I-1

kLEMMA. Let V Xi Yi, with theX’s and Y’s independent standard normal. Then

E[vZ,j=4F(1/2k + r)F(1/2+ r)

Proof. Because of the radial symmetry of the distributions of (X1, Xm,""", X)
and (Y1, Yz,’", Yk), we may assume that (X1, X2,...,Xk) has the form
(W, 0,..., 0) with W distributed as (X12+ .+X)1/2, so that W2/2 is distributed
as a gamma variate Tk/2 with parameter k/2, i.e. W2"2yk/2 Then V2""4yk/2T1/2,
where Yk/z and Yl/2 are independent. Then

E[vm]=4E[T/2]E[T/z]=4F(1/2k + r)r(1/2 + r)/[r(1/2k)r(1/2)].
Using root-mean-square normalization on a set of k independent normal variates

produces a point on the surface of the unit k-sphere and the resulting spherically
symmetric distribution seems the most desirable for many applications; it is one of the
few methods for which the resulting distributions of elements in the correlation matrix
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can be given explicitly, as above. If a fast method for generating normal variates is
not available, there are other efficient methods for generating uniform points on a
k-spheremsee, e.g., Marsaglia (1972), (1980).

4. Generating a correlation matrix with given eigenvalues. Methods for generat-
ing a correlation matrix whose eigenvalues are close to a given set may be based on
classical perturbation theory: if the ordered eigenvalues of C are hi=<’" =< hn and
those of C +X are/Xl -<-" =</xn, then (Hoffman and Weilandt (1953)):

Z (A,- Ilxll
Thus choosing a random symmetric matrix X with zeros on the diagonal and

IlXll small will ensure that C+X is a correlation matrix with eigenvalues close to
C. A disadvantage of this method is that Ilxll may be so small that all the random
matrices C +X will look like C. (If the expected value is supposed to be C, as in 2,
and if C is nearly singular, then all X’s for which C +X is definite may include only
X’s of small norm. But closeness of eigenvalues need not require closeness of the
matrices.)

Another approach may be used: choose D =diag {dl," d,} so that (h di) 2 <
e; then choose a random orthogonal matrix P so that PDP’ is a correlation matrix.
Putting e 0 would then handle the case where the eigenvalues must be exactly a
given set.

The trace of an n x n correlation matrix must be n, so that we may put the problem
in general form: given an n x n positive semi-definite matrix A whose trace is n, choose
a random orthogonal matrix P so that PAP’ is a correlation matrix, i.e., has l’s on
the diagonal. It is elementary to prove by induction that there are such P’s: Choose
any point a on the n-sphere aa’= 1 so that it also satisfies aAa’= 1, (the Rayleigh
quotient guarantees the range of aAa’ will include 1 if the trace of A is n) and any
orthogonal matrix P () whose first row is a. Then

A(a’B’)= BAa’ BAB’]

and BAB’ is an (n 1) x (n 1) positive definite matrix with trace equal to (n 1).
This is backward induction so that we need only consider the case n 2, for which
the solution is explicit.

The most difficult problem in implementing this algorithm is in choosing a random
point a from the n-sphere so that aAa’ 1. There seems to be no easy, explicit way
to do this, but if one has a way, the following scheme may be used to generate all of
the rows of the required orthogonal matrix P:

Start with the symmetric idempotent matrix E I.
Choose 0 from the row space of E, subject to alO CelAa 1, and replace E

by E- OO1.

Choose a2 from the row space of E, subject to a2a a2Aa. 1, and replace E
by E-

a,Aa’ 1 and replace EChoose a,* from the row space of E, subject to a,*a,*

by E- ante,,.

1 so that the matrixThe resulting al, 02, ", a,* will be orthonormal with aiAai
P with rows a1," a will be orthogonal and PAP’ will have unit diagonal elements.
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The a’s will be orthogonal because O2 is in the row space of I-aOl, O3 is in the row
space of I-a’lal-a’2a2, and so on.

This provides an easy-to-follow algorithm, but for one aspect: How do we "choose
a from the row space of E, subject to aa’= aAa’= 1?" Assume A D, a diagonal
matrix of the given eigenvalues. Spherical symmetry in the choice of a’s will make
the result invariant under choice of the initial symmetric matrix A, provided it has the
given eigenvalues. The set aa’ aDa’ 1 is a subset of the surface of the unit n-sphere,
a pair of "spherical ellipses"mone the reflection of the other through the origin. A
random slice through the sphere may not hit the two "ellipses," but if it does, it
provides a nice way, by choosing one of the resulting four points of intersection.

This then suggests a rejection procedure for sampling a from the row space of a
matrix E, subject to aa’= aDa’ 1: Choose two points sc and rt from the row space
of E, each in the form ’E, with " (zl,. , zn) having independent normal coordinates.
If the plane determined by , and the origin cuts the set aa’= aDa’ 1, take one
of the four points of intersection and follow the algorithm. If the plane does not cut
the set, choose a new plane. The plane determined by : and r/may be represented as
r: + r/, rather than the conventional r+ r2rt, in view of the fact that we project onto
the unit n-sphere. The condition that the plane cut the set aa’ aDa’ 1 now becomes:
b2 < ac, where a (I-D):’, b sc(I D) r/’, c r/(I-D) r/’.

These details are now incorporated into an explicit algorithm.
ALORWHM. Given the diagonal matrix D=diag (d,..., d,} with d =>0 and

Y, d n, this algorithm produces a random orthogonal matrix P such that PDP’ is a
correlation matrix (l’s on the diagonal).

(i) (Initial state) Start with the n x n matrix E and the index k: E /, k - 1.
(ii) Generate a random vector :=(x,..., x,) in the row space of E. [Let

:=(Zl,’’", z,)E, with the z’s independent normal.] Compute a =Y (1-di)x.
(iii) Generate another random vector r/= (ya,..., y,) in the row space of E.
(iv) Compute b Z (1 di)xiYi and c Y. (1 di) y2. If d2 b2- ac <= O, go to

step (iii).
(v) Put r (b +/- d)/a, with the + chosen at random. Then the vector "- rs- r/,

when normalized with a random sign: sr +/-’/(sr") 1/2 is a random choice for the kth
row of P. Replace: E E- "’, increment k and go to step (ii), unless k n, in which
case n- I rows of P have been generated, and the last row may be any normalized
vector in the row space of E.

The above algorithm may be compared to two others: Bendel and Mickey (1978)
choose a random orthogonal matrix P, form PDP’, then use 2 x 2 rotations (never
reflections) to make the diagonal elements unity, one at a time. Chalmers (1975)
provides an algorithm that chooses the rows of P sequentially to produce the required
form, with rejection sampling from an n-cube at each stage. Our approach is similar,
but with the intent to describe more fully the available choices for each row, pro-
viding possibly simpler algorithms or better control on the resulting distributions or
expectations. Choosing the available elements from spherically symmetric distribu-
tions makes the resulting PAP’ invariant under choice of the initial A with given
eigenvalues.

The above algorithm is easily programmed. Its numerical stability is similar to
that of Gram-Schmidt orthogonalization: quite good. in fact, omitting the rejection
parts of the algorithm, steps (iii) and (iv), and putting sr : in step (v), produces an
orthogonal matrix by the Gram-Schmidt process, which is the initial step in the
Bendel-Mickey method. Steps (iii) and (iv) of the algorithm are performed a random
number of times; the best possible is n times. We find an average of less than 1.5n
times, for random initial choices of the eigenvalues.
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Interested readers may wish to see if the correlation matrices produced by the
algorithm have distributions that suit their needs. The distributions may be compared
with those produced by the Bendel-Mickey method, which can be extended in the
following way: Start with the given diagonal matrix of eigenvalues, D, and choose a
random orthogonal matrix P to get A PAP’. Then A has trace n, but will generally
have no l’s on the diagonal. It will have a principal 2 x 2 submatrix of the form ab

with a < 1 < c or c < 1 < a. There are then four possible 2 x 2 orthogonal matrices (two
of them rotations, two reflections) that reduce (b) to (lr2). Choosing one of the four
at random leads to a similarity reduction of A that puts a 1 on its diagonal. Applying
the procedure n times produces a random correlation matrix, all l’s on the diagonal.
Choosing from the four possibilities at each step should extend the distributional
properties of the end result, as should randomly choosing the 2 x 2 submatrices that
lead to the reductions.. A conjecture. Generating a correlation matrix with given eigenvalues may be
considered a special case of a more general matrix problem: given a symmetric matrix
A, find an orthogonal P such that PAP’ has equal values on its diagonal. It is easy to
prove the existence of such P’s and algorithms discussed above provide generating
procedures. It is natural to ask: can other diagonals also be made to have equal
elements? Such a "striped" matrix is called a Toeplitz matrix, elements t with t tr
if i-j r-s. For example, the 4 4 symmetric Toeplitz matrices have the form"

a b c d
a b c

b a b
c b a

We conjecture the following, which we have only so far been able to prove for n <- 4"
CONJECTURE. Given an n x n real symmetric matrix A, there is a real orthogonal

matrix P such that PAP’ is a Toeplitz matrix (tij), with tij trs for li-jl Jr- s I, or the
equivalent: every set of n real numbers is the spectrum of some real symmetric Toeplitz
matrix.
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DISTRIBUTION OF THE RATIO OF QUADRATIC FORMS IN
NORMAL VARIABLES--NUMERICAL METHODS*

R. LUGANNANI" AND S. O. RICE"

Abstract. This paper is concerned mostly with the distribution of the ratio of two quadratic forms in
normal variables. The probability density of the ratio is obtained as an integral and closed-form expressions
are given for several special cases. However, in the general case numerical methods must be used to
evaluate the density. A method of numerical integration is presented and illustrated by an example. The
behavior of the density around the points at which it is irregular is examined. The general case of the
distribution of the ratio of two composite random variables is discussed briefly.

Key words, quadratic forms in normal variables, ratio of random quadratic forms, numerical evaluation
of probability densities

1. Introduction. Much of this paper is concerned with the calculation of the
probability density p (y) of the ratio

(1)
z’Az
z’Bz

of quadratic forms where A and B are symmetric real matrices of order n, z is a
column of correlated normal random variables zl, z2,’’’, zn, and z’ is its transpose.
The probability that (1) exceeds y is

(2) O(y) p (y ’) dy ’.

Most of our results assume that z’Bz is positive definite. This case is also the
one that has been studied the most in the past. Gurland [1], [2], [3], [4] has dealt
with the problem of finding the distribution of general ratios. In particular he has
shown [2] that when z’Bz is positive definite, Q(y) is equal to the probability that
the quadratic form z’(A-yB)z exceeds zero. He then shows that p(y) and Q(y) can
be expressed as an infinite series of Laguerre functions. Davies [9] has given an
algorithm to calculate the distribution of a quadratic form in normal variables, and
has noted its application to the calculation of the distribution of the ratio of two
quadratic forms. Recently the distribution of the ratio (1) has become of interest in
tracking and detection problems. See Kanter [5] and the references he cites.

Here we propose to calculate p(y) by using numerical integration to evaluate an
integral based on the inversion formula for the characteristic function.

2. The ratio of quadratic forms in normal variables--integral for the probability
density. Here and in the remainder of the paper, except for Appendices A and B, it
will be assumed that the quadratic form z’Bz is positive definite. When we set

z’Az (1, z’Bz (2,

we see from equation (A.2) in Appendix A that the probability density of the ratio
z’Az/z’Bz is given by the integral

(3) p (y) --- dt dzl dz2 dzn 2ff(z) exp [it(dPl- ydP2)].

* Received by the editors June 6, 1981.

" Department of Electrical Engineering and Computer Sciences, University of California, San Diego,
La Jolla, California 92093.

476



RATIO OF QUADRATIC FORMS IN NORMAL VARIABLES 477

We seek a tractable method of calculating p (y) when the probability density/(z)
of the z’s has the normal form

(4) (z) (2"rr)-n/21Vl-1/Zexp [- (z )’V-(z :)],

where is the column matrix of the mean values :j of the z’s, V is the covariance
matrix, and ]VI is its determinant.

From (4) and z’V-l =’V-lz, we see that part of the integrand in (3) can be
written as

/(z) exp [it((I) y(I)2) (27r)-n/2[ V1-1/2 exp [- 1/2z’{ V-1- 2it(A- yB)}z
(5)

q..tV-lz 21-’ V-I].
Substituting this in (3) and setting u it gives the integral we wish to evaluate:

P(Y) i ioo

du dZl dzn(2"tr)-n/2[Vl-1/2(z’Bz)
(6) exp [_1 ,{z V- -2u(A-yB)}z +’V-Iz-1/2’V-].

3. Integration with respect to Zl, z2, Zn. The n-fold integration with respect
to the z’s in (6) can be performed with the help of a transformation used to reduce
a quadratic form to the sum of squares. Let A and L be n x n matrices such that

(7) =A-yB, V=LL’,

where L is a lower diagonal matrix (Choleski decomposition of V). Let Aj be the jth
eigenvalue, A1 => A2=>’’’ -> An, of L’L and p be the corresponding normalized eigen-
column (L’AL is symmetric and A. is real). Incidentally, Ai is also an eigenvalue of
V. Let P be the orthogonal matrix formed by setting the columns p side by side"

(8) P [Pl, P2,’" ", Phi, (IAi-L’L)pj O.

Then it can be shown (the details are given in Appendix C) that (6) goes into

G(u)H(u)du,(9) P(Y) --where

G(u) exp [b (u)],

1 [(I_2uA,)_I_-In (1-2ua,)],(u)=;=
(10) H(u)= +/, /}ikik

j= 1--2UXi i= E= (1-- 2UXi)(1-- 2UX)’

=(Le)’n(LP),

()-’ =’-’.
The quantities and i, ] # k, are determined only to within an arbitrary

sign because, the sf p and the signs of the diagonal elements of L are arbitrary.
However B and B{ are uniquely determined, assuming no repeated eigenvalu.
Although y does not appear explicitly in the integral (9) for p(y), the values of Xi, i,
and i depend on y as well as on A, B, and V.
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A similar development starting with equation (A.3) leads to

1 I G(u)du
(11) O()=,.,,, u

where the path for u is indented to the right at u 0.

4. Numerical evalualion o[ the inlegral tor p(y). Since it is difficult to evaluate
p (y) and Q(y) analytically except in special cases, we are led to consider the problem
of evaluating the integrals (9) and (11) by numerical integration. We shall speak mostly
about p (y) but Q(y) can be dealt with in much the same manner.

The symmetry of its integrand about the real u-axis allows us to write the integral
(9) for p(y) as

(12) p(y) Real
1

G(u)H(u)du.

In some cases most of the contribution to the value of the integral will come from
the region around u 0 and any convenient numerical integration method can be
used. However, in other cases the integrals converge slowly and the following pro-
cedures are useful. It should be noted that p(y) is zero when either h < 0 or h, > 0.
Also, the performance of the numerical integration may deteriorate when y is near
a value that makes the determinant of A- yB equal to zero (Appendix D).

a. Shifting the path. The path of integration in (9) can be shifted by an arbitrary
amount as long as it does not pass over a singularity of G(u). Let the shifted path
cross the real u-axis at u Uo. Then, just as in the special case (12) where u0 0, we
can write

(13) p(y) Real
1

G(u)H(u)du.
7rl ,Iuo

A good choice of Uo is the point on the real axis where G(u)=exp[b(u)] is a
minimum, i.e., a saddle point of exp [4(u)]. Accordingly we take Uo to be the
appropriate root (which may have to be obtained numerically) of

(14) &b(u-----) 0,
du

where

(15) db(u)= , [:(l_2uAi)_2+(l_2uAi)_l]A..
du j=l

Saddle point theory suggests the change of variable u Uo + ibv, where

(16) b 42/,b"(uo)

and b"(u) is the derivative of (15). This takes (13) into

(17) P (y)
b

Real [G(u)H(u)] dr, u Uo + ibv.

The integral (17) can be evaluated efficiently by the trapezoidal rule when most
of the contribution to its value comes from the region around v 0. In this case good
first trial values of the spacing h Av are h 1.0, 0.5, 0.25.
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The integral for Q(y) corresponding to (17) is

18) Q (y) Real
b I G (u) dv
7/" ,/0

where the contribution (= 1) of the pole at u 0 must be added to the right-hand side
when u0 < 0.

b. A numerical integration formula when ’ is not large. When none of the
transformed mean values :j is large, the ultimate O(1/u 1+n/2) decrease of the integrand
in (17) sets in early and a transformation suited to this type of decrease can be used
(see [7, V]). Thus the transformed version of (17), namely,

(19)
u Uo + ibv,

v exp [2n-1/2 e n 1/2 e-X],

dv 1/2v[2n -1/2 e + n e ],
dx

can be efficiently evaluated by the trapezoidal rule if the ’s are not large. The behavior
of the integrand in (19) for large x suggests that truncation at x +Xl, where

(20) x In (mn -1/2)

gives a truncation error of O[exp (-M)]. Actually a slightly larger value of x may
be needed to reduce the error to exp (-M).

The decreasing sequence h =xl/10, Xl/20, xl/40 of trapezoidal rule spacings,
h Ax, was used in the calculations for the example discussed below in 5.

c. Numerical integration when ’ is large. In this case the numerical integration
is complicated by the fact that the integrand may oscillate rapidly as Imag (u) increases
and the final O(l/u 1+n/2) decrease may not set in until u is beyond the region of
significant contribution. If the numerical integration methods described above perform
poorly, it may be necessary to study the integrand in order to find a suitable method.

A procedure that we have found useful is to first calculate the path of steepest
descent (of exp[b(u)]) from the saddle point Uo, i.e., the path along which
Imag [4(u)] 0 and Real [4(u)] decreases. This path can be calculated step by step
by using the recurrence relation (Appendix of [7])

Um Urn-1 nu din-l, m 1, 2, 3, ,
(21)

d.. -I’(u.)l/’(u),

starting with m 1 and do iA. Here A is a small arbitrary step length, b’(u) is the
dd(u)/du given by (15), and u0 is the appropriate solution of 4’(u)=0.

At the same time the path is calculated, we can also calculate 4(u,n) and the
approximation

p(y) Y Real [(b/m --blm-1)(fm +f,,-1)/2],
m=l

(22)

f,, =exp [(u)]H(u-m)
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We suppose that we can choose a constant angle O, 0 < O < ,r, such that the path
of steepest descent is roughly described by the straight line

(23) u =Uo+vbe io,

where b is given by (16) and v runs from 0 to oo. Now we can use a generalization
of (19),

(24) p(y) Real G(u)H(_u)b e dv
dx, u Uo+vb e i,

where v and dv/dx are again defined as functions of x by the last two equations in
(19). In evaluating (24) it may be necessary to use values of the trapezoidal rule
spacing (h Ax) somewhat smaller than those mentioned for (19).

5. Numerical integration example. Here the calculation of p(y) is discussed for
the case

2ZZ2
2(25) y 2z21+z 2

where z and z2 are normal variables with covariance matrix and mean values

(26) V=
.5 = 1.75"

First we outline the steps in the numerical integration method of calculating p(y)
described in 3 and 4. In this work we take y to have the typical value y 0.5. Then
we apply the results of Appendix D to examine the discontinuities of p(y). It turns
out that p(y) becomes infinite at y =+l/x/. Note that p(y) for (25) can also be
calculated by the "direct method" (Appendix B).

In the notation of 3, the matrices A, B, and A associated with (25) are

, a-[0 ] --[ ] --[-’1 0 1 -y

and one of the choices for L in V LL’ leads to

(28) L =1 [21 x/’0] L’AL=-"1[ 4-9y (2-y)x/].
4 t(2- y)x/ -3y a

We want to use the transformed version (19) of the integral (9) to calculate p(y) for
y 0.5. When y 0.5 the eigenvalues of L’*L and the corresponding eigencolumn
matrix are

I=.411, I=-.991, P-
637 .771

Also the transformation matrix LP and the transformed matrix/ (LP)’B (LP) are

LP=
937 .349.’ -.655 .933J"

Solving the equations (LP) ’ gives i 1.791 and ’ 0.206.
At this stage we know the values of the quantities , , and/ that appear in

the integral (9) for p(y) and in equation (14) for the saddle point uo. The values of

uo and b are found to be uo 0.166 and b 0.600.
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Evaluation of the integral (19) by the trapezoidal rule with truncation at x
where Xl 2.65 (from (20) with n 2 and M 20) gives Table 1. Here h Ax is the
spacing and N 2Xl/h / 1 is the number of terms in the trapezoidal sum. From the
last line in Table 1 we conclude that

(29) p(0.5) 0.9751646 .
When p(y) is calculated in this way for a range of values of y, it is found to vanish if
lyl> lx/2 and to resemble a skewed letter U in the region lyl< 1/x/.

TABLE

N h p(0.5)

21 .265 .9749 8094
41 .133 .9751 6465
81 .066 .9751 6464

Now we consider the discontinuities of p(y). According to (D.1), p(y) or its
derivatives higher than some order are discontinuities at the zeros of det A, i.e.,
from (27), at y= +l/x/. We shall examine the behavior of p(y) around y= 1/x/
by following the steps outlined in Appendix D.

The eigenvalues h and h 2 of VA, and of L’AL, can be shown to be the roots of
the characteristic equation

(30) h2+(3y 1)h +43-(2y2-1) 0,

and therefore when y 1/x/, hi is zero and h2=-(3/x/- 1). When, as in step (i)
in Appendix D, we replace the integrand in (9) by the form it assumes when u +ic
and h is slightly greater than 0, we get an approximation for p(y) that holds when
y is slightly less than 1/x/:

(31)

p(y)

Here/11 and the transformation matrix LP connecting and are calculated from
V and from at y 1/x/. Equation (31) suggests that we consider the integral

1 If exp [a/(1- 2Uhl)]
du " UA 2) 1/2,

(32) J" - ioo (1-2uA1) (1 2

where a 1/2z and/z is either or -. J, can be evaluated by using (D.5) and (D.6) or
by expanding the exponential function and using (E.1). The confluent hypergeometric
series in J3/2 and J5/2 can be combined to given an error function, and the last term
in (30) shows that -hh2 3(1-2y2)/4 (cf. (D.4)). The result is the approximation

(33’ p(y) exp [--/2---/2] 2J11[x/1 2y -x/- 1+^eg]2:1 erf (--)],
which holds when y 1// from below. The value of/1 is found to be 3/(3-/).
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The above derivation of (33) illustrates the general procedure discussed in Appen-
dix D. In the special case of our example, n is equal to 2 and (33) can be obtained
more readily from Appendix B.

6. Examples of p(y). Here examples are presented to show some of the forms
that p (y) can take. Some, and possibly all, of them are known. The z’s are assumed
to be independent normal random variables with zero means and unit variances.

a. y z lz2/z. If Z and z2 are regarded as rectangular coordinates, changing
to polar coordinates gives y tan 0 and

(34) p(y) 7r-1/(1 + y2).
b. y (2z lz2 + 2z3z4 + + 2z2,-iz2,)/(Zl +Z + + z2zt,). Withthehelpof (9)

and Appendix E we get

1 F(k) 2)k/2-(35) p(y)=2k_l[F(k/2)]2(1-y [yl<l,

and p (y) 0 for [y]> 1. Special cases for lyl < 1 are

k 1, p(y) r-(1 y2)-/2,
k=2, p(y)= 1/2,

k 3, p(y) 2r-(1_ y2)1/2.

c. y (z] +z+." + z)/(2zlz +." + 2z2t-lZ2t). This case is just the recipro-
cal of Case b. We have p (y)= 0 for ]y I< 1 and, from (A.4),

1 I’(k) i_ 2(36) p(y)=2_ [F(k/2)]2[y (y 1

In particular, when k 2, p(y)= 1/(2y 2) for lyl> 1.

(37)

d. y 2zaz2/(z+z]+...+z 2). n =>3. p(y) is an even function of y. If y >0,

n 2 ’: 2)-1/2 -n/2(y (1-u 1 +uy) duP 47ri J_

n-2 F(n/2)(l+y)-’/2 ( 1 n+l l-y)2 F(1/Z)F(n/Z+I/2)F ’; 2 ;l+y
The properties of hypergeometric functions given by [8, formulas 15.1.21 and 15.3.10]
can be used to show that when y c,

n -2 F(n/2) ./2p(y)-+--
2 F2(n/4+l/2)(2Y)-

and when y +0,

n-2
p(y) - _-In 1+_-+...+ ,nodd

n-2

-_ In +4 +. .+ n eve
n-2

In the special case n 3

p(y) (K-E)/[rr(1 + y)3/Zm],
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where m (1 y)/(1 + y) and K and E are complete elliptic functions with parameter
rn [8, 17.3].

e y =(z "’Z 2 2 2 12),-l+’"+z,,+l)/(zm+’"+z ,l<=m<-n-1. Herey=>0and

F(n/2) (,-,,>/2-a )-,/2.(38) p(y)=F(m/2)F(n/2_m/2)y (1 + y

f. y=(7z+4z+2z+z])/(zZ+z+z3+z]). Equation (D.1)indicates that
p(y) has irregularities at y 1, 2, 4, 7. Numerical integration shows that p(y) is
continuous and is zero outside of 1 <= y <_-7. Between 2 and 4, p(y) is constant and
equal to .2727998... (a surprise), and dp(y)/dy becomes very large near the ends
of the intervals 1 < y < 2 and 4 < y < 7. The procedure described in Appendix D shows
that near y 1, dp(y)/dy-> zr-(y- 1)-1/2/(6.3" 1) a/2. Similar behavior occurs at 2,
4, and 7.

g. n 3 or 4, O, and z’Bz positive definite. In these cases the integral (9) for
p (y) is an elliptic integral [8, 17.1]. However, we have not studied this aspect of p (y).

Appendix A. Some known or readily derived results regarding the distribution
of the ratio of two arbitrary functions. Here the probability density/3 (z 1, z2, , z,)
is not necessarily normal, and the real functions l(Za, Z2," ",z) and

2(Zl, z.,..., z) need not be quadratic forms. These functions of the z’s will be
written as/3(z), 1, and 2, and are assumed to be such that the results hold. The
following expressions for the density p(y) and the probability Q(y) that 1/(b2 exceeds
y can be derived by starting with

(A.1) p(y) dv dz (z) exp -ivy + iv
a

and making changes of variable of the type v t2, dv ---f2 dt. In (A.1), dz
dZl dz2" dzn and R is the n-dimensional range associated with/3(z).

a. When 2 -> 0 throughout R (see Cram6r [6, Prob. 6, p. 317]),

(A.2)

and

p(y) --- dt dz z(z) exp [it(l- yb2)] T(y)

1 t_a(A.3) Q(Y) i dt dz(z)exp[it(a-y2)]=S(y),

where the path of integration for in (A.3) is indented downwards at 0.
b. When 1=>0 throughout R we can set yr 1/y =2/a and calculate its

density Pr(Yr) from (A.2). Then

(A.4) p(y) pr(yl_)/yZ.
We also have the relations

p(y)=T(y), y>0,

O(y)=S(y)-P_, y>0,

where the probabilities

p(y) =-T(y), y <0,

1-O(y)=S(y)-P+, y<O

P+/-=IR O(z)dz



484 R. LUGANNANI AND S. O. RICE

are independent of y, and R/ is the part of R in which 2> 0 and R_ is the part in
which 2< 0.

c. When both 1 and 2 change sign in R we can obtain

(A.6) p(y) =1 dt dz 12l/(z) cos (tl-t2y)

by inverting the order of integration in (A. 1), making the change of variable v
dv- I =1 dr, and taking the real part. The presence of I ’=1 in (A.6) complicates the
integration with respect to z 1, z 2, , z,. It can be removed at the cost of introducting
another integration by substituting

icI2l
2(I)2 Io sin (t2x)

dx
7r x

and writing the product of the sine and cosine as the difference of two sines. This gives

(A.7)

where

p(y) at dx Imag [f(t, y-x)-f(t, y +x)],
7r x

(A.8)

f(t, w) Jt dz 2/3(z) exp [it(l- w2)].

We also have the similar result

1 l f?dtI?dXReal[F(t,y_x)_F(t,y+x)]
where

F(t, w) Ig dz (z) exp [it(l- w2)].

Appendix B. Probability density of the ratio of two unrestricted quadratic forms
in normal variables Zl and z2. Let z and z2 be normally distributed with unit variances,
correlation coefficient p, and means 1, 2. An expression for p(y), where

(B.1) y =(allz+2alzzlz2+azzz)/(blxz+2b12zlz2+bz2z),
can be obtained directly by integrating the joint density/ (z 1, z2) over the infinitesimal
region (in the z 1, z2 plane) in which the right-hand side of (B.1) lies between y and
y + dy. Here the denominator, z’Bz, is not required to be definite.

It is found that

(B.2)

where



RATIO OF QUADRATIC FORMS IN NORMAL VARIABLES 485

in which x,/" 1, 2, are functions of y given by the roots of

(B.3) (a= yb22)x + 2(a2- yb2)x + (a yb) O.

When the roots are complex, p (y) is zero.
Remarks. The term within square brackets in (B.2) appears because it is the

value of

-2bta e-at2(e2bt + e dt.

The combination of functions comprising F(v) appears in an expression given by
Kanter [5] for p(y) when y ZlZ2/ZZ (in our notation). Kanter presents curves of p(y)
for several values of p and a wide range of sl and s2.

Appendix C. Details of the integration sketched in 3. The integral (6) for p(y)
can be reduced to the integral (9) in 3 with the help of the transformations

(C.1) z LP, LP,
where L and P are the n n matrices in (7) and (8). By using

(C.2) P’=P-I, (L’AL)P=PA,
where A diag (A 1,/ 2, An), it can be shown that

z V-lz z z, V-z
(c.3)

’z’Az ’A, V-

Furthermore,

O(Z1, Z2, Zn)
0(21,22,""" ILPI ILl, Vl--ILl=,

and the transformations z LP carries the quadratic form z’Bz into

],k=l

where

(C.4) / (LP)’B (LP).

The relations just given enable us to write the integral (6) as

P(Y)
ioo

du
m
d.l"’" d.

(c.5)

exp

__
-(1-2uAj)zj+z’5-

The integrations with respect to the z.’s can now be performed by using

(C.6) x" exp gax 2 + 13x dx g,,, exp

-1where go 1, gl =/3c -1, and g2-" fl 20-2 +ce The result is the desired integral (9)"

G(u)H(u) du.(C.7) P (Y)
ioo
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Appendix D. Discontinuities of p (y). Here we present some heuristic reasoning
regarding the discontinuities of p(y). First we show that if y b is a root of the
determinantal equation det A -0, i.e., of

(D.1) [A-yB[ =0,

then either p (y) or its derivatives higher than some order are discontinuous at y -b.
When y b is a root of (D. 1) the characteristic equation

(D.2) IXI-L’ALI=O
shows that at least one of the eigenvalues, say Ak, is zero. Then the factor (1-2uAtc)
in the integral (9) for p(y) is unity and the integrand does not decrease at the usual
0(1/u +,/2) rate as u - oo. Indeed, the integral or some of its derivatives with respect
to y will not converge, thereby indicating a discontinuity at y b. Note that this
argument is based on (9) which assumes normal z’s and a positive definite z’Bz.

A closer examination of the integrand of (9) when ak is small and u --> ioo suggests
that if p(y) becomes infinite at y b it can do so in only the following ways (aside
from the spike p (y) (y b)).

p(y)-C ln [y-bl,

(D.3) p(y)C(b-y)-l/2when y<b, andp(y)boundedwhen y>b,

p (y) C(y b )- 1/2 when y > b, and p (y) bounded when y < b,

where C is a constant. The In [y -hi or (b -y)-/2 behavior occurs when the integrand
in (9) is O(1/u) or O(1/ul/2), respectively, as u +/-ic at Ak 0. Jumps of finite size
can also occur in p (y) when the integrand is O (1 / u).

There appears to be no easy way to calculate the constant C in (D.3). A rather
lengthy method is to:

(i) replace the integrand in (9) by the form it assumes when u +/-ira and Ak is
close to 0,

(ii) evaluate the resulting integral by using Appendix E,
(iii) find the limiting form of the value of the integral as Ak 0;’and
(iv) express Ak in terms of y b with the help of the characteristic equation (D.2).
Step (ii) is possible because we are assuming that p(b) is infinite and that when

Ak 0 the integrand is O(1/u) or O(1/u /2) as u +/-ira. If in step (iii) the argument
of a hypergeometric function tends to unity as Ak 0, one of the linear transformations
given in [8, 15.3] can be used to obtain the limiting form. A relation of particular
use in step (iv) is

(D.4) A1/2""" A, =(det V)(det,).
As an example of steps (ii) and (iii), suppose that step (i) gives integrals of the form

1 1":* exp [a/(1 2Uhk)] du
(0.5) J=/J-ioo (1-2uAk)g(1-2uAs)(1-2uA,)

where As > ak > 0 > h,,/z , 2, , 3," , and tr and r are equal to one of 0, 1/2, 1 subject
to - -< tr + r _<- 1. When r is 0 or 1, closing the path of integration on the left shows that
J O(1) as hk->0. When r=1/2, the power series for exp (x), equation (E.2), and the
transformations [8, 15.3.3 and 15.3.10] show that as Ak +0,

F(t. 1/2) .[ 1 )(D.6) J=2r(,),/Za;/v.tg-;,;a +O(1), r=21-, r=0,
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(D.7) J=-
1 As a-A, a (/x+n 1

2rr/---a,
y+ln hk 4

e +,=05" n’. r=er=-.2
Here M(.) is a confluent hypergeometric function that can be expressed in terms of
the error function if/x is half an odd integer, or in terms of modified Bessel functions
if x is an integer [8, 13.4 and 13.6]. In (D.7) 3’ =0.5772. is Euler’s constant and
4’(z) is the derivative of In F(z). When a becomes large, the summation in the second
line of (D.7) is approximately equal to (exp a) In (, + a).

The values of the covariance matrix V and the values of the means s#i affect the
strengths, but not the positions, of the discontinuities. The shape of p(y) is also
affected. In particular, if some of the :.’s are large and 3)= ’A/’B is not close to
a discontinuity, p (y) often tends to resemble a normal density with mean

Appendix E. Useful contour integrals. Here we state three integrals that occur
in the study of the discontinuities of p(z) and when L’L has two or three (possibly
multiple) eigenvalues. The first is a variation of Pochhammer’s contour integral for
the beta function:

1 F(a +/ 1))du ) )+(E.1)
2rri (u-a (b-u (b-a -1F(a)F(/3)

where Real (a +/3) > 1 and the path of integration L runs from u =-ioo to u oo.
The points u a, u b lie to the left and to the right, respectively, of L. When L
does not pass between a and b the integral is zero.

The second integral is

1 f du
2ri J (u-a) (b-u)O(c-u)/

(E.2)
F(a +B +Y-1)(c-a)-V ( c___ba)+y)(b---a;aT---F y’ 1-a;/3 +Y;c-

where Real (a +/3-y) > 1, F(.) is a hypergeometric function, and the path L runs
from -ioo to +ioo with a on the left and b and c on the right. The arguments of the
various factors are determined by continuation from the special case in which all of
the arguments are zero when u 0 and a, b, c are real with a < 0 < b < c. Equation
(E.2) can be obtained by starting with this special case and taking L to be the line
Real u (a +b)/2. Writing c -u as ,(u -a)+(b -u), expanding (c -u)-v in powers
of ((u -a)/(b -u) and integrating termwise with the help of (E.1) leads to (E.2).

The third integral is much like the second:

1 f du
2rrf JL (a-u)( (u-b)(u-c)v

(E.3)
r(c +/ + ,- 1)(a c)-" ( b-c)+,/ii2ba=iF "/’ 1-a;/ +/;-Ta-

Now b and c lie to the left of L and a to the right. The arguments are determined
by continuation from the special case c < b < 0 < a.
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ONE-LEG FORMULAS FOR STIFF ORDINARY DIFFERENTIAL
EQUATIONS*

DANIEL S. WATANABE" AND QASIM M. SHEIKH’f

Abstract. New one-leg formulas for stiff ordinary differential equations are presented. They are
generalizations of the backward differentiation formulas and have regions of instability which potentially
are infinite and fill most of the right half-plane. This property makes the formulas more effective than the
backward differentiation formulas in detecting unstable problems. Numerical results illustrating their
efficiency and stability properties are presented.

Key words, stiff ordinary differential equations, one-leg formulas, region of absolute stability, unstable
problems

1. Introduction. There are several effective codes available for solving stiff
ordinary differential equations. However, Lindberg [5] observed that these codes will
produce reasonable looking solutions which are not close to the desired solution for
certain problems. This difficulty can arise in several ways including a stepsize control
strategy that selects a stepsize so large that an active region of the solution is missed
entirely, or a formula that is stable for an unstable problem and completely ignores
increasing components of the solution. Unfortunately, the backward differentiation
formulas which are the most widely used stiff formulas suffer from this disadvantage.
For example, the backward Euler formula

y,,- Yn-1 hf(xn, Yn),

when applied to the scalar test problem

y’=Ay, y(0) 1,

produces a decreasing numerical solution {Yn} if IhX-ll> 1. However, the exact
solution y(x) exx of the test problem is decreasing only if Re (A) < 0. Lindberg gives
test problems for which the eigenvalues change from large negative values to large
positive values. Linear multistep formulas which are stable in large portions of the
right half-plane fail to detect this change in the eigenvalues unless the stepsize h is
extremely small.

Our goal was to develop formulas which are more effective than the backward
differentiation formulas in detecting unstable problems. The formulas, however, should
be as efficient as the backward differentiation formulas and have essentially the same
form to facilitate adapting current production codes to the new formulas. One-leg
formulas were first introduced by Dahlquist [1]. This paper presents new one-leg
generalizations of the backward differentiation formulas whose regions of instability
potentially are infinite and fill most of the right half-plane. The formulas appear to
possess the desired properties. In the following sections, we first derive the formulas
and describe their regions of absolute stability. We then describe the implementation
of the formulas in a Nordsieck formulation essentially identical to that of the backward
differentiation formulas. Hence it is relatively easy to adapt Nordsieck formulation
codes like DIFSUB to the new formulas. Finally we present numerical results illustrating
the efficiency of the formulas and their effectiveness in detecting unstable problems.

* Received by the editors March 30, 1982, and in revised form December 29, 1982. This work was
supported in part by the U.S. Department of Energy under contract DE-AC02-76ER02383.

t Department of Computer Science, University of Illinois, Urbana, Illinois 61801.
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2. One-leg formulas. Given the initial-value problem

(1) y’ f(x, y), y(O) Yo,

we wish to generate a sequence {Yn} which approximates the sequence of exact values
{y(x.)} on the equispaced mesh {x.} with fixed stepsize h. Given the k past values
Yn-1, Yn-2,’’’, Yn-t, we seek a polynomial p,(x) of degree k which interpolates these
values and the future value y. and choose y. so that p,(x) satisfies the differential
equation exactly at the collocation point x,, + O,h. Hence

(2)

(3)

If we write

Pl(Xn-i)-’Yn-i, i=0,1,... ,k,

p’(x. + O,h) f(x,, + Oh, p(x. + Oh)).

k

pk(X) E Yn-iWi(O),
i=0

where 0 (x- x.)/h and wi(O) is the Lagrange weight function

k

w,(0) =- [I (O+j)/(j-i),
j=O
ji

we can write the collocation condition (3) as the k-step one-leg formula

(4) aiy,,_i hf x,, + O,h, Z [3iy,_i
j=O j=O

where the coefficients a/and fl/are given by

(Sa) - w(0),
(Sb) w(0).
Note that the choice Ok 0 yields the k-step backward differentiation formula. Using
the generating polynomials

k k

p()= E - and ()= E -,
j=o =o

and the shift operator E defined by y(x + h) Ey(x), we can write the one-leg formula
in the form

(6) p()y,_- hf(()x,_, ()y_) =0.

Dahlquist [2] has analyzed the local discretization error of one-leg formulas with
smoothly varying stepsize. Since the analysis is complicated, we shall restrict ourselves
to a brief summary of the results relevant to our subclass of formulas. The error
consists of two components: the differentiation error associated with the operator p(E),
and the derivative of the interpolation error associated with the operator h(E). Let
h, X,+l x,. If (h, h,-l)/h is bounded, then the differentiation error is dominant
for our subclass of one-leg formulas even if the Jacobian matrix fy is large in norm.
The leading term of the local discretization error has the form C(O)hk+y<k+l), where

k

c(0)=(-1)+ E (o)(o+J)+/(k +1).
j=O

Hence the k-step formula is of order k.
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If we apply the one-leg formula (4) to the model equation y’= Ay, we obtain a
difference equation whose characteristic equation is p()-/zcr(:) =0, where/z Ah.
The locus in the/z-plane for which a root of this equation has magnitude 1 is obtained
by plotting/z =p(ei6)/cr(ei) for 0-< b-<27r. The region of absolute stability is the
exterior of this curve. It is desirable to maximize the size of this locus in the right
half-plane, particularly near the imaginary axis, in order to increase the probability of
detecting instability in the initial-value problem.

We can vary the size of the stability locus by varying the collocation point. The
rightmost point of the curve corresponds to b r, and the locus increases in size as
this point increases in magnitude. If we choose the collocation point so that tr(ei6) 0,
then this point is at infinity. However, the region of absolute stability should not include
the point at infinity because a formula stable at infinity is unsuited to very stiff problems.
Hence we arbitrarily choose the collocation point so that the rightmost point is
approximately 2 104. There is such a point in each of the k intervals (X,-k, Xn-k+l),
(X,-k+I, X,-k+2), ",and (x,-1, x,), and we choose the point in the last interval because
it is closest to the current mesh point x,. For k 1 this choice yields a formula whose
error constant is almost zero so that it is virtually of order 2. In order to fix the order
at 1 to prevent our code from "chattering" between the 1-step and 2-step formulas,
we arbitrarily choose 01---0.48 so that the rightmost point is 50. Figure 1 presents
the region of stability for the one-leg formula for k 2. The regions for k 3(1)6 are
identical at this scale.

Although the region of absolute instability is large, the amplification factor is
essentially 1 in most of the region. A fairer comparison of the one-leg and backward

1.0+4

0.2+4

0
0 1.0+4 2.0+4

Re()

FIG. 1. Region of absolute stability for 2-step one-leg formula.
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FIG. 2. Loci for 5-step one-leg and backward differentiation formulas for amplification factor
1.00(0.01) 1.05.

differentiation formulas is obtained by comparing the loci given by z p(srei*)/ r(r ei*)
for 0-< b <-27r and amplification factor " > 1. Figure 2 presents the loci for the 5-step
one-leg and backward differentiation formulas for sr 1.00(0.01)1.05. The loci for a
given value of " for the k-step one-leg formulas corresponding to the k possible
collocation points tend to increase in size as 10+ k/21 increases. Hence our choice of
collocation point has the added advantage of yielding larger loci.

3. Implementation. Let y. =- [y,,, Y.-1, , Yn-k]T be the vector of saved informa-
tion for the k-step formula. An initial approximation Y.,(0) to y. is predicted by
extrapolating the polynomial defined by yn-1 to Xn. This approximation is corrected
using y. Y.,(o)+ tol, where !-=[1, 0,..., 0]T and to is chosen to satisfy the one-leg
formula(4) written in the form F(y.,0 + tol)=0, where

F(y) hf(x,, + Okh, pk(X,, + Okh))- hp’k(X,, + Okh)

hf x. + Okh, fljy,,_j ., ajy,,_j.
j=o j=o

The Nordsieck representation of the saved information a.
[y,,, hyl), , hkyk)/k !IT is convenient to use in practice because it facilitates changing
the stepsize. We can transform the preceding formulation using the matrix T for which
a. Ty.. The predictor assumes the form a.,o)= Pa.-1, where P is the Pascal triangle
matrix with pq (i). The vector is transformed into the first column of T. However,
it is convenient to define the scaled vector IN T!! C(Ok), where the scaling factor c
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will be chosen to simplify the equations. The corrector assumes the form a,, an,(o) + tolv,
where to is chosen to satisfy F(an,(o)+ tolv)=0, where

(7) F(a) hf (0k)J(a)j Y j(0)-l(a),
j= j=0

and (a) is the ith component of the vector a. This nonlinear equation is solved by the
Newton iteration

(+ (- ! F(,(o +(!).

By setting ,(m ,(o +(!, we can rewrite this equation as

(8) ,(+=,(- 1 F(,()I.

The Jacobian for this iteration is

0F k 0f k

(9)
kj .ls=h E (0k)(i) j(0k)-l(l)

j=0 oy ]=1

By convention is T! and (ls)l 1 for the backward differentiation formula, and the
second term on the right reduces to 1 because Ok 0. Hence it is convenient to choose
the scaling factor

k

]=1

so that this term is identically 1. This scaled formulation is essentially identical to the
Nordsieck formulation of the backward differentiation formulas, the principal differ-
ence being the two extra summations required to evaluate F(a). Hence it is relatively
easy to adapt a code like DIFSUB to the one-leg formulas.

Table 1 lists 0 and c(0) for the k-step formulas for k 1(1)6. The coecients l
are easily computed using the well-known coecients Tl of the backward differentiation
formulas [4].

TABLE
Parameters 0 and c( O) for k-step formulas.

-0.4800000000000000+0
-0.2928432170456855+0
-0.1770743416328997+0
-0.1075602822332437+0
-0.6490390333680813-1
-0.3869806056420695-1

c(O)

1.0000000000000000
0.8047711886362097
0.8153794425272162
0.8562575824253686
0.8972668593024493
0.9305954894447051

For a system of equations, the Newton iteration (8) requires the solution of the
linear system of equations Jx=b, where the Jacobian matrix J must be updated
whenever the stepsize h is changed. This updating can be performed efficiently for
systems of moderate size using a scheme given by Enright [3]. We write the Newton
iteration (8) as

a,,(,+) an,(m) --’ I F(a,,(,))l,
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and set J =gf/gy-(1/hq)L Instead of using the typical LU factorization, we use the
factorization J LHL-1, where L is a lower triangular matrix and H is an upper
Hessenberg matrix. If the stepsize is changed from h to/, then

of
I=L H+ I

Oy hq

Hence only the diagonal elements of H need be changed to accommodate the stepsize
change.

4. Numerical examples. We tested the one-leg formulas on a variety of problems,
and the following examples are typical. Krogh [4] has proposed the following nonlinear
stiff test problem. The nonlinear differential equations

for 1,. , 4, have the solutions

z /(1 + ce).

If the initial value z(0)=-1, then c =-1-. If we set y= Uz, where z= (z) and
U is a unitary matrix, then the differential equation for y is

y’ -By+ Uw,

where B U diag ()U*, and w (z)C The eigenvalues A of the Jacobian matrix
are 2z-. If y(0) =z(0), then A- as x. Here as in [4], we set = 1000,
2= 800, 3=--]0 4=0.00] and U= (-,), where 3, is the Kronecker delta.

We solved this problem on an IBM 4341 using a version of DIFSUB [6] and a
code DIFSOL, based on this version, which implements the Nordsieck formulation of
the one-leg formulas with Enright’s technique for updating the Jacobian. The Jacobian
was evaluated using numerical differentiation. Table 2 presents the total number of

TABLE 2
Comparison of DIFSUB and DIFSOL for Krogh’s problem.

code

DIFSUB
DIFSOL

DIFSUB
DIFSOL

1.0-6
1.0-6

evaluations

301
280

719
609

Jacobians time

25 3.0
18 3.1

33 5.0
29 5.8

error

2.7-3
3.6-3

derivative evaluations, Jacobian evaluations, and time in seconds required to reach
the first mesh point after x 1000, and the maximum absolute error in the components
of y observed up to that point for the prescribed local error tolerance e 10-3 and
10-6 The results indicate that the one-leg formulas are as efficient as the classical
backward differentiation formulas. The additional work required to evaluate F(a) is
not very significant for this system and should be negligible for larger systems because
it is proportional to the number of equations while the work required for the linear
algebraic operations is proportional to the cube of the number of equations.

Lindberg [5] describes two test problems in which the eigenvalues change from
large negative values to large positive values. We consider only the first for brevity
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because the results are similar for both problems. The first problem is

y 104yly3 + 104y2Y4,
y =-104ylY4 + 104y2Y3,
y= l-y3,

y -0.5 Y3 Y4 + 0.5,

yl(0) 1,

y2(0) 1,

y3(0) --1,

y4(0) =0.

The exact solution of this problem can be characterized as follows. Clearly y3(x)-
1-2 e and Y4 X e-x. If we set y [ya, y2], then y’ A(x)y and y(0) =[1, 1]7, where

A(x)= lO4[1-2 e-x xe-X ]-x e 1- 2 e

The eigenvalues of A(x) are

l,2(X) 104(1--2 e + ix e-X).

Initially the eigenvalues are -104 and approach 104 as x cx3. We solved the problem
using DIFSUB with local error tolerance e 10-p for p= 3(1)12. We also solved the
problem using DIFSOL with e 10-p for p= 3(1)5. The analytic Jacobian was used
in both cases. DIFSUB failed to detect the presence of large positive eigenvalues and
produced decaying solutions. DIFSOL also failed to detect the positive eigenvalues
for e 10-3 and 10-4, but it did detect them and produce a qualitatively correct
solution for e 10-5. Table 3 presents the 2-norm of y and the approximations to y
computed by DIFSUB and DIFSOL, and the associated local stepsizes for e 10-5.

TABLE 3
Comparison of DIFSUB and DIFSOL ]’or Lindberg’s problem.

0.00
0.33
0.79
0.88
0.90
0.91
0.93
0.95
0.97
0.98
3.91

exact

1.4+0
8.4-1009
1.7-1313
6.5-1262
2.1-1246
4.2-1238
1.8-1220
1.8-1201
3.9-1181
1.8-1170
1.8+ 8469

3.7-2
8.5-2
8.5-2

8.5-2

2.1-1

1.4+0
1.1-8
3.5-9
1.1-7

2.2-9

2.5-9

4.9-2
1.7-2
6.7-3
1.6-3
4.1-5
4.1-5
4.1-5
4.1-5
4.1-5

DIFSUB DIFSOL

1.4+0
8.5-7
1.4-5
1.5-5
2.8-5
1.1+7
2.4+20
2.3+39
5.5+59
2.4+70

The solution computed by DIFSOL exhibits the correct rate of growth for x > 0.93,
but it is too large and begins to grow prematurely because DIFSOL does not track
the solution below the error tolerance and the region of instability for the k-step
one-leg formula contains a small portion of the left half-plane. Thus in a system where
the eigenvalues have large imaginary components and small negative real components,
the solution would grow rather than decay as it should. Furthermore the detection of
positive eigenvalues is sensitive to the error tolerance and the details of the Newton
iteration. For example, we have observed that decreasing the error tolerance, evaluating
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the Jacobian by numerical differentiation, or increasing the number of Newton iterations
can delay the growth of the computed solution. The stability properties of the one-leg
formulas are thus not ideal, but these formulas are more likely to warn the user of
possible difficulties when the eigenvalues approach the right half-plane.

Acknowledgment. We wish to thank Prof. Germund Dahlquist for his interest in
this work and his instructive comments and suggestions.
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NUMERICAL METHODS FOR LARGE SPARSE
LINEAR LEAST SQUARES PROBLEMS*

MICHAEL T. HEATH

Abstract. Large sparse least squares problems arise in many applications, including geodetic network
adjustments and finite element structural analysis. Although geodesists and engineers have been solving
such problems for years, it is only relatively recently that numerical analysts have turned attention to them.
In this paper we present a survey of numerical methods for large sparse linear least squares problems, focus-
ing mainly on developments since the last comprehensive surveys of the subject published in 1976. We con-
sider direct methods based on elimination and on orthogonalization, as well as various iterative methods.
The ramifications of rank deficiency, constraints, and updating are also discussed.

Key words, sparse least squares, normal equations, elimination, orthogonalization, Givens rotations,
iterative methods

1. Introduction. The method of least squares often means different things to dif-
ferent people. For statisticians, least squares is a method for estimating unknown
parameters. For engineers and experimental scientists, it is a method for curve fitting
or data smoothing. For numerical analysts, least squares has come to mean solving
nonsquare systems of equations, that is, sys.tems whose equations and unknowns differ
in number. Of course, such a system does not necessarily have a solution, and so
instead we settle for minimizing some norm of the residual. Although other norms are
sometimes used, the (possibly weighted) Euclidean norm is by far the most common,
hence the name "least squares." If such a minimum residual solution is not unique,
then an additional requirement is imposed, such as that the norm of the solution itself
also be minimal.

From both practical and computational points of view, linear problems are an
extremely important subclass. This is true not only because many systems are
inherently linear, but also because many algorithms for solving nonlinear problems
require the solution of a succession of linear subproblems. For this reason, a great
deal of effort over an extended period of time has gone into the development of a
number of effective algorithms for solving linear least squares problems. In many
cases the seeds of these algorithms are contained in computing practices which predate
electronic computers and were not necessarily originally intended for least squares
problems. These techniques were later sharpened and refined, particularly with regard
to their numerical properties, for use on digital computers before finally receiving a
systematic modern implementation for solving least squares problems. The present
survey is concerned with a further phase of development, the extension of these algo-
rithms to handle large sparse least squares problems.

* Received by the editors December 10, 1982. This research was sponsored jointly by the National
Geodetic Survey of the National Ocean Survey, NOAA, U. S. Department of Commerce, under Interagency
Agreement No. 40-1108-80, and by the Applied Mathematical Sciences Research Program, Office of
Energy Research, U. S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Cor-
poration. A version of this paper was presented at the Sparse Matrix Symposium, Fairfield Glade, Tennes-
see, October 24-27, 1982. This paper was typeset at Oak Ridge National Laboratory using an Autologic
APS-#5 phototypesetter. Final copy was produced on May 16, 1983.

Mathematics and Statistics Research Department, Computer Sciences Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830.
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To fix notation, the problem we wish to consider is

min b Ax 2,
x

where A is an rn n matrix and b and x are vectors of dimension rn and n, respec-
tively. Standard assumptions are that m>n and rank(A)=n, in which case the solu-
tion to (1.1) is unique. Problems in which m<n or rank(A)<min{m,n} do occur,
however, in many important contexts. For such underdetermined or rank deficient
problems, (1.1) does not have a unique solution, so that the minimum norm solution,
or some other particular solution, is usually what is required. Other important gen-
eralizations of (1.1) include the imposition of constraints and updating the solution
when new data are added. For a comprehensive discussion of algorithms for least
squares problems see [44]. For statistical interpretation see [58].

This survey is primarily concerned with methods which are effective for solving
(1.1) when the matrix A is large and sparse, which means that A contains relatively
few nonzero elements. Areas in which large sparse least squares and related problems
arise include geodesy, photogrammetry, image enhancement, structural analysis, spline
data smoothing, and mathematical programming.

In order to make the solution of very large sparse least squares problems compu-
tationally feasible with respect to execution time and storage requirements, algorithms
for such problems should store and operate on only the nonzero entries of the matrix
and should try to minimize the creation of new nonzeros as computations proceed.
Another important consideration is the manner in which the data are accessed, since
auxiliary storage is often required for large problems. Conventionally, the rows of the
matrix A correspond to observations (successive measurements or replications),
whereas the columns of A correspond to the unknown variables or parameters of the
problem. Thus it is more convenient to generate, store, and access the data matrix by
rows rather than by columns.

In addition to sparsity preservation and data management, questions of numerical
stability must also be taken into account when evaluating algorithms for sparse least
squares problems. Indeed, the main purpose of much of the research on least squares
algorithms in the past twenty years has been to improve on the numerical
shortcomings of more traditional methods. As in other areas of sparse matrix
computations, here, too, the tradeoffs between sparsity and stability are of vital impor-
tance.

2. Normal equations. If rank(A)--n, then the solution to (1.1) is given by the
solution to the system of normal equations

ArAx=Arb. (2.1)

If rank(A)=m, the minimum norm solution to (1.1) is given by x=Ary, where y is
the solution to the linear system

AAry=b. (2.2)

In either case, the matrix of the linear system is symmetric and positive definite so
that the solution can be obtained by Cholesky factorization. For system (2.1) the
latter factorization takes the form ArA =RrR, with R upper triangular, so that
(2.1) can be solved by forward and backward substitution. Most of the following dis-
cussion will be given in terms of system (2.1) for the overdetermined case; an analo-
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gous discussion is applicable to system (2.2) for the underdetermined case. (See [13]
for a survey of basic methods for underdetermined problems.)

For dense problems, algorithms based on this approach are quite efficient, requir-
ing only about half as many arithmetic operations as competing methods when m>>n,
although this advantage diminishes for more nearly square problems. The normal
equations method is also very attractive for sparse problems, since excellent software
packages are available for solving large sparse symmetric positive definite linear sys-
tems (eg., YSMP [20], SPARSPAK [27] and MA27 [19]). These software packages
symmetrically reorder the equations and unknowns so that the Cholesky factor suffers
relatively little fill (creation of new nonzeros). A number of reordering heuristics are
known which can dramatically reduce the fill resulting from factorization. These
include the minimum degree algorithm, various dissection schemes, and various
bandwidth or profile minimization schemes.

Let P and Q be permutation matrices of order n and m, respectively. Then

(QAP)rQAP=PrArQrQAP=PrArAP.
We conclude that the row ordering of A has no bearing on the normal equations, but
reordering the columns of A corresponds to a symmetric row and column permutation
of A rA. In particular, the rows of A can be processed sequentially from an auxiliary
file in arbitrary order. In the software packages mentioned in the previous paragraph,
the symmetric reordering is determined by analyzing the structure of the graph
corresponding to the symmetric matrix. For the symmetric matrix of the system of
normal equations this graph is easily determined: the nonzeros of each row of A gen-
erate a clique in the graph of ArA. (See [27] for relevant graph-theoretic concepts
and terminology.) It is important to emphasize that, since pivoting is not required for
numerical stability in the Cholesky algorithm, the reordering phase is entirely sym-
bolic and takes place before any floating point computation. Furthermore, by antici-
pating all fill in advance, dynamic storage allocation is unnecessary, so that an effi-
cient static data structure can be used.

Thus, an algorithm implementing (2.1) for sparse least squares problems goes like
this (an analogous algorithm implements (2.2) for the underdetermined case):

ALGORITHM 1. Normal Equations.

1. Determine the structure (not the numerical values) of A rA.
2. Find a permutation matrix P such that PrArAP has a sparse upper triangu-

lar Cholesky factor R.
3. Factor PrArAP symbolically, generating a row-oriented data structure for

R.
4. Compute ArA and A rb numerically, processing the rows of A one by one

from an external file.
5. Factor PrArAP=RrR numerically.
6. Solve Rrz=PrArb.
7. Solve Ry z.
8. x--Py.

The use of the normal equations is as old as the method of least squares itself.
The normal equations are easy to derive and understand, and, as we have seen, they
adapt nicely to deal with sparse problems. Indeed, for many people "normal equa-
tions" and "least squares" are virtually synonymous, and algorithms based on the nor-
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mal equations are still by far the most commonly used for solving least squares
problems (see, e.g., 36]). The only trouble in this apparent paradise is that use of the
normal equations may lead to numerical difficulties which are relatively harmless in
some cases, but can be disastrous in others.

The potential numerical problems associated with the normal equations spring
from two sources. One is the potential loss of information in explicitly computing the
cross-product matrix A rA and vector A rb. The other source of difficulty is the fact
that the condition number of the matrix ArA is the square of that of A, so that an
accurate solution of (2.1) may be difficult or impossible to compute if A itself is
already poorly conditioned (see, e.g., [60], [48], [32]). If A is not of full column
rank, then A rA is singular and the Cholesky factorization algorithm breaks down.
Near rank degeneracy causes similar numerical problems in finite precision arithmetic.
The upshot of all this is that forming and solving the normal equations requires rela-
tively high working precision in order to guarantee suitable accuracy, which would
often entail an unacceptable increase in storage requirements for very large problems.
The principal motivation for the other methods we will discuss is to alleviate these
numerical difficulties.

Another problem which the reader may have noticed is that the sparsity of A
does not guarantee that ArA is comparably sparse. Indeed, if an otherwise sparse A
has even one dense row, then, barring numerical cancellation, ArA is completely full.
Clearly, such a situation is disastrous for the normal equations algorithm. The day
can be saved, however, by initially omitting any rows of A which would cause exces-
sive fill in ArA (assuming full rank is still maintained) and later updating the solu-
tion to incorporate the effect of the omitted rows. Such updating procedures are com-
mon in least squares applications when new Observations are added to a previously
solved problem. The possibility of excessive fill in forming A rA is sometimes given as
justification for some alternative method. Barring accidental cancellation, however, all
direct methods suffer the same or a similar fate when confronted with a matrix A
having one or more dense rows. On the other hand, the updating procedures neces-
sary to cope with such situations can be more stably implemented using other tech-
niques, such as orthogonal transformations.

3. Elimination methods. For simplicity of presentation, in this section we assume
rank(A)=n. Carrying out Gaussian elimination with row and column interchanges
on the m x n matrix A leads to a factorization of the form

PAP2=LU, (3.1)

where Pl and P2 are permutation matrices of order m and n, respectively, L is an m
n unit lower trapezoidal matrix, and U is an n x n upper triangular matrix. Util-

izing this factorization, together with the orthogonal invariance of the Euclidean norm
and the change of variable

UPx -y, (3.2)

problem 1.1 ) becomes

min Iletb --Ly ll2.
Y

One way to solve problem (3.3) is by means of the system of normal equations

LrLy=LrPb.

(3.3)

(3.4)
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The solution x to (1.1) is then recovered by solving the triangular system (3.2). It
appears that little has been gained by this approach compared to solving system (2.1)
directly. As observed by Peters and Wilkinson [52], however, by using an appropriate
pivoting strategy in the elimination (i.e., choice of P and P2), it is possible to control
the conditioning of L, isolating any ill conditioning of A in U. Thus, it should be safe
numerically to form and solve system (3.4). Other authors have suggested the use of
orthogonalization techniques to solve (3.3), but there is no real advantage over apply-
ing such methods directly to (1.1) unless the problem is only slightly overdetermined
(see [12] and [53]).

This elimination scheme of Peters and Wilkinson has been extended and adapted
for sparse problems by Bjiirck and Duff [8]. When A is sparse, the permutations P
and P2 must be chosen to preserve sparsity in L and U as well as to enhance the con-
ditioning of L and the numerical stability of the faetorization. A threshold pivoting
strategy is used by Bjtirck and Duff as a compromise between considerations of spar-
sity and stability. Note that here, too, one or more dense rows in A could cause unac-
ceptable fill in LrL, and so an updating scheme should be used to account for such
rows. Usually the nonzero pattern of L is very much like that of A, and so solving
system (3.4) requires about the same work and storage as system (2.1). Thus, the
improved numerical behavior of the Peters-Wilkinson. scheme is bought at the possibly
high price of computing the factorization (3.1). One saving grace is that since U is
not involved in solving (3.3), U may be written out on an external file and then
recalled for the back substitution (3.2), thereby conserving main storage.

Bjtirck and Duff introduce a modification of the Peters-Wilkinson scheme in
which the solution x is split into two parts, one of which does not involve the normal
equations (3.4). Using the partitioning

L--- L2 Plb= b
where L is a matrix of order n and b l. is a vector of dimension n, let the n-vector c
be defined by

Lc=bl.
Note that this is equivalent to taking c to be the first n components of the
transformed right-hand side vector, if the latter is processed simultaneously with A
during the elimination. Let the (m--n)-vector d be defined by

We now observe that

where

d=b2-L2c.

P (b Ax ) Od] Lz

z UPx c.

Thus, if z is the solution of the problem

min II[l --L I1:,
g

and x and x: are given by the triangular systems
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uelfx c Uex2--z

then x--xl+x_ is the solution of (1.1). There are two principal advantages to
splitting the solution into two parts in this manner. First, since Ilb--AXl[12= Ildl[2, if
I[d[12 is sufficiently small (i.e., the original problem (1.1) is nearly consistent), then Xl
is already an adequate solution, so that x2, and hence z, need not be computed at all.
Second, any ill conditioning in L affects only the computation of the "correction" term
X2.

The steps of the Peters-Wilkinson method as modified by Bjtirck and Duff are
summarized in the following algorithm.

ALGORITHM 2. Elimination.

1. Compute the factorization (3.1), choosing Pl and P2 to produce sparse U and
L and well conditioned L.

2. Solve LlC=bl, with Ll and bl as in (3.5).
3. Solve UPx =c.
4. d=b2-L2c.
5. If d 2<, set x x and stop.

6. so,vo using Algorithm 1.

7. Solve UP,x2=z.
8. X--X l’-X 2.

In their paper [8], Duff and Bjtirck show how to extend this algorithm to handle
rank deficient problems, weighted problems, constraints, and updating. Delves and
Barrodale [15] have published a related elimination algorithm in which first a square
subsystem of (1.1) is solved by the usual square LU factorization, then the remaining
rows of A are treated as updates. Such an approach is advantageous for problems
which are only slightly overdetermined. Their algorithm does not appear to have been
implemented as yet specifically for sparse problems.

Another family of elimination methods is based on the fact that the solution x to
(1.1) and the residual r b --Ax must satisfy the augmented (m +n) x (m +n)
linear system

(3.6)

This system has been used by Bjtirck [2] in studying iterative refinement for least
squares solutions, and its use for sparse problems has been advocated by Hachtel, who
calls this the "sparse tableau" approach [37]. The idea here is simply to use a stan-
dard sparse solver for square linear systems to solve (3.6). Note that block elimina-
tion applied to (3.6) without pivoting yields the usual normal equations for x. The
hope is that the sparse square system solver will use the additional freedom in choos-
ing pivots to find a considerably more sparse factorization. Although system (3.6) is
symmetric, it is indefinite, so that the pivoting must take account of numerical stabil-
ity as well as sparsity. While a sparse symmetric indefinite factorization is certainly
possible [19], there are actually certain advantages to ignoring the symmetry of (3.6)
and using a nonsymmetric system solver [18]. On the other hand, ignoring symmetry
incurs the heavy penalty of having to store two copies of A.
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4. Orthogonalization methods.
4.1. Basic methods. We have seen that the chief difficulty with the normal equa-

tions is numerical: the information loss and ill conditioning associated with the explicit
formation of the cross-product matrix. The elimination method of Peters and Wilkin-
son tries to lessen these numerical effects. Another alternative is to avoid explicit for-
mation of the cross-product matrix altogether by computing its triangular Cholesky
factor R directly from A, and this can be done by means of orthogonal factorization.
An orthogonal matrix Q of order m is computed which reduces [A, b] to the form

where R is an upper triangular matrix of order n and c is a vector of dimension n.
(We consider first the m>n case; the underdetermined case will be taken up later in
this section.) To see that R is indeed the Cholesky factor of the cross-product matrix
(assuming Q is chosen so that R has positive diagonal entries), we need merely note
that

ATA=ATQTQA--[RT 0][] =RTR.

Since the Euclidean norm is invariant under orthogonal transformation, the solution to

(1.1) may be obtained by solving the triangular system Rx =c.

There are three principal methods for computing the factorization (4.1): Gram-
Schmidt orthogonalization ([55], [1]), Householder reflections ([41], [32], [9]), and
Givens rotations ([ 31 ], [21-23], 38 ]). Both Gram-Schmidt and Householder reduce
A to triangular form by annihilating all the subdiagonal elements in an entire column
at each step. Though effective for dense problems, this column-oriented, "sledge ham-
mer" approach has serious drawbacks for large sparse problems. The trouble is that at

each step each column in the remaining unreduced portion of the matrix which has a

nonzero inner product with the column being reduced takes on the sparsity pattern of
their union. Although this newly created fill scattered throughout the unreduced
matrix will eventually be annihilated by the orthogonalization process, in the mean

time it must be stored, greatly increasing storage requirements beyond that required
for R (see Fig. ). Givens rotations are a much more appropriate tool in this context
because of their ability to introduce zeros more selectively and in a more flexible order

[21]. In particular, R can be built up gradually as the rows of A are processed one

by one in their natural order (or any other desired order), intermediate fill is confined

to R and the working row, and the unreduced rows of A can remain untouched on

external storage until their turn for actual reduction (see Fig. 2).
A problem which plagues all orthogonalization methods is that even if A and R

are sparse, it is unlikely that the orthogonal matrix Q will be particularly sparse.
There has been some study of maintaining sparsity in Q ([61],[11],[16]), but the

outlook in general is quite unpromising, especially since sparsity must be maintained
simultaneously in R. Instead, most practical procedures simply discard the orthogonal
transformations which make up Q as they are used in processing the matrix and right
hand side vector. For a simple problem with a single right hand side no real harm is

done, since Q is not actually needed to compute the least squares solution once R and
c have been obtained. But for more complicated problems, such as those having mul-
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FIG. 1. Reducing a sparse matrix by Householder reflections.

"’.’..": i:::’.:

FIG. 2. Reducing a sparse matrix by Givens rotations.

a pA

FIG. 3. Cost for reducing A." O(n2), PA." O(kn2).
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tiple right-hand sides which are not known in advance, or certain applications which
require explicit computation of an orthogonal basis, getting along without Q can be a
headache. One alternative is to write the orthogonal transformations on auxiliary
storage as they are generated. Each Givens rotation can be represented by a single
floating point number [59], thereby economizing storage. In other cases the need for
Q can be circumvented, although not always with equivalent numerical stability. For
example, one way to handle multiple right hand sides is to solve the system

RrRx =Arb (4.2)

using the R already computed, so that only the original matrix A, which is available
on an external file, is needed to transform subsequent right hand sides. Although
system (4.2) shares some of the numerical shortcomings of the normal equations
method, at least R is accurately computed, and the accuracy of the solution can be
improved by a few iterations of iterative refinement [4].

Having decided to use Givens rotations, there remains the problem of choosing a
good row and column ordering for A. There has been a good deal of work
([16],[23],[62]) on choosing these orderings dynamically: the ordering is determined
according to some local minimization-of-fill criterion as numerical computations
proceed, and storage is inserted into the data structure as needed to accommodate any
fill generated. Such algorithms are very similar in spirit to square, nonsymmetric
linear system solvers in that access to the whole unreduced matrix is required at each
step for possible pivot selection. An important difference, however, is that the stabil-
ity of orthogonal transformations allows the selection to be based solely on sparsity
considerations (assuming the problem is not too disparately weighted: see further com-
ments on row ordering below).

A different approach is taken in [24], which is patterned more after symmetric
positive definite linear system solvers. Recall our earlier remark in discussing the nor-
mal equations that the row ordering for A has no bearing on the structure of A rA,
but that the column ordering for A determines the structure of A rA and hence that
of R, its Cholesky factor. Thus the structure of ArA can be analyzed symbolically in
advance of any numerical computation in order to find a good column order for A
which will limit fill in R, and also to set up a data structure which will accommodate
any fill in R which does occur. Such a static data structure can be very efficient,
requiring none of the garbage collection and other overhead associated with dynamic
data structures.

An algorithm based on these considerations is as follows:

ALGORITHM 3. Triangularization by Givens Rotations.

1. Determine the structure (not the numerical values) of A rA.
2. Find a permutation matrix P such that PTAT’AP has a sparse upper triangu-

lar Cholesky factor R.
3. Factor PrArAP symbolically, generating a row-oriented data structure for

R.
4. Compute R and c numerically, processing the rows of [AP, b one by one

using Givens rotations.
5. Solve Ry c.
6. x--ey.
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Steps through 3 of Algorithm 3 are the same as those of Algorithm and can
be carried out very efficiently using standard sparse matrix software designed for sym-
metric positive definite linear systems. In particular, assuming the Givens rotations
are either discarded or written on secondary storage, Algorithm 3 exploits sparsity to
the same degree and requires the same amount of primary storage as Algorithm 1, but
is more stable numerically.

The details of step 4 of Algorithm 3 are of some interest. Let a r be a given row
of AP to be processed next. Let j be the subscript of the first nonzero component of
a r. It is shown in [24] that there is space in row j of the data structure of R to
accommodate a r. If row j of the data structure is still vacant, as will likely be the
case early in the row by row processing, then a r may simply be placed into row j of
the data structure. If, on the other hand, row j of the data structure is already occu-
pied by previously stored numerical values, then row j may be used to annihilate the
first nonzero of a r with a Givens rotation. It is further shown in [24] that the result-
ing "shorter" row can also be accommodated in the data structure, even though some
fill may have occurred as a result of the transformation. Thus, the process may be
repeated until either an unoccupied row is found in which to place the working row or
all its nonzeros have been annihilated.

Although the order in which the rows of A are processed in step 4 does not affect
the structure of R, it does affect the amount of fill created in the working row and
hence the total cost of computing R. Fig. 3 gives an extreme example of the differ-
ence row ordering can make with respect to numerical factorization cost. Heuristic
row ordering rules have been suggested which can substantially reduce computational
costs for certain classes of problems, but the general relationship between row and
column orderings is not yet well understood (see [24] and [28]). Another factor
which may dictate a particular row ordering is that any heavily weighted rows should
be processed first for optimum numerical stability (see [44], pp. 103-106).

Specialized algorithms which adapt orthogonalization techniques to problems hav-
ing banded or similar structure are given in [14], [44], and [54].

4.2. Extensions and generalizations. Algorithm 3 lends itself to a number of use-
ful extensions and generalizations in order to handle more difficult or complicated
problems. For example, the problem may be so large that R will not fit in main
memory, and hence auxiliary storage must be used. Indeed, for extremely large prob-
lems such as the geodetic readjustment of the North American Datum [42], storage
requirements may even exceed the virtual address space of the largest computers, so
that auxiliary space cannot be managed implicitly by a paging algorithm. In [26] an
algorithm is given in which such large problems are partitioned by incomplete nested
dissection into a sequence of smaller subproblems, each of which is processed by the
basic Givens algorithm, eventually producing the solution to the original problem.

It is clear that Algorithm 3 suffers the same catastrophic fill as the other
methods we have discussed when confronted with a matrix A having one or more
dense rows. It is also sometimes desired that some of the equations in a linear system
be satisfied exactly while the remaining equations are satisfied only in the least
squares sense. For example, it may be required that the sum of all the variables be
equal to or some other prescribed constant. Extensions to Algorithm 3 which enable
it to incorporate such constraints and/or updating are derived in [39]. Further gen-
eralization to allow arbitrary rank along with constraints and updating is given in [7].

Another implicit assumption in Algorithm 3 is that rank(A)=n. The usual gen-
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eralization of the orthogonal factorization (4.1) for dense rank deficient problems is to
use column interchanges during the orthogonalization process to obtain a factorization
of the form

where R is an upper triangular matrix of order k--rank(A), P is a permutation
matrix which performs the column interchanges, and the elements of T are negligible
in magnitude. In Algorithm 3, however, the column ordering for A represented by P
is fixed in advance to preserve sparsity, and cannot be altered during the numerical
phase. It is shown in [39] that a factorization of the form (4.3) can nevertheless be
obtained without explicit column pivoting, leading in turn to a basic or minimum-
norm solution for underdetermined and/or rank deficient sparse linear least squares
problems.

An alternate approach for underdetermined problems is to apply Algorithm 3 to
A r rather than A, yielding an orthogonal factorization of the form

A=[Rr O]Q. (4.4)

This enables us to replace system (2.2) by the system

RrRy =b, (4.5)

which can be solved by forward and back substitution. Such an approach fits in well
with the philosophy of discarding Q, but it would appear to have the same condition
squaring effect as that suffered by (2.2) and (4.2). In practice, however, the use of
(4.5) usually yields results which are comparable to the theoretically more accurate
algorithm which involves Q explicitly [56]. This surprising behavior has been
explained by Paige [49], who shows that as long as A is not too ill conditioned, the
error resulting from (4.5) depends essentially on the condition number of A rather
than the condition number squared. In using (4.4) and (4.5) for the sparse case via
Algorithm 3, we must now avoid dense columns rather than dense rows. Appropriate
updating procedures are given in [29].

5. Iterative methods. For some large sparse least squares problems iterative
methods are a useful alternative to the direct methods we have discussed thus far.
Unlike direct methods, which compute an approximation to the exact solution in a fin-
ite number of steps, iterative methods successively improve an initial approximate
solution until the approximation is acceptably close to the exact solution. One advan-
tage of this approach is that one need not spend time computing an unnecessarily
accurate solution if the data do not warrant it. Direct methods, on the other hand,
generally have fixed accuracy and do not produce meaningful intermediate results.
Iterative methods are also especially appropriate for problems in which the entries of
the matrix are easily generated on demand. In such cases the matrix need not be
stored at all, but instead can be defined by its action on vectors.

In principle any iterative method for symmetric positive definite (or semidefinite)
linear systems can simply be applied to the system of normal equations (2.1). Explicit
formation of the cross-product matrix A rA can be avoided by keeping the normal
equations in factored form

Ar(b--Ax)=O. (5.1)
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In this way the matrix A is used only to compute matrix-vector products of the form
Ax and A ry. Although this formulation avoids some of the numerical difficulties
and fill which can result from explicitly forming A rA, the convergence rate of itera-
tire methods based on (5.1) still depends on the spectrum of ArA, and can therefore
be very slow. Because of this the main emphasis in research on iterative methods for
least squares problems has been to accelerate convergence by means of various split-
tings and preconditioners.

A splitting takes the form A--M--N, leading to a sequence of least squares
problems of the form

MXk + l’NXk "4- b.

Preconditioning is a change of variable z =Cx, where C is a nonsingular matrix of
order n, so that

b -Ax =b -AC-z.
In either case the strategy is to choose M or C so that M or AC- gives a more
favorable spectrum than A, thereby speeding convergence. Since these two
approaches are essentially equivalent [10], we will concentrate on preconditioning
methods.

In implementing a preconditioner for least squares problems matrix-vector pro-
ducts of the form Ax and Ary become AC-z and C-rAry, respectively. Of
course the matrix product AC- is never explicitly computed, but instead is treated as
the product of two successive operators. Thus each iteration will require solution of
linear systems of the form

Cx z and Crx y. (5.2)

For this reason C is usually chosen to be diagonal or triangular so that systems (5.2)
can be solved easily. Several different preconditioners have been used effectively for
least squares problems:

Diagonal scaling. C=diag(di), where the di are norms of the columns of A.

SSOR preconditioning [5]. C=I+oLr, where A has been scaled so that
A rA--L /l/Lr with L strictly lower triangular, and o is a scalar relaxa-
tion parameter.

Incomplete Cholesky factorization ([45],[46]). C=R’, where R’ is an approx-
imation to the Cholesky factor R but is more sparse. Note that the true
Cholesky factor R would be the ideal choice for C since then AC-l is orthog-
onal.

4. LU preconditioning [57]. C--U, where U is the upper triangular factor from
a factorization of the form (3.1).

5. Gauss-Jordan preconditioning [43]. C =A i- , where A is a square, nonsingu-
lar submatrix of A of order n.

Notice that this last preconditioner gives an algorithm that is essentially the same as
the direct method of Delves and Barrodale [15] mentioned in section 3, except that
the updating is done iteratively rather than in closed form. This is just one example
of the many ways in which preconditioning blurs the distinction between direct and
iterative methods.
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As a concrete example of an iterative method for least squares problems we now
consider the method of conjugate gradients. There are many variants of conjugate
gradients which are theoretically equivalent but differ in their numerical behavior.
One of the most effective for reasonably well conditioned least squares problems is this
early version due to Hestenes and Stiefel [40]:

ALGORITHM 4. Conjugate Gradients.

1. x0--0
2. ro--b
3. so=ATro

2

5. pl=so
6. For k= 1, 2,

a. qk APk
2b.

c. xk xk + akPk
d. rk rk akqk

e. sk =A Trk
2f. 3’k IIs 112

h. Pk +I--Sk d- {3kpk.

repeat the following:

Although this algorithm theoretically produces the exact solution to (1.1) in at
most n iterations, with the rounding errors of finite precision arithmetic it may require
far more or far fewer than n iterations to yield a satisfactory solution. If a precondi-
tioner is used to accelerate convergence, then the matrix-vector products Ap and A Tr
are replaced by AC-lp and C-TATr implemented by solving systems of the form
(5.2). In using a preconditioner there is a tradeoff between the reduction in the
number of iterations required and the increase in work per iteration.

A variant of conjugate gradients which is effective for more ill conditioned least
squares problems has been developed by Paige and Saunders in [50], which should be
consulted for algorithmic details. Their algorithm is based on the bidiagonalization
procedure of Golub and Kahan 33] in the same way that the conjugate gradient algo-
rithm is related to Lanczos tridiagonalization. The bidiagonalization approach has
also been adapted to obtain regularized solutions of ill-posed problems ([6],[47]).

These bidiagonalization algorithms can be thought of as a natural extension of
the singular value decomposition method to solve sparse problems. The singular value
decomposition, which has the form

A =UZVT, (5.3)

where U and V are orthogonal matrices of order m and n, respectively, and Z is an
m n nonnegative diagonal matrix, is in many ways the most satisfactory numerical
method for solving least squares problems ([33], [35], [44]). Unfortunately the full
decomposition (5.3) is not computationally useful for large sparse problems because
the orthogonal matrices U and V are generally too dense. Through Lanczos-style
bidiagonalization, however, a few dominant triples (a,u,v) of singular values and vec-
tors can be generated even for very large matrices [34].
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6. Concluding remarks. In this paper we have surveyed the principal numerical
methods available for solving large sparse linear least squares problems. We have
concentrated on developments since the surveys [3], [18], and [30] published in 1976.
Several of these methods have been compared in numerical experiments using a
variety of test problems ([18],[25],[50],[57]). Although much more testing is needed
on a broader spectrum of test examples, some preliminary conclusions are possible:

1. For well conditioned problems the traditional method of normal equations imple-
mented using modern sparse matrix techniques is very effective and hard to beat,
especially on problems for which m>>n and which are quite sparse.

2. For more difficult problems which require the greater numerical stability of
orthogonal factorization, the method of Givens rotations can be implemented so
as to use essentially the same storage as the normal equations method (see Algo-
rithm 3).

3. For problems which are only slightly overdetermined, or are overdetermined but
consistent, a method based on elimination is likely to be best.

4. Several effective techniques are available for problems which are well suited to
iterative solution. If conditioning is a problem, the method of Paige and Saunders
[50] is especially to be recommended. A preconditioner can help speed conver-
gence but must be chosen carefully.

Most of the methods we have discussed have been implemented in computer soft-
ware which is publicly available, or soon will be:

1. Several symmetric positive definite linear system solvers (e.g., SPARSPAK [27],
YSMP[20], MA27 [19]) are available which could form the basis of an efficient
implementation of the normal equations method. Since it handles indefinite prob-
lems as well, MA27 could also be used to solve the augmented system (3.6).

2. The implementation of the Peters-Wilkinson elimination method by BjiSrck and
Duff [8] is to be included in the Harwell Subroutine Library. Their code uses a
modified version of the Harwell subroutine MA28 [17] to compute the LU fac-
torization (3.1).

3. Software implementing the algorithms of George and Heath [24], [39] is to be
included in a new, expanded version of SPARSPAK, giving it the capability of
solving nonsymmetric and nonsquare problems. The new modules rely heavily on
the existing SPARSPAK for the symbolic parts of the computation.

4. The work of Zlatev [62] is implemented in the software package LLSS01 [63].
To conserve storage, this code allows for an incomplete triangular factorization
(determined by a drop tolerance), followed by iterative refinement.

5. The iterative algorithm of Paige and Saunders has been implemented as subrou-
tine LSQR and is available from ACM TOMS [51]. This code solves damped
least squares problems as well as ordinary least squares and nonsymmetric equa-
tions.

There is considerable room for further research on algorithms for sparse least
squares problems. Better row and column orderings are needed, as well as a better
understanding of the relationship between them. The tradeoffs between static and
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dynamic data structures need further study. In elimination methods, the structural
relationships between A and L and between U and R need to be better understood.
Also worthy of exploration are row elimination schemes using stabilized elementary
eliminators, as opposed to the use of a general threshold (partial or complete) pivoting
approach. More sophisticated criteria are needed for withholding rows which lead to
excessive fill in the Cholesky factor. The numerical behavior of updating schemes
needs to be further scrutinized and improved. Existing algorithms should be extended
to allow more generality with regard to constraints, updating and rank. An important
problem for iterative methods is automating the choice of an effective preconditioner
to speed convergence. With all of these methods relatively little attention has been
given to handling problems which are too large to fit in main storage or to the use of
advanced computer architectures such as pipelined, array, or parallel processors.

The answers to these and many other outstanding questions will undoubtedly lead
to more effective and efficient methods for solving large sparse least squares problems.
In addition, advances in sparse least squares computations will have an effect on other
areas of sparse matrix computations, such as the application of sparse orthogonal fac-
torizations to problems in optimization, control, and eigenvalue and singular value
computations.
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SPARSE ORTHOGONAL SCHEMES FOR STRUCTURAL
OPTIMIZATION USING THE FORCE METHOD*

M. T. HEATH, R.J. PLEMMONS: AND R. C. WARD

Abstract. Historically there are two principal methods of matrix structural analysis, the displacement
(or stiffness) method and the force (or flexibility) method. In recent times the force method has been used
relatively little because the displacement method has been deemed easier to implement on digital computers,
especially for large sparse systems. The force method has theoretical advantages, however, for multiple
redesign problems or nonlinear elastic analysis because it allows the solution of modified problems without
restarting the computation from the beginning. In this paper we give an implementation of the force
method which is numerically stable and preserves sparsity. Although it is motivated by earlier elimination
schemes, in our approach each of the two main phases of the force method is carried out using orthogonal
factorizaton techniques recently developed for linear least squares problems.

Key words, structural optimization, force method, orthogonal factorization, Givens rotations,
turnback-QR method, sparse least squares, constrained sum-of-squares method

1. Introduction. Given the external loads on a structure, the object of structural
analysis is to determine the resulting internal forces, stresses, and displacements. The
solution to this problem is provided by a variational principle (minimization of energy)
subject to the linear elastic relationships among the nodes and elements of the finite
element model of the structure. Either the forces or the displacements may be taken
as the primary quantities to be computed, and the other can then be determined as a
by-product. These two approaches give rise to the force (or flexibility) method and
the displacement (or stiffness) method, respectively. In recent times the displacement
method has predominated, largely because it is easier to implement on digital comput-
ers, especially for large sparse systems, and makes use of well established techniques
of numerical linear algebra. The displacement method can be inefficient, however, for
structural optimization problems in which a sequence of related structural analysis
problems must be solved (e.g., problems having a fixed layout but differing material
properties). The force method is then preferable because it utilizes a portion of earlier
computations in order to solve such modified problems without starting the computa-
tions over from the beginning. Unfortunately, most implementations of the force
method have suffered from excessive fill or numerical difficulties, or both. In this
paper we give an implementation of the force method which is numerically stable and
preserves sparsity for large-scale problems.

Before stating our problem precisely, we need to develop some notation. The
notational conventions used by structural engineers and by numerical analysts are
quite different. As a compromise, we will use the same letters to denote various quan-
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tities as are commonly used by structural engineers (see, e.g., [20]), but we will retain
the usual convention in numerical analysis that lower case letters represent vectors,
while upper case letters represent matrices. Our notation is summarized in Table 1.

TABLE

equilibrium matrix E
element flexibility matrix D
element stiffness matrix D-system stiffness matrix K ED- ET

self-stress matrix B
system flexibility matrix F BrDB

nodal load vector p
system force vector f

nodal displacement vector r
system displacement vector v

redundant force vector x

The known, defining quantities for a structural analysis problem are the equilib-
rium matrix E, the element flexibility matrix D (or equivalently the element stiffness
matrix D-l ), and the nodal load vector p. The unknowns to be determined are the
system force vector f, the system displacement vector v, and the nodal displacement
vector r. The remaining variables in Table 1, such as the redundant force vector x,
are derived, intermediate quantities. We assume that E is an m xn matrix of rank m
and that D is a symmetric positive definite matrix of order n. Here D is block diago-
nal with the diagonal blocks having orders ranging from one to six, depending on the
finite element model of the structure. An example, taken from [13], of a two-
dimensional, frame and its equilibrium matrix are shown in Figs. and 2.

10 12

i- th element F21

F3i

’F1

FIG. 1. Two-dimensionalframe with element and node numbering.
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FIG. 2. Equilibrium matrix E for two-dimensional frame.

The linear elastic relationships for the system are

1. Equilibrium equation:

2. Compatibility equation:

3. Material equation:

ETr --v

The equilibrium and compatibility equations represent constraints on the forces and
displacements, respectively, and the material equation represents the material charac-
teristics.

The minimum principle of complementary potential energy can be stated as the
quadratic programming problem

min 1/2frDf subject to Ef=p. (1.1)
f

A similar minimum principle can be stated in terms of displacements rather than
forces, but, as we shall see, both the force method and the displacement method can
be derived from (1.1). First-order necessary conditions for a solution to the quadratic
programming problem (1.1) are given by the (m+n) (m+n) system of linear equa-
tions

where ), is an is an m-vector of Lagrange multipliers (see, e.g., [16], p. 224). A num-

ber of numerical methods are at our disposal for solving system (1.2); the force and
displacement methods correspond to two of these. The most obvious approach is sim-

ply to solve the entire system directly, applying any convenient algorithm for square
linear systems. System (1.2) is symmetric, but indefinite, so that some form of pivot-
ing for numerical stability will be required if a direct elimination method is used. One
standard approach to such problems, the use of block 2 x 2 pivots [3], has recently
been implemented for large sparse systems [6].
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Although not at all unreasonable, the direct solution of (1.2) is somewhat unsatis-
fying because one feels that the imposition of constraints ought to reduce rather than
increase the dimensionality of a problem. If instead we carry out block elimination on
(1.2) we obtain the smaller m m system

ED-1ErX=--p, (1.3)

which can be solved for . We then solve for the system force vector f using the
n x n block diagonal system

Df=-ErX.
The symmetric matrix K=ED-Er of system (1.3) is called the stiffness matrix and
this approach is called the stiffness or displacement method (note that , is simply the
negative of the nodal displacement vector r). Both systems (1.3) and (1.4) are sym-
metric and positive definite and therefore each could be solved by applying the Chole-
sky factorization algorithm, for which well-developed software is available to handle
large sparse problems. As with the normal-equations method for least squares prob-
lems, however, explicit formation of the cross-product matrix K worsens the condition
of the problem and can lead to serious loss of accuracy.

As in the least squares case, a numerically superior alternative is provided by
orthogonal transformations. First, suppose we have a factorization of the form

D-=GGT, ( 1 .5)

where G is a square matrix of order n. Such a factorization, involving the diagonal
blocks of D, is usually directly available at the element level, or could be computed if
necessary by the Cholesky algorithm. Now compute the orthogonal factorization

EG =[L OIQ, (1.6)

where L is a nonsingular, lower triangular matrix of order m and Q is an orthogonal
matrix of order n. Using the factorization (1.6), system (1.3) becomes

LLrX=--p, (1.7)

which can be solved by forward and backward substitution. In effect, the Cholesky
factor of K has been obtained without explicitly forming K. This approach is known
as the natural factor method because of the use of (1.5) (see ]).

Suppose we have solved a structural analysis problem for given E, D, and p.
With either the standard stiffness method or the natural factor variant of it, if the ele-
ment flexibility matrix D is now changed, then the entire computation must be
repeated from the beginning. Such a situation is not uncommon in multiple redesign
problems, structural optimization problems, and nonlinear elastic analysis, in which
the geometry of the system is fixed but the material properties vary over a sequence of
problems. In such cases a more efficient approach is provided by the force method
(see, e.g., [20] and [13]).

The force method is motivated by the observation that problem (1.1) is asking for
a weighted, minimum-norm solution to the equilibrium equation. Given any particular
solution s to such an underdetermined system, any other solution can be expressed as
a sum of s and a solution to the corresponding homogeneous system Ef=O. Thus we
may write the system force vector f as
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f=s+Bx, (1.8)

where the n x(n-m) matrix B, called the self-stress matrix, is chosen so that its
columns form a basis for the null space of E. Once s and B have been determined,
we then need to determine the proper linear combination of the columns of B,
represented by the vector x, so that f solves problem (1.1). If we substitute the rep-
resentation for f given by (1.8) into the upper row of system (1.2) we get the system

DBx Ds Er. (1.9)

If we now premultiply system (1.9) by Br and note that BrEr=O, we obtain the
system

BrDBx=--BT"Ds, (1.10)

from which we can now compute x, and thence f. The vector x is called the
redundant force vector and the symmetric matrix F---BTDB of system (1.10) is called
the system flexibility matrix. The displacements, if needed, can be computed from
the overdetermined but consistent system

ETr --v ---Df

The force method is usually carried out in two phases:

Phase 1. Compute a particular solution s of the equilibrium equation, together with
a self-stress matrix B such that EB =0.

Phase 2. Compute the redundant force vector x from system (1.10) and the system
force vector f from (1.8).

Since phase depends only on E and p, it need be executed only once in order to
solve a sequence of problems which differ only in D, with just phase 2 being repeated
for each new value of D. In order for the force method to be viable in practice, how-
ever, we need numerically stable algorithms for both phases which preserve sparsity.
This is the subject of the next two sections.

2. The force method: phase 1.
2.1 General methods. There are two basic approaches to phase of the force

method: elimination and orthogonalization. Both approaches can be implemented in
several different ways, leading to a number of distinct methods for performing phase
1. (See [4] for a survey of methods for solving general underdetermined systems.)
Each method requires a preliminary factorization of the equilibrium matrix E, then s
and B are computed using the resulting factors. In order to preserve numerical stabil-
ity, sparsity, or both, it may be necessary to perform row and column interchanges on
the equilibrium matrix E prior to, or as part of, the factorization process. Such row
and column permutations are equivalent to relabeling the equations and unknowns in
the equilibrium equation, and may be expressed by permutation matrices P and P2 of
order m and n, respectively. Thus, in effect, the faetorization is actually carried out
on the reordered matrix PEP2.

We now list the principal methods for phase 1, then discuss their relative merits.
In some of the factorizations we will need identity matrices of various sizes, and so for
clarity a subscript will be used to indicate the order of each identity matrix.
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Gauss-Jordan elimination.

PIEP2=M[Im J],

s--P2 0 M-1Plp’

B P2 [n--m

where M is m xm and J is m x (n m ).

Row elimination.

P1EP2=L[U U2], (2.1)

J=U{-U2, (2.2)

[Im] (2.3)
s=P2 0 U-IL-IPIp’

where L and U are lower and upper triangular matrices, respectively, of
order m, and U2 is m x(n-m).

Column elimination.

PEP2=[L O]U,

[N N2]’-U-1,

s =P2N1L-Pp,

B P2N2,

where L is a lower triangular matrix of order m, U is an upper triangular
matrix of order n, and N and N2 are nxm and nx(n-m) matrices, respec-
tively.

4. QR factorization.

P1EP2=Q[RI R2], (2.5)

J-’R{-IR2, (2.6)

s=P2 0 RIQTpp’

B =P2

where R is an upper triangular matrix of order m, R2 is m x(n--m), and Q
is an orthogonal matrix of order m.
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5. LQ factorization.

P1EP2=[L O]Q,

[Ql Q2]--Qr,

where L is a lower triangular matrix of order m, Q is an orthogonal matrix of
order n, and Q and Q2 are n xm and n x(n-m) matrices, respectively.

Singular value decomposition.

PEP2=V[Z, O]Q,

[Ql Q2]--QT,
s =P2QZ,-vTpp,

B --P2Q2,

where 2 is a nonnegative diagonal matrix of order m, V and Q are orthogo-
nal matrices of order rn and n, respectively, and Q and Q2 are n xm and
n x (n m ) matrices, respectively.

For convenience in describing the various methods we have reused some symbols
(e.g., J, L, Q) which do not necessarily have the same meaning for different methods;
all symbols should be taken as locally defined for a particular method only. For each
method it is easily verified by direct substitution that Es =p and EB =O. Of course,
the indicated matrix inverses are not computed explicitly, but are implicitly handled
by simultaneously transforming the right hand side during the factorization process
and by backsubstitution in triangular systems.

The main points of comparison among the methods are computational efficiency,
storage requirements, and numerical properties. Method 1, Gauss-Jordan elimination,
is the method traditionally used by structural engineers, but it has severe limitations
when dealing with large sparse problems. A very large number of eliminations is gen-
erally required in order to produce the identity matrix Ira, and they can cause a great
deal of intermediate fill, which will itself eventually be eliminated, but in the interim
must be stored. In addition, the matrix J is likely to be rather dense and therefore B
will require a great deal of storage unless n-m is quite small. Finally, Gauss-Jordan
elimination can encounter numerical difficulties, even when pivoting is used (see 12],
pp. 50-51).

Method 2, row elimination, is superior to method numerically, requires less
work, and causes less intermediate fill. Even though the matrix J is not produced
directly but must be computed by backsubstitution in the triangular system UJ=U2,
this is more than offset by the lower cost and fill of the initial factorization. More-
over, there exists good software for computing LU factorizations of sparse matrices
(e.g., [5], [21], [23]). In addition to trying to limit fill, it is also desirable to keep U
and L as well conditioned as possible, and so a compromise pivoting strategy should
be used. Unfortunately, it is difficult to control the fill in J, which may be quite
dense except in special situations which we will discuss later. In fact, for the same
permutation matrices P and P2, methods and 2 produce the same matrix J.
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Method 3, column elimination, is comparable in work and fill to Gauss-Jordan elimi-
nation and also tends to yield a rather dense matrix B. The self-stress matrix B
which results from applying method 2 to the equilibrium matrix of Fig. 2 is shown in
Fig. 3.

FIG. 3. Self-stress matrix B.

Methods using orthogonalization are numerically superior to their counterparts
which use elimination, but orthogonalization methods generally require more work and
cause more fill than elimination-based methods. Moreover, even if the triangular fac-
tor is relatively sparse, it is unlikely that comparable sparsity can be maintained in the
orthogonal factor. Methods 4 and 5 are obvious analogues of methods 2 and 3,
respectively, but despite their numerical superiority they have been little used in con-
junction with the force method because of the lack of effective implementations for
sparse problems. Fortunately, an effective sparse orthogonal factorization scheme has
recently been developed in the context of linear least squares problems [8]. In that
algorithm the orthogonal matrix Q is computed as a product of a sequence of Givens
rotations, which are discarded as they are used in order to conserve storage. Such an
approach is inappropriate for method 5, which makes explicit use of the orthogonal
factor Q in defining s and B, but is ideally suited to implementing method 4, which
makes no use of Q after the initial factorization (the vector Qrpp which is needed
to compute s as in (2.7) can be computed during the factorization process by applying
the rotations to the permuted right hand side).

In computing an orthogonal factorization of the form (2.5), column pivoting is
normally used in order to guarantee that R is nonsingular and as well conditioned as

possible. In the algorithm of [8], however, the column ordering P2 is fixed in advance
in order to maintain sparsity in the triangular factor, and therefore column pivoting
for numerical reasons is not permissible. It is shown in 11 how a factorization of



522 M. T. HEATH, R. J. PLEMMONS AND R. C. WARD

the form (2.5) can still be computed without explicit column pivoting. In effect, when
all processing of the rows of E by Givens rotations is complete, in the sparse
triangular data structure of order n there are n-m null rows. The columns of R
and R2 are those corresponding to nonzero and zero diagonal entries, respectively.
(See [11] for details, especially regarding numerical tolerances required.) The net
result is that this algorithm provides a sparse implementation of method 4 which is
analogous to a sparse LU implementation of method 2. Unfortunately, it also shares
with method 2 the tendency to produce a rather dense matrix B. We will address this
difficulty for both methods shortly.

Method 6, the singular value decomposition, is theoretically equivalent (but
numerically superior) to the eigenforce method [20], in which the eigenvalue-
eigenvector decomposition of the n xn matrix ErE is computed. Although the singu-
lar value decomposition is the most reliable method of all numerically, it is prohibi-
tively expensive in both work and storage for large problems and is therefore not a
viable alternative for large-scale structural analysis.

From the above discussion it is evident that the most promising methods for phase
are methods 2 and 4, with the former likely to be the most efficient, while the latter

is more reliable numerically. Since we regard numerical reliability as of paramount
importance, we will emphasize method 4, QR factorization, throughout the remainder
of this paper, although we will rely on recent developments of method 2 13 for moti-
vation.

Before we leave the general discussion of methods, it is perhaps worthwhile to
point out that the natural factor approach to the displacement method can also be
exploited in the force method. In particular, if we have a factorization of the form
(1.5), then we can apply any of the orthogonalization methods to EG instead of E.
By treating the problem explicitly as a weighted least squares problem in this manner,
the system force vector f can be computed directly without the need for solving sys-
tem (1.10) in phase 2. In doing so, however, we would be giving up the principal
advantage of the force method, since B would then depend on D and would have to
be recomputed whenever D changed.

2.2 Band schemes. For a general sparse equilibrium matrix E it is difficult to say
anything about the structure of the resulting self-stress matrix B other than that it
might be quite full. If E has a banded structure, however, Topcu [22] and Kaneko,
Lawo and Thierauf 13] have shown how method 2 can be adapted to compute a B
which also is banded. By modifying and extending their algorithm, we will show how
method 4 can also be used to produce a banded self-stress matrix B. Since E and B
are not square matrices, perhaps we should first point out that we do not mean
banded with respect to the usual main diagonal, but with respect to a line from the
upper left corner to the lower right corner of the matrix. Also, for our purposes the
distinction between band and profile (also known as variable band, envelope, or sky-
line) implementations is unimportant, and so we will use the shorter term "oand" to
mean both possibilities.

For most structural analysis problems there is a fairly obvious natural ordering of
the nodes and elements of the underlying physical structure in which the equilibrium
matrix E is banded [20]. In any case we give a simple recipe for finding such an ord-
ering for any sparse E:
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Apply a bandwidth minimization algorithm (e.g., Reverse Cuthill-McKee
[10]) to the nonzero structure of the symmetric matrix ErE. This gives a
column permutation P2.
Sort the rows of EP2 into increasing order with respect to the subscript of the
first (i.e., leftmost) nonzero entry in each row, breaking ties arbitrarily. This
gives a row permutation P.

The resulting matrix PEP2 will have the desired band structure. (Note that, due to
the combinatorial difficulty of bandwidth minimization and the consequent heuristic
nature of the algorithms, the resulting band structure is not necessarily optimal, but is
usually nearly optimal. Also, the matrix ErE is not formed numerically, but its
nonzero structure is analyzed symbolically.) We will henceforth assume that the equi-
librium matrix E is given with such an ordering. Some additional reordering of rows
and columns may be required by the algorithms given below.

We now consider what happens when methods 2 and 4 are applied to a banded
equilibrium matrix E. In order to produce a triangular factorization of the form (2.1)
or (2.5) we annihilate the subdiagonal elements of each successive column of E using
either Gaussian elimination or Givens rotations. In either case the computations are
restricted in each column to the block of rows having nonzeros in that column, and,
due to the band structure, this block should be relatively small. In order to ensure
that the multipliers are less than in Gaussian elimination, row interchanges may be
required, but only within blocks. A convenient way in which to implement this proce-
dure is to set up a banded triangular data structure based on symbolic factorization of
the (reordered) symmetric matrix ErE (see step of the reordering algorithm given
above), then process the rows of E one by one, reading them from an external file.
Alternatively, if E is stored in main memory, then the factorization can be done in
place, but additional storage must be available to allow for possible growth in the
band due to rotations or row interchanges.

With either elimination or rotations, as we proceed down the main diagonal of E
we may encounter a column which is already zero on and below the main diagonal.
Indeed, if the bandwidth of E is sufficiently small, this situation must occur before we
reach the bottom of E, since the first k columns of E cannot be linearly independent
if the (k,k) element of E lies to the left of the band. If column k is such a column,
then in order to ensure that our final triangular matrix U or R is nonsingular, we
move column k to the (m + 1) st position and move columns k-t-1 through m + to
the left by one position before continuing with the annihilation procedure. Of course
it is not necessary actually to move the columns in storage, but merely to record the
permutation implicitly by means of relabeling. We should also note that in floating
point arithmetic one would not expect to find exact zeros but would instead test
against some small tolerance. In this regard, the use of orthogonal transformations
should prove superior to elimination at detecting such linear dependencies. When the
subdiagonal annihilation process is complete and the bottom of E is reached, the
resulting factorization will have the form schematically depicted in Fig. 4. Thus, the
matrix U2 or R2 inherits a lower band structure from E.

The structure we have just described would be of little benefit were it not for the
fact that it carries over to the resulting self-stress matrix B. Specifically, the matrix
J formed according to (2.2) or (2.6) has the same lower band structure as U2 or R2,
and when we form the matrix B according to (2.4) or (2.8) the permutation matrix P2
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(which incorporates the column permutations described in the previous paragraph)
simply places the rows of the identity matrix In-m at the "breakpoints" in the struc-
ture of J, thereby preserving a lower band structure. These concepts are illustrated
pictorially in Fig. 5.

PE P2=Q

FIG. 4. Orthogonal factorization ofE.

B=P

0 0

0

o

FIG. 5. Self-stress matrix B.

Lower band structure alone is not enough to make the storage of B practical.
Therefore we now outline a "turnback" procedure, based on that originally developed
in [22] and 13 ], which determines a self-stress matrix having an upper band structure
as well. For each column j of B, let

kj=min{k’bij=O for all i>k}.

(The kj are just a convenient way of describing the lower band structure of B; the kj
indicate where the rows of In-m are located within B. ) Since EB-O, each column
of B reveals a linear dependency among the columns of E; indeed, for each j the first

kj columns of E are linearly dependent. The idea of the turnback procedure is, for
each column of B, to find a smaller subset of the columns of E which is still linearly
dependent. In order to find such a subset we begin with column kj of E and work
backward through the columns of E until a dependent set is found. Linear depend-
ence can be determined numerically by either LU or QR factorization, implemented as
in methods 2 and 4 above. The turnback procedure was originally proposed using LU
factorization, but an orthogonalization approach provides a more robust indicator of
linear dependence, so we state our version of the algorithm in that form.
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We now consider the first step of the turnback procedure. Let

t=max{1,k-m-1}.

Let E be the matrix whose columns are columns k, k-1, t of E, in that
order. If we carry out the orthogonalization process on E analogous to (2.5) but stop
when the first zero diagonal element is encountered, the result is a factorization of the
form

T c
E=Q 0 0 W’

(2.9)

where T is a nonsingular, upper triangular matrix of order s, say. (The subscripts
in (2.9) are merely meant to indicate that this is the first step of the turnback proce-
dure, and have no relation to any subscripts used earlier.) Thus we now know that
columns k-s-1, k of E are linearly dependent, and we can determine the
coefficients of that dependency by solving the triangular linear system Ty=c. We
then have

El
Yl

Permuting this vector back into the column ordering of E and augmenting it with
zeros corresponding to those columns of E which are not in El, we obtain a vector z
which belongs to the null space of E. In Fig. 6 this new null-space vector z is com-
pared schematically with the first column of the matrix B computed by (2.8). The
vector z forms the first column of a new, banded null-space basis matrix Z.

The remaining steps 2, n--m of the turnback procedure are similar to step 1,
but with one important difference. At step j we start with column kj of E and work
backward, but we want to avoid the possibility of finding again any linear dependency
which has already been found on a previous step. Thus at step j we omit from the
matrix Ej the dependent column (i.e., the column where the zero diagonal occurred)

Z

S

FIG. 6. Columns ofB and Z compared.
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from each previous step. This strategy may result in some "spikes" in the upper band
structure of Z, but is necessary to ensure that Z has full column rank. It is impor-
tant to note that we do not need the matrix B in order to generate Z, but only the
indices kj, which are directly available from the factorization (2.5). Thus we need
allocate only enough storage for the banded basis matrix Z, not the much more full
matrix B. Of course a great deal of computation is required to generate a banded
basis matrix in this manner, but the philosophy of the force method is that this invest-
ment is worthwhile if the matrix is to be used repeatedly in phase 2 to solve a long
sequence of related problems. The banded self-stress matrix resulting from applying
the turnback-QR process to the equilibrium matrix of Fig. 2 is shown in Fig. 7.

FIG. 7. Banded self-stress matrix Z.

The turnback procedure described above is modeled after that of [22] and [13],
although there are some important differences (these include the use of orthogonal
transformations in finding the linear dependencies as well as in the original factoriza-
tion, the way the coefficients of the dependencies are determined, and the omitting of
dependent columns to ensure full rank). A more radically different approach is to
compute a banded null-space basis matrix by applying a turnback procedure directly
to the matrix [R1, R2] of (2.5) (or the matrix [U, U2] of (2.1) if elimination is
being used), rather than the original matrix E. This is certainly possible, since the
nonsingularity of Q implies that E and [R, R2] have the same null-space.

A turnback procedure can be implemented on the matrix [R, R2]P (i.e., in
the original column order of E ) by simply rotating each column having a zero diago-
nal into the preceding columns, in order from right to left. As soon as such a column
is annihilated, a linear dependency has been found. What we are in fact doing is com-
puting the complete orthogonal factorization (see 15], p. 13)

eee,=Qt. olv, (2.o)
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where R is a nonsingular upper triangular matrix of order m and Q and V are
orthogonal matrices of order m and n, respectively. If we now partition V as

Vr=[V V2],

where V2 is nx(n-m), then P2V2 is a basis for the null space of E. If the columns
of R2 in (2.5) are annihilated in the indicated order (left to right and bottom to top)
in arriving at (2.10), then P2V2 will be banded. These concepts are illustrated in Fig.
8.

X

E Q
X

xX

xXXX X Q
XXXX

V0.,
X

X

P2 V P2

-7
X

FIG. 8. Complete orthogonal factorization and resulting self-stress matrix.

(Nonzero structure depends on values of numerical entries.)

This procedure applied to [R 1, R2] should require about the same amount of
work as the turnback procedure applied to E, since the bandwidths of the two
matrices are about the same. Determining linear dependence in terms of the com-
puted quantities in [R1, R2] might be less robust than working with the original
data in E, but this effect is lessened by using orthogonal transformations at all stages.

3. The force method: phase 2.
3.1 General methods. Given a particular solution s of the equilibrium equation

and a self-stress matrix B whose columns form a basis for the null space of E, the
main task of phase 2 of the force method is the computation of the redundant force
vector x which satisfies system (1.10). The system force vector f is then given by
(.8).
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System (1.10) is simply the normal equations for the weighted least squares prob-
lem

min IIG-(Bx +s)ll2, (3.1)
x

where G is as in (1.5). Several methods for solving problems of the form of (3.1) are
described in [15]. The traditional method of normal equations consists of the direct
application of Cholesky’s method to the symmetric positive definite matrix F=BrDB.
With the reordering necessary to limit fill for large sparse problems, this gives an
algorithm of the form

Normal equations

P2FP=RrR,
y --R-rP2BrDs,

x =PR-y,
where R is an upper triangular matrix of order n-m and P2 is a permutation matrix
of order n-m. (Again, the indicated inverses imply backsubstitution processes rather
than explicit inversion.) Excellent computer software is available for efficiently carry-
ing out this approach for large problems (e.g., [6], [7], [10]).

Unfortunately, explicitly forming the cross product matrix F=BrDB can lead to
significant loss of information and worsening of the conditioning of the problem. A
better approach in this regard is to apply orthogonal transformations to the matrix
G-B, leading to an algorithm of the form

Orthogonai factorization

P1G-BP=Q ]

x =.pTR-lc,

where R is an upper triangular matrix of order n-m, P and P2 are permutation
matrices of order n and n-m, respectively, Q is an orthogonal matrix of order n,
and c and d are vectors of length n-m and m, respectively. An implementation of
this approach which is effective for large sparse problems is given in [8]. Comparisons
of the normal equations, orthogonal factorization, and other methods on a variety of
finite element and other types of problems are given in [8 and [9].

3.2 Paige’s method. Although orthogonal factorization is numerically superior to
the normal equations, poor results may be obtained with either method when the ele-
ment flexibility matrix D is ill conditioned. In a series of papers ([17], [18], [19],
[14]) Paige has developed a scheme which can considerably reduce this difficulty.
Following Paige, if we define the weighted residual vector

u--G-(BxWs),
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then problem (3.1) can be written in the equivalent form

min uru subject to Gu =Bx +s. (3.2)

Because of its special form, problem (3.2) is sometimes referred to as the linearly con-
strained sum-of-squares (LCSS) problem. In addition to leading to a better numerical
method, (3.2) also has important theoretical advantages over (3.1) in that it requires
no restrictive assumptions regarding the ranks of the matrices involved. In particular,
it is possible to compute a G satisfying (1.5) and suitable for use in (3.2) even if the
element stiffness matrix is only semidefinite (see [15], p. 124). For this reason, prob-
lem (3.2) has also been referred to as generalized least squares. We will not need the
full generality of LCSS, since we assume that B has been determined so that it has
full column rank.

We first present a formulation of Paige’s LCSS scheme which is easy to under-
stand, then present a second formulation which is usually more efficient. In order to
avoid excessively complicated notation in describing the algorithms, we will omit the
permutation matrices which may be necessary in order to preserve sparsity, ensure
numerical stability, or estimate rank.

First formulation 18 ]. We begin by performing the orthogonal transformation

QrB= QrG= Qrs= s2’
where Q is an orthogonal matrix of order n, R is a nonsingular upper triangular
matrix of order n-m, and the remaining matrices are partitioned conformally.
Applying this orthogonal transformation to (3.2), the constraint equation breaks into
the two equations

Gu=Rx+s, (3.4a)

G2u =s2. (3.4b)

Since (3.4a) can be solved for x given any value of u, problem (3.2) therefore
becomes

min uru subject to GEU "’$2" (3.5)
u

Problem (3.5) is simply that of computing the minimum norm solution to an under-
determined linear system and can therefore be solved by any of the methods discussed
previously for phase 1. Using method 5, for example, we compute an orthogonal fac-
torization

G2--[L O ]V, (3.6)

IV V2l=VT,
where L is a lower triangular matrix of order m, V is an orthogonal matrix of order
n, and V and V2 are nm and n(n-m) matrices, respectively. Assuming L is
nonsingular we now obtain

U--- VIL-I$2,

then x is recovered from the triangular system (3.4a). Singularity of R or L due to
rank deficiency of B or G can also be handled by this scheme (see 18 for details).
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Second formulation 14]. The first formulation does not take advantage of any
special structure the matrix G may have ( G will be triangular if it is computed by
Cholsky factorization, and in our case G has block diagonal structure as well);
indeed, that structure is in general destroyed by the first orthogonal transformation Q.
Paige has given a second formulation of LCSS in which the two orthogonal transfor-
mations Q and V are computed simultaneously in a manner which retains the triangu-
lar structure of G throughout the computations. The approach taken is a familiar
"zero chasing" technique using Givens rotations. For implementation details, see 19].

The result is a factorization of the form

[’yl O Ll O (3.7)
Qr[s, B GVI=

Y2 Rr L21 L2
where Rr, L1, and L2 are lower triangular matrices of order n-m, m, and n-m,
respectively, and Q and V are orthogonal matrices of order n and m, respectively.
(Note that the matrices in (3.7) are not necessarily identical to the corresponding
matrices in (3.3) and (3.6).) Applying transformation (3.7) and using the change of
variable

problem (3.2) becomes

min u]u - U"U2 subject to
12 L21 L2 Y2

Thus u is completely determined by the equation

LlUl--y 1,

and the functional is minimized by taking tl2--o.
determined from the system

Rrx =L21Ul--y2.

Finally, the solution x may now be

Again we have not used the full generality of Paige’s method, which allows rank
degeneracy in B and G, leading to trapezoidal rather than triangular matrices in the
factorization (3.7).

In both formulations of LCSS the computations can be arranged so that it is
unnecessary to save the orthogonal matrices Q and V. This is an important factor in
keeping storage requirements to a minimum. For solving a sequence of problems with
fixed B but varying G, in theory it is necessary to compute the orthogonal
transformation Q only once. This approach is in keeping with the philosophy of the
force method, but its computational advantage may be nullified by the necessity of
storing Q for subsequent use.

Our interest is in problems for which B is banded and G is block diagonal and
lower triangular. By a careful implementation of the Givens rotations which carry out
the orthogonal factorization (3.7), these properties can be used to advantage and at
least partially preserved. For example, consider the matrix shown in Fig. 2, which
leads to a stacked banded form (see Fig. 7)
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B=B2,

B3
where each Bi is banded, with more rows than columns.
mally, the constraint equation of (3.2) becomes

0 G3

U’--

B

B x+s.
B.

If G is partitioned confor-

(3.8)

In carrying out the factorization (3.7), after the first two blocks of B have been
reduced to lower triangular form, only the block immediately below G in G will have
filled in. As observed in [19], p. 171, we may at this point drop the columns of G
corresponding to G1 and continue the computation with a problem having the same
form as (3.8) but with one less block. This technique generalizes to problems having
any number of blocks, and such structure is common in the analysis of two- or three-
dimensional frames. Dropping columns in this manner is of critical importance for
large problems, since otherwise a full lower triangular matrix L could be generated.
Another important observation in determining storage requirements is that Rr has the
same band structure as the lower triangle of BrB.

4. Concluding remarks. The force method is an attractive method for solving
sequences of related structural analysis problems. We have suggested an implementa-
tion of the force method which uses turnback-QR for phase and Paige’s LCSS for
phase 2. Such an approach has two principal advantages: band structure is exploited
in order to solve very large problems, and orthogonal transformations are used to
maintain numerical stability and avoid forming normal equations. We therefore
expect the force method to become a more computationally viable alternative to the
displacement method for structural optimization.

The algorithms we have described are currently being implemented in computer
programs and tested on a collection of practical structural analysis problems kindly
provided by I. Kaneko of the University of Wisconsin and M. Lawo of the University
of Essen. Our test problems include two- and three-dimensional frames, and plane
stress, plate bending, and turbine problems. The results of these numerical tests and
comparisons will be reported in detail elsewhere [2].
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NONLINEARLY PRECONDITIONED KRYLOV SUBSPACE METHODS
FOR DISCRETE NEWTON ALGORITHMS*

TONY F. CHAN" AND KENNETH R. JACKSON

Abstract. We propose an algorithm for implementing Newton’s method for a general nonlinear system
f(x) =0 where the linear systems that arise at each step of Newton’s method are solved by a preconditioned
Krylov subspace iterative method. The algorithm requires only function evaluations and does not require
the evaluation or storage of the Jacobian matrix. Matrix-vector products involving the Jacobian matrix are
approximated by directional differences. We develop a framework for constructing preconditionings for this
inner iterative method which do not reference the Jacobian matrix explicitly. We derive a nonlinear SSOR
type preconditioning which numerical experiments show to be as effective as the linear SSOR preconditioning
that uses the Jacobian explicitly.

Key words. Krylov subspace methods, conjugate gradient methods, preconditioning, nonlinear systems,
discrete Newton algorithms, directional differencing

1. Introduction. One of the most common methods for solving an n by n nonlinear
systems of the form

(1) f(x) =0

is Newton’s method:

Start with an initial guess Xo.

Repeat until convergence:

(2) Solve J(xi)6x=-f(xi),

(3) Set xi/l xi + 8x,

where J(x) is the Jacobian matrix fx (x).
For many large problems, most of the work is done in solving the linear system

(2). This is usually accomplished by evaluating and LU-factoring the Jacobian J and
backsolving for 6x. However, when J is large and sparse, it is natural to consider
iterative methods, which usually require much less storage. Moreover, truncated forms
of Newton’s method [4], [22], in which the linear system (2) is only solved approximately
by an iterative method, can be implemented easily.

Among the most popular and successful iterative methods for large sparse systems
are methods based on the Krylov subspace, for example, the Chebyshev method [14],
[18] and the conjugate gradient method [14], [15]. These methods all have the property
that only matrix-vector products involving the coefficient matrix are needed. In the
context of applications to Newton’s method, the matrix-vector product Jv can be
approximated by the directional difference (f(x + dv)-f(x))/d, where d is the scalar
difference interval. This has the advantage of requiring only function evaluations and
avoiding explicit evaluation and storage of the Jacobian matrix. Thus, it is well-suited
for large sparse problems, especially if the Jacobian is difficult to evaluate or store.

* Received by the editors January 27, 1983, and in revised form July 15, 1983. This work was supported
in part by Air Force grant AFOSR-81-0193, by Department of Energy grant DE-ACO2-81ER10996, and
by National Sciences and Engineering Research Council of Canada grant U0133.

t Computer Science Department, Yale University, New Haven, Connecticut 06520.
Computer Science Department, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
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Often, it is desirable to precondition the Krylov subspace methods as the rate of
convergence is often unacceptably slow otherwise, especially for ill-conditioned prob-
lems. However, since most preconditioning techniques require J explicitly [2], [6], [7],
[13], [16], it is not obvious how to apply them in the context of directional differencing,
as J is not explicitly available. We address this problem in this paper.

After a review of discrete Newton algorithms and Krylov subspace methods in
2, we develop in 3 a framework for constructing nonlinear preconditionings that

do not require J explicitly. We then give in 4 a specific preconditioning algorithm
that is based on nonlinear SSOR sweeps. The efficiency of this nonlinear preconditioned
Krylov subspace Newton method is discussed in 5. Numerical experiments in 6
show that this nonlinear preconditioning is as effective as the linear SSOR precondition-
ing that requires J explicitly. Some conclusions are given in 7.

2. Discrete Newton algorithms and Krylov subspace methods. Newton’s method
is among the best methods for solving general nonlinear systems. Part of the reason
for its success is its quadratic rate of local convergence. Also, it is often more robust
than competing methods, for example quasi-Newton methods, especially for optimiz-
ation problems [12], [22].

These advantages of Newton’s method are offset by the requirement that, at each
step, the user compute the Jacobian matrix explicitly and solve the linear system (2).
For problems for which the Jacobian is difficult to calculate (for example in optimization
the Jacobian corresponds to the Hessian matrix which consists of second derivatives
of the cost function), methods have been proposed which do not require the user to
compute the Jacobian explicitly. Among these are Quasi-Newton methods [5], Non-
linear Conjugate Gradient methods [8] and Discrete Newton methods [12], [22], [23].

Discrete Newton methods are perhaps the most natural of the three classes of
methods, in that they retain the form of Newton’s method but approximate the Jacobian
matrix by finite differences of the function values. These differences are often taken
along the unit coordinate directions:

(4) (f(x + dei) f(x))/d,

where d is an appropriately chosen difference interval. It is easy to see that it takes
n function evaluations to obtain an approximation for J. However, for large and sparse
problems, other directions may be more efficient, in terms of both work and storage.
At least two approaches using finite differences are possible.

The first approach is to order the columns of J into groups according to the
sparsity pattern of J so that the nonzero elements in each group can be evaluated with
only one function evaluation by finite differencing along a carefully chosen direction.
For matrices with highly structured sparsity patterns, this can result in a significant
reduction in the number of function evaluations needed to obtain an approximation
for J. For example, a tridiagonal Jacobian can be approximated by three function
evaluations, independent of the dimension of the matrix. Curtis, Powell and Reid [17]
are credited as being the first to make such an observation and they proposed a heuristic
algorithm for obtaining a good (but generally not optimal) column ordering for matrices
with arbitrary sparsity patterns. Recently, there has been a lot of interest in developing
more efficient finite-differencing schemes by solving related graph coloring problems

For reliable and automatic techniques for choosing the finite difference interval d, we refer the reader
to [], [12].
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[3], [19], [26], [27]. We call a Newton method employing this approach to approximate
the Jacobian the standard discrete Newton algorithm.

The second approach is rather different in that it does not attempt to compute
an explicit approximation to the Jacobian matrix at all. Methods in this class use a
Krylov subspace iterative method (e.g. the conjugate gradient method) to solve approxi-
mately the linear system (2) at each step of Newton’s method. In the application of
these iterative methods, one does not need to access the Jacobian matrix explicitly.
Instead, all that is required is the ability to form matrix-vector products of the form
Jv for a given vector v. The central theme of the methods in this class is to approximate
matrix-vector products of this form by a directional difference:

(5) .(x)v (l(x + clv)-[(x))/ cl.

Note that the direction v is usually unknown a priori and depends on the iterates in
the Krylov subspace method. Only function evaluations are needed. This method is
especially attractive if only a few matrix-vector products are needed at each Newton
step, as is often the case in truncated Newton algorithms. For general dense matrices
that arise in optimization problems, O’Leary [23] has shown that this method takes
fewer operations than the standard discrete Newton method when n > 39. Garg and
Tapia [9] and Nash [22] have also used this technique in optimization problems. Gear
and Saad [10] have employed this idea successfully in solving stiff ordinary differential
equations. We shall call this the Directional Differencing Discrete Newton (DDDN)
Method.

Traditionally, Krylov subspace methods were developed for matrices with special
properties, e.g. symmetric positive definiteness. However, for a general function f, the
Jacobian J does not necessarily possess these properties. Even for optimization prob-
lems, although J is often symmetric, it need not be positive definite. Recently, the
application of Krylov subspace methods to general linear systems has attracted a lot
of research interest and significant progress has been achieved. For a survey of recent
research in this area the reader is referred to [7], [16].

In this paper, we are concerned with preconditioning the Krylov subspace methods
in order to accelerate their convergence. Most preconditionings are based upon a
splitting of the form J M-N and can be implemented by supplying a routine for
computing the matrix-vector product M-iv for a given vector v. A good precondition-
ing is one for which M is a good approximation to J and M-Iv is inexpensive to
compute.

The matrix M is usually defined in terms of the elements of J. This is true, for
example, of the most commonly used incomplete LU-factorizations [13], [20] and the
SSOR-type preconditionings [1], [2]. This creates a problem in the context of applica-
tions to Newton’s method with directional differencing since the Jacobian matrix J is
not available explicitly. Computing the elements of J explicitly in order to compute
and store the preconditioning M would take away the advantage of the directional
differencing. It is thus desirable to be able to apply a preconditioning algorithm that
requires function evaluations only and does not reference the Jacobian explicitly. In
the next section, we derive a class of nonlinear preconditionings with this property.

3. Nonlinear preconditioning. In the context of a Krylov subspace method, a
preconditioning M is needed only to compute matrix-vector products of the form

(6) w=M-v.
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That is, we want to be able to solve the linear system

(7) Mw= v.

The optimal preconditioning, at least as far as convergence is concerned, is the choice
M J. However, this leads to solving the linear system

(8) Jw v

which is as difficult as the original problem (2). On the other hand, it shows that, for
any preconditioning M, M-iv can be viewed as an algorithm for obtaining an approxi-
mate solution of (8). With this in mind, we can approximate the term Jw in (8) by a
directional difference and solve

(9) F(w) (f(x + dw)-f(x))/ d- v 0

for w. At first glance, this appears to be as difficult as the original nonlinear problem
(1). The crucial observation, however, is that any approximate method for solving (9)
will constitute a preconditioning M for J, where M is generally a nonlinear operator

We note that (9) does not involve J explicitly. Also, there are many algorithms
for solving nonlinear systems that do not involve the Jacobian J explicitly. Therefore,
we have a framework for constructing many possible preconditionings that require
function evaluations only.

One may argue that nothing is gained by this approach, because any method used
to solve (9) approximately can also be applied to the original equation f(x)=0 as
well. There is a difference, however. Independent of the method used to solve (9), the
outer method is still Newton’s method, and thus for example local quadratic conver-
gence is achievable [4]. If the same method applied to (9) is applied to (1) directly,
that method will determine the convergence of the outer loop. The resulting method
may converge much less quickly and, in particular, quadratic convergence may be lost.
See for example Mittelmann [21] who considered an algorithm for nonlinear finite
element problems in which nonlinear Gauss-Seidel iterates are accelerated by the
conjugate gradient method.

Whether Newton’s method is the appropriate choice for the outer algorithm
probably depends on the particular problem, but there is some evidence [22] that it
is among the best choice for general nonlinear problems. In any case, the general
framework in this section allows any algorithm for solving (9) to be used as a
preconditioning for the Krylov subspace method used to solve the linear systems in
Newton’s method. If the method used for the nonlinear preconditioning does not
require explicit reference to the Jacobian, then the overall directional differencing
discrete Newton algorithm can be implemented using only function evaluations. In the
next section, we derive one such nonlinear preconditioning.

4. A nonlinear SSOR preconditioning. A class of methods for solving a nonlinear
system F(w)= 0 that does not use the Jacobian matrix explicitly is the class of

Nonlinear Relaxation Methods [24]:
Start with some initial guess for w and a relaxation factor w.
Repeat until convergence:
Do i= 1,- , n, n,. ., 1

(0) Save (Wi)od= wi.
(1) Solve for wi in Fi( wl, ., wi, , wn) 0

assuming that all other components of w are fixed at
their current values.
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(2) Set Wi(1--oo)(Wi)od+COWi.
End do

End Repeat

The above algorithm can be applied directly to (9), provided we specify the initial
guess for w, the relaxation factor o, and the number of times the outer loop is to be
repeated. By looking at the linear SSOR preconditioning for J, we shall show that the
initial guess w 0 and one iteration of the outer loop are appropriate choices.

Let J be written as

J=D-L-U

where D, L and U are the diagonal, the strictly lower triangular, and strictly upper
triangular parts of J, respectively. The linear SSOR preconditioning for J can be
written as [1], [2]

M o(2- o)(D- coL)D-I(D oU).

Thus, M-Iv can be computed by two backsolves with triangular matrices. However,
there is another well-known interpretation for M-1 v. Consider the following two-stage
iteration:

(10) (D- oL)w, ((1 oo)D + toU)Wo + oov,

(11) (D-wU)w2=((1-oo)D+ooL)Wl +toy.

It is easily verified that, if w0=0, then w2=M-av. On the other hand, it is also
well-known that this two-stage iteration is equivalent to the nonlinear SSOR algorithm
applied to the linear system F(w)= Jw-v with one iteration of the outer loop [24].
For nonlinear systems, F(w) in (9) is an approximation to Jw-v. Thus, it follows
that, for the nonlinear SSOR preconditioning, w0 0 is an appropriate initial guess
and the outer loop should be iterated once. It also follows that, if f is linear, the
nonlinear SSOR preconditioning reduces to the linear SSOR preconditioning for J.

We note that the problem to be solved in Step (1) of the nonlinear SSOR
preconditioning algorithm is a scalar one. Any one-dimensional nonlinear equation
solver can be used. Moreover, the problem in Step (1) does not have to be solved
exactly. For example, if one step of Newton’s method is used [24], then we have the
following algorithm:

Algorithm NSSORP: (One Step Nonlinear SSOR-Newton Preconditioning)
Given w and v. Returns preconditioned v in w.
w=0o
For i= 1,. ., n, n,..., 1
Compute (DJ)iC=the ith diagonal elements of J(x + dw).
Set wi wi- ooF( w)/(DJ).

The diagonal elements (DJ) of the Jacobian J can either be supplied by the user
or be approximated by finite differences. We note that, for efficiency, Algorithm
NSSORP requires the function f to be supplied in component form.

5. Efficiency. In this section, we compare the efficiency of the following four
discrete Newton algorithms:

(a) Form J using a sparse Jacobian algorithm, use a Krylov subspace method to
solve (2).

(b) Form J using a sparse Jacobian algorithm, use a linear SSOR preconditioned
Krylov subspace method to solve (2).
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(c) Use a Krylov subspace method to solve (2), with directional differencing for
.IV.

(d) Use a preconditioned Krylov subspace method to solve (2), with directional
differencing for Jv and preconditioned with Algorithm NSSORP.

Note that all four methods do not require the explicit Jacobian. Method (d) is the
method that we proposed in 4. Method (c) is the same except the Krylov subspace
method is not preconditioned. Methods (a) and (b) are the corresponding methods
except the Jacobian J is approximated by a sparse Jacobian evaluation algorithm.
These are the discrete Newton methods that one might consider using if the Jacobian
is not available explicitly.

Concerning the storage requirements, all four methods need storage for the Krylov
subspace method, which is usually O(n). Methods (a) and (b), however, require
additional storage for the Jacobian J. Thus, methods (c) and (d) might be preferred
for problems where the storage of J presents difficulties, e.g. J is too large for the
machine, or J is dense with no exploitable structures for storage, or J has a nontrivial
sparsity structure which is not convenient to handle.

Next, we compare work. We define one function evaluation of f to be one
evaluation of each component of f. First we consider the case that function evaluations
are expensive compared to matrix-vector operations. All four methods need one
function evaluation to evaluate the right-hand side of the linear system (2) in Newton’s
method. In addition, method (c) requires one function evaluation per step of the Krylov
subspace method (to approximate Jr). Method (d) requires three function evaluations
per step (one to approximate Jv and two for the nonlinear preconditioning). The total
number of function evaluations of course depends on the number of iterations taken
by the Krylov subspace method to achieve the desired accuracy. Let us denote by Ic
and Id the number of iterations taken by method (c) and (d) respectively. For methods
(a) and (b), the number of function evaluations needed to evaluate J depends on the
sparsity structure of J and the sparse evaluation algorithm. Let us denote this number
by s. The total number of function evaluations per Newton step are summarized in
Table 5.1. Methods (a) and (b) can easily be modified to reduce the number of function
evaluations required at each step by employing the chord variant of Newton’s method
which uses the same Jacobian approximation for several steps. We note, however, that
methods (c) and (d) can be modified in a similar way to reduce the number of function
evaluations required at each step by reusing the projection generated from previous
iterations [25]. Here, though, for simplicity, we assume these savings are not exploited.

TABLE 5.1
Total number of function evaluations per Newton step.

Method a b c d
func. eval. / + Ic / 3Ia +

s: number of function evaluations needed to evaluate J.
I: number of iterations taken by Krylov subspace method for

method (c).
Ia: number of iterations taken by Krylov subspace method for

method (d).

We can make the following observations from the table. If the number of Krylov
subspace iterations needed is small compared to s, then it is more efficient to use
directional differencing (methods (c) and (d)). Such situations arise, for example, in
the early stages of a truncated Newton algorithm [4] or if J has an advantageous
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distribution of eigenvalues (e.g. stiff ODEs with only a few large eigenvalues [10]).
On the other hand, if the number of iterations can be reduced by a factor of more
than about three by the nonlinear SSOR preconditioning, then it pays to use method
(d) instead of method (c). Whether the preconditioning can achieve this depends on
the eigenvalue distribution of J and on the accuracy desired. We note that for model
partial differential equations, the linear SSOR preconditioning can be shown to reduce
the number of iterations by a factor of O(h-1/2), where h is the mesh size [2]. Thus,
for this class of problems, the benefits of preconditioning are more pronounced for
larger problems.

Next, we consider the case that function evaluations are inexpensive compared
to matrix-vector operations. For example, if one function evaluation costs approxi-
mately the same as forming the matrix-vector product Jv (which is often the case for
difference methods for PDEs with simple coefficients), then the costs of methods (c)
and (d) would be about the same as that of methods (a) and (b), respectively.

6. Numerical experiments. We have performed some numerical experiments with
the following model nonlinear partial differential equation

-Uxx+2b(e’)x+ce R(x), 0<x<l,

with homogeneous Dirichlet boundary conditions. This problem is discretized on a
uniform grid with n intervals using standard centered finite differencing. The function
R(x) is constructed so that the discrete solution has each component equal to 1. The
resulting n by n nonlinear algebraic system is solved by the methods discussed in
earlier sections. The coefficients b and c allow us to control the asymmetry and the
diagonal dominance of the Jacobian matrix respectively. We note that in practice it
would not be cost effective to solve a one-dimensional problem like this one by an
iterative method. However, the distribution of the eigenvalues of J for this problem
is similar to the distribution of eigenvalues for problems in higher dimensions. Thus,
this problem is quite suitable for testing purposes.

For the Krylov subspace method, we used the Direct Incomplete Orthogonalization
Method (DIOM) of Saad [28]. This method is related to Arnoldi’s method for
computing eigenvalues of general nonsymmetric matrices [29]. At the ith step, an
orthogonal basis for the ith Krylov subspace is generated and the new solution is
constructed so that the corresponding residual is orthogonal to this subspace. Saad has
improved the basic method so that the same code can be adapted to symmetric positive
definite, symmetric indefinite and general nonsymmetric problems. For the precon-
ditioning, we fix o 1 (symmetric Gauss-Seidel).

All computations were carried out on a DEC 20, with a machine precision of
about 10-8 (27 bit mantissa). For the finite difference interval used in the directional
differencing, we use d 10-4. For the stopping criteria of the inner loop, we use a
simple form of truncated Newton strategy:

[]J(x),x /f(x)ll/llf(x)[[ < 10--.
For the convergence of the outer Newton iteration, we use

IIf(x,)[I < 10-4 and 118xll < 10-4 -1- 0-11x,11.

All norms used are infinity norms.
The main objective of the experiments is to compare the performance of directional

differencing methods to that of the corresponding methods using the explicit Jacobian.
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For this purpose, we also tested the following two methods:
(e) Exact Jacobian used in Krylov subspace method.
(f) Exact Jacobian used in Krylov subspace method,

linear SSOR preconditioning based on the exact Jacobian.
Another objective is to show the effectiveness of the nonlinear preconditioning.
Experiments were carried out with methods (c), (d), (e) and (f) for various values of
n, b and c. The results are summarized in Table 6.1. In the table, the columns labelled
Jill[ and [[error[I denote the values of [If(x)[] and the error in the solution x at
termination of the Newton iteration.

TABLE 6.1
Numerical results for model problem.

No. of DIOM iters, at each
step of Newton’s method

Test n b c Method 2 3 4 5 6 fll Ilerrorll

20

5 20 10
6
7
8

9 20 10
10

11 40
12

13 60 0
14

15 60
16

c 20 45 61 .3(-5) .4(-5)
e 20 45 64 .2 (-6) .1 (-5)
d 8 10 10 .3(-5) .3(-5)

8 10 10 .2 (-6) .1 (-5)

c 20 25 30 40 .1 (-5) .3 (-5)
e 20 25 34 35 .3 (-6) .2 (-5)
d 7 7 8 9 .3 (-5) .3 (-5)

7 7 8 9 .2 (-6) .1 (-5)

c 20 30 50 55 .5 (-6) .2 (-6)
d 7 5 7 6 7 9 .2 (-5) 1.0 (-5)

c 40 "120 108 "120 .6 (-4) .4 (-3)
d 15 24 26 .6 (-5) .5 (-4)

c 30 71 74 .8(-5) .9(-4)
d 14 28 31 .3 (-5) .6 (-4)

c 60 110 "140 "140 "140 "140 .5 (-4) .2 (-3)
d 22 55 78 .5 (-5) .3 (-4)

Notation: a(b) means a lOb.
*I means that the desired accuracy was not achieved after I iterations.

Tests 1-4 and 5-8 show that the directional differencing algorithms behave almost
exactly like the corresponding algorithm with the explicit Jacobian. They show that
the nonlinear preconditioning (Algorithm NSSORP) is as effective as the linear SSOR
preconditioning based on the explicit Jacobian.

Tests 9-10 show the effectiveness of the preconditioning for a more nonsymmetric
problem (larger b). The reduction of the number of DIOM iterations caused by the
preconditioning is more pronounced than for more symmetric problems (e.g. Tests 5
and 7 and Tests 13-14), especially near convergence of the Newton iteration where
higher accuracy is needed in the inner loop.

Tests 11-12, 15-16 are similar to Tests 1 and 3 (b and c are the same), except
that the size n of the system is larger. They show that the unpreconditioned algorithms
converge rather slowly and take a lot of DIOM iterations to achieve the desired
accuracy. On the other hand, the preconditioned algorithms converged rather fast and
took much fewer iterations. These results confirm that, at least for PDE type problems,
the benefit of preconditioning is more pronounced for larger problems.
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We have also performed tests on some other non-PDE type problems (e.g. the
PEN1 Problem tested in [22], [23]). The trends are similar to the ones reported here,
namely, that the directional differencing algorithms behave almost exactly like the
corresponding algorithms with the exact Jacobian.

7. Conclusion. In this paper, we propose an algorithm for implementing Newton’s
method that is particularly attractive for certain large sparse nonlinear systems. A
preconditioned Krylov subspace method is used to solve the linear systems that arise
at each step of Newton’s method. However, the Jacobian matrix is neither stored nor
referenced explicitly. The user supplies the nonlinear function only. The main contribu-
tion of the paper is a framework in which various nonlinear preconditionings can be
derived which require function evaluations only. We derived and tested a nonlinear
SSOR preconditioning.

On the limited numerical experiments that we have performed, it is as effective
as the linear SSOR preconditioning that uses the exact Jacobian explicitly. These tests
also indicate that the nonlinearly preconditioned discrete Newton algorithm has the
potential of being as efficient and as robust as the standard discrete Newton algorithms.

REFERENCES

[1] O. AXELSSON, A generalized SSOR method, BIT, 13 (1972), pp. 443-467.
[2] R. CHANDRA, Conjugate gradient methods]’or partial differential equations, PhD thesis, Dept. Computer

Science, Yale Univ., New Haven, CT, 1978.
[3] T. F. COLEMAN AND J. J. MORI, Estimation of sparse Jacobian matrices and graph coloring problems,

Technical Report ANL-81-39, Argonne National Laboratory, Argonne, IL, 1981; also SIAM J.
Numer. Anal., 20 (1983), pp. 187-209.

[4] R. S. DEMBO, S. EISENSTAT AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer. Anal.,
19 (1982), pp. 400-408.

[5] J. E. DENNIS AND J. J. MOR, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977),
pp. 46-89.

[6] T. DUPONT, R. P. KENDALL AND H. H. RACHFORD, An approximate factorization procedure for
solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 6 (1968), pp. 753-782.

[7] HOWARD C. LEMAN, Iterative methods for large, sparse, nonsymmetric systems of linear equations,
PhD thesis, Yale Univ., New Haven, CT, 1982, Techreport 4229.

[8] R. FLETCHER AND C. M. REEVES, Function minimization by conjugate gradients, Comput. J., 7
(1964), pp. 149-154.

[9] N. K. GARG AND R. A. TAPIA, QDN: A variable storage algorithm for unconstrained optimization,
Technical Report, Dept. Mathematical Sciences, Rice Univ., Houston, TX, 1980.

[10] W. C. GEAR AND Y. SAAD, Iterative solution of linear equations in ODE codes, Technical Report
UIUCDCS-R-81-1054, Dept. Computer Science, Univ. Illinois, Urbana, 1981; this Journal, 4
(1983), pp. 583-601.

[11] P. E. GILL, W. MURRAY, M. A. SAUNDERS AND M. H. WRIGHT, A procedure for computing

forward-difference intervals for numerical optimization, Technical Report SOL 81-25, Systems
Optimization Lab., Dept. Operations Research, Stanford University, Stanford, CA, 1981.

[12], Practical Optimization, Academic Press, New York, 1981.
[13] IVAR GUSTAFSSON, A class offirst order factorization methods, BIT, 18 (1978), pp. 142-156.
[14] Louis A. HAGEMAN AND DAVID M. YOUNG, Applied Iterative Methods, Academic Press, New

York, 1981.
[15] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradient for solving linear systems, J. Res.

NBS, 49 (1952), pp. 409-436.
16] KANG CHANG JEA, Generalized conjugate gradient acceleration of iterative methods, PhD thesis, Univ.

Texas, Austin, 1982.
[17] A. R. CURTIS, M. J. D. POWELL AND J. K. REID, On the estimation of sparse Jacobian matrices, J.

Inst. Maths. Applics., 13 (1974), pp. 117-119.
[18] T. A. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math., 28

(1977), pp. 307-327.



542 TONY F. CHAN AND KENNETH R. JACKSON

[19] S. T. MCCORMICK, Optimal approximation of sparse Hessians and its equivalence to a graph coloring
problem, Technical Report SOL 81-22, Dept. Operations Research, Stanford Univ., Stanford, CA,
1981; Math. Progr., 26 (1983), pp. 153-171.

[20] J. A. MEIJERINK AND n. m. VAN DER VORST, An iterative solution method for linear systems in
which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[21] HANS D. MITTELMANN, On the efficient solution of nonlinear finite equations I, Numer. Math., 35
(1980), pp. 277-291.

[22] STEPHEN G. NASH, Truncated Newton method, PhD thesis, Stanford Univ., Stanford, CA, 1982.
[23] DIANNE P. O’LEARY, A discrete Newton algorithm for minimizing a function of many variables, Math.

Progr., 23 (1982), pp. 20-33.
[24] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution ofNonlinearEquations in Several Variables,

Academic Press, New York, 1970.
[25] B. N. PARLETr, A new look at the Lanczos algorithm for solving symmetric systems of linear equations,

Lin. Alg. and Appl., 29 (1980), pp. 323-346.
[26] M. J. D. POWELL AND PH. L. TOINT, On the estimation of sparse Hessian matrices, SIAM J. Numer.

Anal., 16 (1979), pp. 1060-1074.
[27] JOHN D. RAMSDELL, Structural analysis of large sparse systems of nonlinear equations with applications

to fire modeling, PhD thesis, Harvard University, Cambridge, MA, 1982.
[28] Y. SAAD, Practical use of some Krylov subspace methods for solving indefinite and unsymmetric linear

systems, Technical Report 214, Yale Univ., New Haven, CT, 1982; this Journal, 5 (1984), pp.
203-228.

[29] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, London, 1965.



SIAM J. ScI. STAT. COMPUT.
Vol. 5, No. 3, September 1984

1984 Society for Industrial and Applied Mathematics

004

INCOMPLETE FACTORIZATION METHODS FOR FULLY IMPLICIT
SIMULATION OF ENHANCED OIL RECOVERY*

G. A. BEHIE? AND P. A. FORSYTH, JR.’

Abstract. Several incomplete factorization methods (ILU) for strongly nonsymmetric block-banded
systems are developed. These systems result from the coupled partial differential equations which occur in
the simulation of enhanced oil recovery. Several approximations using natural, diagonal (D2) and alternating
diagonal (D4) orderings are used with ORTHOMIN acceleration. These methods can all be used in
conjunction with the COMBINATIVE method for multi-phase problems. Use of the modified first order
factorization is also investigated. Test results are given for single- and multi-phase problems. Timings for
both scalar and vector mode on the CRAY are presented.

Key words, incomplete factorization, preconditioning, nonsymmetric block-banded systems, reservoir
simulation

1. Introduction. Simulation of thermal methods for enhanced oil recovery
requires the solution of coupled sets of highly nonlinear partial differential equations.
Usually it is necessary to solve 3 to 10 coupled equations per finite difference cell.
These equations represent the conservation of the various oil, gas and water com-
ponents, and energy. The equations are usually discretized using a fully implicit time
step scheme with nearest neighbor coupling in space. The resulting set of nonlinear
equations is solved using Newton iteration [10], [9], [15]. Since the solution of the
Jacobian matrix may represent 90% or more of the total computing cost for a large
thermal (steam or in situ combustion) simulation problem, it is clear that effective
iterative methods are required. Our methods are designed principally for fully implicit
systems. However, these techniques are also applicable to the linear systems arising
from an IMPES approximation [3]. The IMPES method uses explicit saturations with
only the pressure taken implicitly. This gives rise to only one equation per finite
difference cell.

The Jacobian matrix arising from thermal problems is block-banded and strongly
nonsymmetric. The block-bands represent the nearest neighbor connections arising
from finite difference approximations, with five bands in two dimensions, and seven
in three dimensions. The Jacobian also tends to be nondiagonally dominant. Since oil
reservoirs have complicated geologies, the equation coefficients (and hence the elements
of the Jacobian) are strongly anisotropic with large jump discontinuities of several
orders of magnitude. Methods such as LSOR [31 either diverge or converge intolerably
slowly.

In order to minimize user intervention and costly numerical experimentation,
solution methods for reservoir simulators should not be crucially dependent on iteration
parameters. Incomplete factorization methods (ILU) with conjugate gradient acceler-
ation [24], [22], [35] for symmetric problems or ORTHOMIN [32], [4] for nonsym-
metric problems have few, if any, iteration parameters. Recently, these methods have
been widely used for IMPES [35], fully implicit black oil [4] and fully implicit thermal
[4], [29] simulation. The objective of this paper is to generalize these techniques to
block-banded nonsymmetric systems, and compare the numerical performance of ILU

* Received by the editors October 19, 1982, and in revised form May 31, 1983. This research was
supported by the Associate Members of CMG and by the Alberta/Canada Energy Resources Research
Fund administered by the Department of Energy and Natural Resources of the Province of Alberta.
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methods on some test problems. The test problems consist of model nonsymmetric
single-phase examples, as well as some problems generated from thermal simulations.

As noted by Watts [35], ordering can significantly affect the performance of ILU
methods. This is essentially because the problems are highly anisotropic. Since the grid
is usually aligned with the principal axes of the permeability tensor, it is natural to
assume that some form of diagonal ordering will reduce the directional bias. (For
engineering purposes it is commonly assumed that the permeability axis has a constant
direction.) Consequently, we will investigate various degrees of factorization for
natural, diagonal (D2) and alternating diagonal (D4) orderings. These orderings are
described in detail in [26]. The natural orderings are an extension of the methods
described in [4], while the D2 methods are a generalization of the work described in
[35] to the nonsymmetric block-banded case. Tan and Letkeman [29] suggested D4
ordering in the context of an incomplete factorization. The method described here
uses a slightly different approach than the one described in reference [29], and requires
less work per iteration. All these techniques may be used in conjunction with the
COMBINATIVE method [4]. We will also investigate the effect of using the modified
factorization (MILU) [16], [17], [20] to account for the error terms in the incomplete
factorization.

2. ILU methods. Given a sparse banded matrix A, an incomplete factorization
LDU of A is defined to be:

(1) LDU=A+E

where E is the error matrix, L, D and U are lower triangular, diagonal and upper
triangular matrices respectively. In order to minimize the work per iteration, L+D+U
should have a sparse banded structure close to the structure of A. However convergence
will be more rapid if E is made as small as possible. This is generally achieved at the
expense of extra bands in L and U. An incomplete factorization can be viewed as
carrying out a few steps of Gaussian elimination on A. If the bands of the original
matrix are labelled first degree, then higher degree bands are formed by fill-in resulting
from elimination. The degree of a fill band is equal to the degree of the band being
eliminated plus the degree of the band inducing it. Our use of degree is equivalent to
Watts’ concept of order [35]. We use the word degree to avoid confusion with the
"first order" factorization of Gustafsson [16], [17]. The concept of degree is explained
in greater detail in [35] and [5].

Having decided on a particular degree of factorization, the elements of L, D and
U can be determined by requiring that LDU be as close as possible to A. The simplest
way to achieve this is as follows: if bands of LDU coincide with bands of L+D+U
then the corresponding elements of LDU are set equal to the elements of A. There
are additional bands in LDU outside the structure of L+D+U which are nonzero
and can be represented by the error matrix E (1). These error terms will be discussed
in a later section. Note that there is another strategy for adding extra bands which
amounts to adding bands to L+D+U corresponding to the structure of A+E at each
stage [16]. However, we will use the "degree" strategy defined above in the following.
It will also be assumed that the matrix A is derived from the usual five-point molecule
in two dimensions, or the seven-point molecule in three dimensions. These assumptions
can be relaxed if necessary [16], [25].

The structure of each of the incomplete factorizations to be used in this paper is
given in Figs. 2, 4, and 6. These figures show the nonzero elements in L+D+U as
they appear on the finite-difference grid. Consider first a natural ordering of the grid
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FIG. 1. Natural ordering in two dimensions.

points. Natural ordering for a 5 x 5 two-dimensional grid is shown in Fig. 1. The
computational molecule used in naturally ordered factorizations is illustrated in Fig.
2. The point under consideration (corresponding to the diagonal) is labelled D. The
points corresponding to bands in L are labelled by L with a subscript giving the degree
of the band, similarly with the bands in U. The plane of each portion of the molecule
is also labelled. Restricting attention to the two-dimensional molecule (plane K), it is
easily seen that the original five-point operator of nearest neighbor connections is
given by the diagonal point (D), and all the points labelled L, U. This molecule
corresponds to a five-banded matrix. The second degree factorization includes all the
above elements plus the elements labelled L2, U2. These add connections to the
i- 1, j + 1) and + 1, j- 1) points, and correspond to extra bands in the ILU decompo-

sition adjacent to the outermost bands of the original matrix. Similarly, the third degree
factorization consists of all the above elements plus the elements labelled L3, U3. These
elements correspond to extra bands adjacent to the bands represented by L2, U2. In
the following, second and third degree naturally ordered factorizations will be investi-
gated. Note that a second degree factorization corresponds to the AB factorization
described in [4]. The third degree factorization is the next more accurate factorization
according to the strategy outlined above.

K+I

L3

Le LLI
L Lz L K-1

FIG. 2. Computational molecule for ILU natural ordering. The asterisk indicates points directly above
or below the diagonal point.
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FiG. 3. D2 ordering in two dimensions.

Diagonal or D2 ordering of a two-dimensional grid is shown in Fig. 3. The extension
to three dimensions is described in [35], [26]. For D2 ordering, we will consider third
and fourth degree factorizations in three dimensions, and second through fifth degree
factorizations in two dimensions. These factorizations are also described by Watts [35].
We have made the obvious generalization to multi-phase nonsymmetric systems. The
molecule for the D2 factorizations is illustrated in Fig. 4.

K-2

Ua
L-

L2 UI

K+2

FiG. 4. Computational molecule for ILU with D2 ordering. The asterisk indicates points directly above
or below the diagonal point.

For alternating diagonal or D4 ordering, we proceed in a slightly different manner
from that in [29]. Firstly, the unknowns are red-black ordered so that Ax b can be
written [36] (see Fig. 5a):

XR bR]
where I)R, I)B are block diagonal matrices, and A,R and An are block-banded. For
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FIG. 5. D4 ordering in two dimensions. (a) red-black, (b) diagonal ordering of black points.

convenience we unitize DR so that (2) is equivalent to

(3)
An Du xu bn

This system is equivalent to:

(4) [
If we let

Dn-AnA, xn bu-Aub’R

R=Dn-AnA,
(5) c b,,-A,,b’,

then the system:

(6) Rxn=C

is completely decoupled. Of course, the above reduction process can only be used with
a nearest neighbor discretization on the original grid. The red points have been
eliminated and we need only concern ourselves with the solution of (6). The reduced
system R is then diagonally ordered (see Fig. 5b). A more detailed description of D4
ordering is given in [26]. The bands of R are defined to be first degree. The idea of
using an incomplete factorization on red-black ordered systems was suggested by
Axelsson and Gustafsson [2]. In the following we will consider first through third
degree factorizations of R in two dimensions, and a first degree factorization of R in
three dimensions. These molecules are illustrated in Fig. 6. The spaces in the molecule
correspond to the red points which have been eliminated. Note that in reference (29)
the original system is D4 ordered, and the entire matrix A is factored. This effectively
doubles the number of unknowns compared to the technique described above. Note
that the three-dimensional first degree molecule (Fig. 6) corresponds to the three-
dimensional molecule of "induced terms" in reference [29]. However, the two-
dimensional molecule of induced terms in reference [29] does not not correspond to
either a second or third degree factorization of R, since two of the third degree bands
are missing.

The intermediate step of red-black ordering has some advantages in developing
a fast code. Although the original elements of R are needed in order to compute its
incomplete factorization, they are overwritten by the elements of the factorization.
The elements of R need not be stored explicitly if Du, A and A are stored. Dn and
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K+I

K-1

K-2

FIG. 6. Computational molecule for ILU with D4 ordering. The asterisk indicates points directly above
or below the diagonal point.

AB are simply the black portion of the original system A, while A. can be stored in
An. Acceleration methods such as ORTHOMIN [32], [4] require a matrix-vector
multiply at each iteration of the form:

(7) y=Rv.

In three dimensions the first degree factorization of R has 19 bands so that a straightfor-
ward evaluation of equation (7) would require 19 Nn multiply-adds, where NB is the
number of black points. However, if (7) is evaluated by

(8) y Rv nv-(A(A v)),

then this costs only 13 Nn multiply-adds. In two dimensions both methods require the
same amount of work to evaluate (7). However, the red-black ordering is useful in
producing vectorizable code. This will be discussed later.

Recall from (2) that

LDU A+E

where the block-bands of the error matrix fall outside the structure of L+D+ U. The
error matrix E can be taken into account in an approximate way by using the first-order
modified factorization (MILU) of Gustafsson [16], [17]. In the following we will use
both the ILU and MILU factorizations, except that the arbitrary parameter used by
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Gustafsson [16], [17] is not included here. However, this method can occasionally
produce undesirable results [13].

3. ORTttOMIN acceleration. The various ILU factorizations discussed above
form the basis of an iterative solution method of the system of linear equations"

(9) Ax=b.

An acceleration procedure is generally added to the ILU factorization. Some acceler-
ation procedures which have been used for nonsymmetric systems are Chebyshev
acceleration [23], ORTHODIR AND ORTHORES [37], ORTHOMIN [4], [32] and
Lanczos acceleration 18]. The acceleration method used in this paper is ORTHOMIN.
It provides a computationally simple, robust acceleration method. It does not require
estimation of eigenvalues as does Chebyshev acceleration for example. Some com-
parisons between ORTHOMIN and the ORTHODIR and ORTHORES algorithms
have been made in references [13], [37].

The acceleration is added to the system in (9) which has been preconditioned by
the ILU factorization in the following way:

(10) [A(LDU)-I](LDU)x b.

This gives rise to the computational algorithm (for k 0, 1,... )"

(11) V
(k) (LDU)- r(k),

{ (Av(k), Aq(i))
(12) alk)= (Aq(i),Aq() fr all in (m <-- <-- k-1)’

otherwise,
k-1

(13)
i=m

m<_<_k-1

k-1

(14)
i=m

m<=k-1

(15)
(Aq(k), Aq(k))

(16)

()

where

x(k+l) X
(k) %- to(k)q (k),

r(k+l) r(k)--to(k)Aq(k),

m =int (k/(NORTH+ 1)) (NORTH+ 1)

and int (x) is the largest integer less than or equal to x. Note that this is referred to
in [12] as the restarted version of the ORTHOMIN algorithm. The algorithm is
restarted every NORTH+ 1 iterations. Note that the search direction q(k) at each
iteration level is constructed to be A orthogonal to the previous (k-m) search
directions. The ORTHOMIN procedure is discussed in more detail in [4]. This reference
also discusses guidelines for the choice of NORTH and gives work counts. For low
degree ILU factorizations an efficient way to implement ORTHOMIN acceleration is
given in reference [11]. These methods were not used in this study since they are not
efficient for higher degree factorizations.
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4. COMBINATIVE method. Another method of producing an approximate
factorization of the sparse block-banded matrix A has been discussed in [4]. It works
on the assumption that the matrix elements corresponding to certain derivatives (for
instance pressure) are more strongly coupled than the others. These equations are
decoupled from the others in the following way. Consider a block-row of the Jacobian
matrix representing the equations at the (i, j) node for a 2D system with three coupled
equations per node. This is illustrated in Fig. 7. It is assumed that we are solving for
oil pressure, P0, water saturation, Sw, and oil saturation, So, in each block. The elements
marked "D" represent the derivatives with respect to pressure and are strongly coupled
to each other. The elements marked "G," in the diagonal block, are eliminated exactly
by doing row operations. This of course, changes other elements in the row. The
elements marked "e" are now assumed to be zero, giving a decoupled system for the
"D" elements. This system is solved using D4-ordered Gaussian elimination to obtain
an estimate of P0 in each grid block. The estimate is used to remove the remaining
derivatives with respect to P0 to the right-hand side. Sw and So are now approximated
using the elements of the diagonal block matrix, which is in lower triangular form.
This last step was not done in [4]. It has been included in the present paper since it
provides a more accurate approximation of all the variables at the expense of very
little extra work.

GRID
VARIABLE

I,d-1 I-I, I,d I+1,d I, d*1

Po Sw So Po Sw So Po Sw So Po Sw So Po Sw So

FIG. 7. Block row of Jacobian matrix for a two-dimensional grid with three coupled equations per node.

This second type of approximate factorization used in conjunction with an ILU
factorization of all the variables and ORTHOMIN acceleration forms the basis of the
COMBINATIVE method. The method is characterized ly fast convergence. The
residual is often reduced by several orders of magnitude at each iteration. This usually
results in a smaller residual for a given convergence tolerance than an ILU method
alone. The application of the COMBINATIVE method need not be solely to reservoir
simulation problems. It could equally well be applied to other types of fluid mechanics
problems where pressure is a dominant variable.

The algorithm proceeds in the following way. We call the first approximate
factorization (produced by the method described above) L1U1. We call the second
approximate factorization (produced by an ILU factorization) LzD2U2. Then

(18) V* (L1U1)-lr(k)

(19) r*=rk)--Av*,

(20) v(k) (L2D2U2)-lr*

is followed by ORTHOMIN acceleration as in (12) to (17). Note that the COMBINA-
TIVE method only applies to block-banded systems resulting from fully implicit
simulation of multi-phase systems (more than one equation per finite difference cell).
ILU factorizations, in contrast, can be used also on the systems of equations arising
in single-phase simulation (one equation per finite difference cell). Since the COM-
BINATIVE method uses Gaussian elimination to solve for the pressure, this method
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is restricted to problems having a fairly small half-bandwidth. Assuming nx > ny > nz
(number of grid blocks in the x, y and z direction respectively), we have found
ny nz < 50 on scalar machines or ny nz < 100 on vector machines to be the practical
upper limit for the COMBINATIVE method.

5. Programming considerations for vector machines. The methods described
above were coded in standard FORTRAN; no machine specific subroutine calls were
used. Consequently, this code should be completely portable. The matrix-vector
multiply used in ORTHOMIN acceleration can be performed efficiently on a vector
machine by multiplying each band individually [21] for naturally ordered factorizations.
In the case of D2 ordering, the matrix has curved bands, which are not conducive to
efficient matrix-vector multiplication. The unknowns are reordered, and the matrix-
vector multiply is carried out using natural ordering. For D4 ordering, the unknowns
are reordered into red-black ordering. However, for arbitrary nx, ny (number of grid
blocks in the x and y direction respectively) the bands of R (7) may be curved even
for red-black ordering. The bands of R are straight only if nx is odd in two dimensions,
and nx, ny odd in three dimensions. In our code, null blocks are added to the system
to ensure this condition. The small amount of extra work required is more than offset
by the large gain in speed of vectorized code. On a scalar machine, this extra work
can be skipped around. Ensuring that nx, ny are odd also allows the reduction operation
(3)-(6) to be fully vectorized. Note that in this case the red blocks are the odd numbered
naturally ordered blocks, and the black blocks are the even numbered naturally ordered
blocks. The remaining portions of the ORTHOMIN algorithm are trivially vectorizable.
All these vector operations are of length equal to the number of unknowns. This
section of the code is typically 6-8 times faster in vector mode over scalar mode on
the CRAY.

The forward and back substitution phase of the ILU iteration is highly recursive,
but some of the operations in each step can be vectorized. Assuming the factors are
suitably stored, then all the unknowns in a block can be computed using dot-products.
However, it is necessary to gather all the required unknowns into a single vector, and
this is not a very efficient operation. The length of these dot-products is neq * nbd,
where neq is the number of unknowns per block, and nbd is the number of block-bands
in L or U. The number of block-bands is typically between 3 and 17 depending on
dimension and type of factorization. In spite of the short vectors and the gather
operation (which is performed in Fortran), we obtain approximately a 30%-40%
reduction in time for the vector over the scalar compilation of the forward and back
substitution. Note that for a first degree naturally ordered factorization, the forward
and back substitution can be partially vectorized by ordering along diagonals. In
reference [30], a 70%-80% reduction in time was reported for the vector mode on
the CRAY. However, it is not clear that the same savings will be obtained for
block-banded systems. It has also been observed that a first degree naturally ordered
factorization sometimes gives very poor results for thermal problems [4].

It might be possible to reduce the recursion in the forward and backward substitu-
tion by writing L-1 (D’(I+L’))-1 -(I-L’ +... )(D’)-1 [34]. However, since the L-1

is only approximate, this would affect the convergence of the ILU methods. Our code
is also used on scalar machines, so that any change in the algorithm which is slower
on a scalar machine is clearly undesirable.

The initial incomplete factorization consists of highly recursive, small (neq x neq)
matrix-matrix multiplies, and produces slower vector code than scalar code. Con-
sequently, these subroutines are always compiled in scalar mode.
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The D4 elimination which is used either by itself or as part of the COMBINATIVE
routine can be effectively vectorized, since the inner loop consists of a scalar-vector
multiply of length equal to the bandwidth [7].

6. Test problems. There is a lack of standard test problems for strongly nonsym-
metric systems. The usual test problems (Stone’s problems [28], Kershaw’s problem
[22]) are symmetric. For symmetric problems of course, the ICCG/MICCG [16], [17],
[22], [24], [35] or multi-grid techniques [1], [6] are the most efficient.

Problem 1. Some recent tests have been carried out using the convection diffusion
equation [12]:

(21) -(Pxx +Prr)+ /3Px =O.

If (21) is discretized on the unit square with a uniform mesh of size h (x ih, y jh)
then (21) becomes

(22) 4Pd-- Pid_l (1 + flh/2)Pi_ld- (1- flh/2)P+ld- P,+ O,

where central differencing is used on the convective term. The boundary conditions are

P(x, O)= O, P(O, y)= 1
(23)

P(x, 1) 1, Px(1, y)=O.

The derivative boundary condition at x 1 nh is approximated by:

(24) (3+ flh/2)P,,d-P,,d_l-(1 + flh/2)P,,_,-P,,d+l=O.

Note that for h/2> 1, (22) loses diagonal dominance and the off-diagonals change
sign. This problem was solved on both 33 33 and 65 65 meshes, with/3 1000.

Problem 2. In order to examine the effect of large differences in permeability, we
consider the problem

(25) ask x] +yy K -y]-/3 \x-y] -q

which is discretized on the unit square with a uniform mesh of size h in the following
way:

(26)

KXi-1/2KXi+l/2,Jh 2 (Pi+l,j-Pij)-,
h2 (Pi,j-Pi-l,j)+-

h2

[3i,j
(Pi, +

qi,jKY,-I/2 /3i,(p,i p,_,)+_h_2 J pi,i)=
h2h2 Pi,j Pi,j-1) -Upstream differencing is used on the convective terms, and/3 =/3i,/h so that equation

(26) is independent of h2. The region used is shown in Fig. 8 with:

KX KY 1, (x, y) A,

KX KY 1000, x, y) B,

ql 1, q2 .5, q3 .6,

q4=--1.83, q5=--.27, /3i,i=10

where KXi/I/2,i, KYi,j/I/2 (26) are defined harmonically [3]. The Dirichlet condition
Pi, 1 is imposed on the boundary of AoB. Both 33 33 and 65 65 problems were
considered.
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FIG. 8. Areal geometry for test problem 2.

Problem 3. A few results will be given for the problem used by Tan and Letkeman
[29]. Although this problem is symmetric, it does demonstrate the effect of the modified
factorization (MILU), at least for this special case. This problem is Case 1 of reference
[29]. This is essentially Poisson’s equation on a 10 x 10 grid with off-diagonals equal
to 100 if not zero, and diagonal equal to the negative of the sum of the off-diagonals
plus 10-3. A single constant rate injection well of strength q 10 is placed in the 1,
j 1 cell. Neuman boundary conditions are used.

Problem 4. The thermal simulator ISCOM [15] was used to generate a Jacobian
matrix from a two-dimensional 31x 31 steam injection problem. The matrix was
generated from the first Newton iteration of the first time step. With one dead oil

I’"

IIIIIIIIIIIIIIIIII BIIIIIIII/IIIIIIIII

_"/q
l__l

FIG. 9. Areal geometry for test problem 4.
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component, there were three unknowns per grid block. The uniform 31 31 grid is
depicted in Fig. 9. Each block has dimensions 40 40 40 ft, porosity .3 except in
region B which has porosity .03. The permeabilities (in darcies) are:

KX .01, KY 8.0, (x, y) e A,

KX 8.0, KY .01, (x, y) e C,

KX=0, KY=410-4, (x,y)B.

The oil and water compressibilities are taken to be 210-6 psi-1, with no rock
compressibilities. These small compressibilities make this problem quite difficult. The
initial pressure everywhere is 130 psi. There is an injection well at ql, injecting 75%
quality steam (T 650F), constant rate 800 bbl/day water equivalent. At q2 there is
a constant pressure production well with bottom hole pressure 14.7 psi. The initial
time step was .2 days, while gravity is in the negative y direction.

Problem 5. ISCOM was used to generate a Jacobian matrix from a three-
dimensional 11 11 8 steam problem. As before, the number of unknowns per grid
block was three, and the matrix was generated from the first iteration, first time step.
The x-y cross-section is depicted in Fig. 10, with gravity in the negative y direction.

FIG. 10. Cross-section in x-y plane of the three-dimensional test problem 5.

Each block has dimensions 40 40 40 ft, porosity .3 except in region B which has
porosity .03. The permeabilities (in darcies) are"

KX .01, KY .8, KZ .01,

KX .8, KY .01, KZ .8,

KX 0, KY 4 10-4, KZ 0,

KX =40, KY =40, KZ=40,

(x, y,z)eA, l<-k<-4,

(x, y,z)eA, 5<-k<-8,

(x, y,z)eB, l<-_k<-8,

(x, y, z)e C, l <- k<-8.

The oil and water compressibilities were 3 10-6 psi-1, with no rock compressibilities.
The initial pressure was everywhere 130 psi. There were four injection wells at i= 1,
k 1, j 1, 2, 3, 4, each injecting 75% quality steam (T 650F), 200 bbl/day water
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equivalent. There was a single constant pressure production well at 11, ] 11, k 8,
with bottom hole pressure 14.7 psi. The initial time step was .2 days.

7. Results. All the test problems used the convergence test

r I1__ < 10-6,(27)
IIr011z

where r0 is the initial residual, r the final residual, and ]l" 112 denotes the 12 norm. The
initial solution was zero everywhere. For test problems 1 to 3, the amount of work
required for convergence (27) is given in Tables 1 to 3. The work is given in terms of
a work unit (wu), where

(28) wu number of operations/N (multiplications & divisions).

This is simply the amount of work/unknown. The work counts include the set-up cost
(factorization work), forward and back solve, and ORTHOMIN acceleration. For the
D4 ordering, the cost of reduction (2)-(6) and the recovery of the red points (3) is
also included.

Generally large values of NORTH ( 3) reduce the number of iterations required
for convergence. However, the cost per iteration increases as NORTH increases. For
relatively easy single phase (one equation per cell) problems, we have found a value
of NORTH < 5 to be optimal. On the other hand, for practical multi-phase reservoir
simulation problems we generally use a value of NORTH in the range 10-15.

Problem 1. The results for problem 1 are given in Table 1. For this problem,
NORTH (12) was set equal to 2. Note that the diagonal orderings give a significantly
smaller work count than the natural ordering. For some of the methods the modified
factorization (MILU) is slightly better than the unmodified factorization, but the
difference is not large. Table 1 also gives results for the 65 65 problem for the D4

TABLE
Problem 1"
33x33

ILU

Natural

D2

D4

2nd degree
3rd degree

2nd degree
3rd degree
4th degree
5th degree

1st degree
2nd degree
3rd degree

240
223

137
155
100
115

76
78.5
96.5

6565

ILU

D4 st degree
2nd degree
3rd degree

76
78.5
96.5

* One work unit N operations.

MILU

222
201

95
133
104
120

77.5
81
81.5

MILU

77.5
81
81.5
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orderings. Observe that there is no increase in the work/unknown. This is probably
because this problem is quite easy, and the D4 method is rapidly convergent.

Elman [12] has solved problem 1 using a first degree naturally ordered incomplete
factorization. The emphasis was in investigating the effects of various acceleration
methods, such as ORTHOMIN, generalized conjugate residual, and Chebyshev acceler-
ation. The effect of varying the number of previous vectors used in the algorithm was
also investigated. Both modified and unmodified factorizations were used on 32 32
and 64 64 grids. Our results should be viewed as comparing different preconditionings
with the same acceleration method. We have observed that this problem is sensitive
to the choice of acceleration parameters.

Problem 2. The results for problem 2 are given in Table 2. The value of NORTH
for these runs was 5. Note that the work counts are generally much higher for this
problem than for problem 1, indicating that this problem is more difficult. Except for
the higher degree diagonally-ordered factorizations, the MILU methods give better
results than the ILU methods. However, for the D2 and D4-ordered factorizations
the decrease in work count with increasing degree is more dramatic for the ILU
methods than for the MILU methods. A similar trend was noted previously for
symmetric problems [5], [6]. As a result the best work count for the 33 33 problem
is obtained with the 3rd degree D4 ILU method.

TABLE 2
Problem 2*
33x33

ILU MILU

Natural 2nd degree 894 321
3rd degree 640 300

D2 2nd degree 938 389
3rd degree 581 353
4th degree 436 332
5th degree 295 331

D4 1st degree 409 245
2nd degree 236 219
3rd degree 158 214

65x65

ILU MILU

D4 1st degree 995 350
2nd degree 542 302.5
3rd degree 420 292

* One work unit N operations.

The results for D4 ordering applied to the 65 65 problem are also given in Table
2. Note the large increase in work/unknown for the ILU methods compared to the
MILU methods. This is in spite of the fact that the large differences in permeability
make some of the assumptions of the MILU method doubtful [25]. Again, a similar
effect has been observed for symmetric problems [5], [6].

The best results for this problem are generally achieved with the higher degree
orderings, in particular D4 orderings. This is in contrast to problem 1, where the most
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effective method was the 1st degree D4 ordering. This merely reflects the fact that
higher degree factorizations do not pay off for an easy problem.

Problem 3. Table 3 gives the results for the third degree D4 ordering (NORTH
5) for problem 3. Note the large difference between the ILU and MILU methods,
even for this small 10 10 grid. This difference is even more pronounced for the other
orderings. As noted by Tan and Letkeman [29], it is necessary to take the error terms
into account for this problem. The results in Table 3 may be compared with those
given in reference [29], if we assume that one SIP iteration costs 22 N operations [24].
From [29, Fig. 4], the maximum normalized residual at 7.3 SIP iterations is roughly
2 10-7. This compares with 2 x 10-8 given in Table 3. This improvement is essentially
because the D4 method used here operates on the reduced system (6), rather than
the full system used in [29]. This effect should be more pronounced for larger problems.

TABLE 3
Problem 3*. Max normalized residual at convergence 2 x 10-8.

ILU MILU

D4 3rd degree 272 161.5

* One work unit N operations.

Problems 4 and 5. Tables 4 to 8 give the results in terms of CRAY CPU time
for test problems 4 and 5. Recall that these problems are generated from a steam
simulation, with 3 equations per grid block. Note that since the factorization work
requires matrix-matrix multiplies, the set-up cost will be proportional to neq3 (neq
number of coupled equations/cell), while the forward and back solve is proportional
to neq2. This effect is of course absent from single-phase problems. The value of
NORTH for these runs was NORTH 10. For comparative purposes we also give the
time for Gaussian elimination with D4 ordering [26]. For a three-dimensional problem,
D4 ordering requires one-sixth of the work required for natural ordering.

Table 4 gives the results for the two-dimensional problem 4, run in scalar mode
on the CRAY. Note the large differences in time for the ILU method, depending on
the ordering used. The diagonal orderings seem to be generally better than the natural
orderings for this problem which has large permeability contrasts. This confirms the
conjectures in references [29], [35]. The best result for the ILU method is with 2nd

TABLE 4
Problem 4. CRAY CPU sec. (OFF= V). D4 Gauss=4.98.

ILU and MILU and
ILU COMBINATIVE MILU COMBINATIVE

Natural 2nd degree 3.58 1.73 2.75 1.78
3rd degree 3.90 1.95 2.75 1.83

D2 2nd degree 4.13 1.78 2.48 1.86
3rd degree 1.94 1.82 1.74 1.94
4th degree 1.88 2.06 1.86 2.20
5th degree 1.95 2.04 1.90 2.18

D4 1st degree 2.46 1.45 1.64 1.36
2nd degree 1.38 1.56 1.36 1.64
3rd degree 1.39 1.79 1.50 1.72
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degree D4 ordering. Next, observe that the ILU+COMBINATIVE method is very
effective for the low degree orderings. This indicates that the COMBINATIVE method
can resolve problems with large permeability contrasts, even for natural orderings.
This is to be expected since the pressure dependence, which is probably most affected
by permeability contrasts, is being treated in a fully coupled manner with the
COMBINATIVE method. Note also that the COMBINATIVE method reduces the
sensitivity to the type of ordering.

The modified factorizations give generally better results than the unmodified.
Again we note that for the diagonally-ordered (D2 and D4) factorizations the improve-
ment of the MILU and MILU+COMBINATIVE methods is most pronounced for
the lower degree factorizations. The best overall method is a tie between the 2nd
degree D4 MILU and the 1st degree D4 MILU+COMBINATIVE. Note that the time
for D4 elimination [26] is approximately 3.6 times slower than the best iterative time.

Table 5 gives the results for test problem 4 in vector mode on the CRAY. It is
clear that the best results are obtained with the COMBINATIVE methods, indicating
that these methods are more vectorizable than the pure ILU/MILU methods. The
fastest method overall is the 1st degree D4 MILU+COMBINATIVE. The vector time
is 40% less than the scalar time for this method. Note that although the D4 elimination
is three times faster in vector mode over scalar, it is still much slower than the best
iterative time.

TABLE 5
Problem 4. CRAY CPU sec. (ON V). D4 Gauss= 1.65.

ILU and MILU and
ILU COMBINATIVE MILU COMBINATIVE

Natural 2nd degree 2.33 1.19 1.87 1.23
3rd degree 2.50 1.36 1.88 1.33

D2 2nd degree 2.70 1.23 1.73 1.31
3rd degree 1.43 1.32 1.37 1.44
4th degree 1.46 1.53 1.51 1.67
5th degree 1.55 1.59 1.59 1.73

D4 1st degree 1.40 0.82 1.01 0.81
2nd degree .95 0.98 .99 1.07
3rd degree 1.05 1.19 1.16 1.22

Table 6 shows the results for the three-dimensional test problem 5, in scalar mode.
The best ILU method by far is the first degree D4. This is because the set-up cost for
this method is comparable with the set-up cost for second degree natural, while the

TABLE 6
Problem 5. CRAY CPU sec. (OFF V). D4 Gauss 24.5.

ILU and MILU and
ILU COMBINATIVE MILU COMBINATIVE

Natural 2nd degree 9.18 3.07 7.59 3.48
3rd degree 8.42 4.09 8.43 4.73

D2 3rd degree 7.57 4.21 9.03 4.97
4th degree 7.69 5.71 10.32 6.72

D4 1st degree 4.12 3.05 5.48 3.58
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rate of convergence is much higher. Again, the best results are obtained with the
COMBINATIVE methods. The most effective method appears to be first degree
D4 ILU+COMBINATIVE, which is just slightly better than second degree natural
ILU+COMBINATIVE. With one exception, the modified methods are worse than
the unmodified methods. The best iterative method is more than eight times faster
than D4 elimination.

Table 7 gives the results for the unmodified methods in vector mode. Observe
that the biggest gain in speed (greater than two times) occurs for the D4 methods.
This is essentially because part of the set-up work, the reduction process of (2) through
(6), can be vectorized. The first degree D4 ILU +COMBINATIVE is now significantly
faster than the second degree natural ILU +COMBINATIVE. This method is approxi-
mately 3.6 times faster than vectorized D4 elimination.

TABLE 7
Problem 5. CRAY CPU sec. (ON V). D4 Gauss 5.1.

ILU and
ILU COMBINATIVE

Natural 2nd degree 5.11 1.76
3rd degree 4.80 2.64

D2 3rd degree 4.49 2.75
4th degree 5.10 4.11

D4 1st degree 2.11 1.41

In order to verify that the D4 elimination [26] is being effectively vectorized, a
timing was obtained for elimination of an entire row at maximum bandwidth for
problem 5. This section of code consists of two loops; the outer loop runs along the
bandwidth, while the inner loop eliminates each variable in turn. The inner loop is a
scalar-vector multiply, with 3-vector memory references and two floating point oper-
ations. Consequently, the loop is memory bound, and can execute at a maximum
theoretical rate of 54 megafiops [7], [19]. The observed rate was approximately 40
megaflops, indicating that this code is being reasonably vectorized. Of course, on
average the bandwidth for D4 elimination is half the maximum, so this probably
accounts for the observed speed-up of only five for the vector D4 elimination.

Intensive assembly language coding can increase the vector performance of
Gaussian elimination considerably [8] but assembly language coding will also increase
the speed of the iterative methods. Moreover, since a significant portion of the
COMBINATIVE method involves Gaussian elimination, any increase in Gaussian
elimination speed will increase the speed of COMBINATIVE methods as well.

The ORTHOMIN algorithm as described in 3 can never diverge, but can become
"stuck." In other words the residual does not decrease. This can happen if the symmetric
part of the Jacobian matrix is indefinite [13], [37] or if the incomplete factorization
becomes ill-conditioned [33]. In practice, the only known property of the Jacobian
matrixis that it becomes more diagonally dominant as the time step is reduced [3].
Consequently, a simple solution to poor convergence is to repeat the time step with
a smaller time increment. In several hundred simulations with black oil problems [3],
we have seen the ORTHOMIN algorithm become stuck only once. For thermal
problems (steam, in situ combustion) this lack of convergence occurs more frequently.
However, we have rerun some of these thermal problems using Gaussian elimination
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to solve the Jacobian matrix. In almost all cases where the ORTHOMIN algorithm
fails, the Newton iteration diverges indicating once again that the time step is too large.

8. Conclusions. For single-phase problems, the high degree D4 ILU methods give
the best results. The timings from practical multi-phase simulation problems indicate
that methods based on D4 ILU are the preferred methods, on both scalar and vector
machines. In particular, D4 ILU+COMBINATIVE can be very effective for highly
anisotropic problems satisfying the bandwidth restriction described in 4.

The effectiveness of the modified factorizations seems to be highly problem
dependent. It is difficult to determine when MILU methods would be useful for practical
problems.

The largest gain in speed for a vectorized iterative method was a factor of two,
versus a factor of five for vectorized D4 elimination. Nevertheless, the iterative methods
are still several times faster than D4 elimination.
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Abstract. Optimization algorithms typically require the solution of many systems of linear equations
Bkyk b,. When large numbers of variables or constraints are present, these linear systems could account
for much of the total computation time.

Both direct and iterative equation solvers are needed in practice. Unfortunately, most of the off-the-shelf
solvers are designed for single systems, whereas optimization problems give rise to hundreds or thousands
of systems. To avoid refactorization, or to speed the convergence of an iterative method, it is essential to
note that B is related to Bk_ 1.

We review various sparse matrices that arise in optimization, and discuss compromises that are currently
being made in dealing with them. Since significant advances continue to be made with single-system solvers,
we give special attention to methods that allow such solvers to be used repeatedly on a sequence of modified
systems (e.g., the product-form update; use of the Schur complement). The speed of factorizing a matrix
then becomes relatively less important than the efficiency of subsequent solves with very many right-hand
sides.

At the same time, we hope that future improvements to linear-equation software will be oriented more
specifically to the case of related matrices Bk.

Key words, large-scale nonlinear optimization, sparse matrices, sparse linear and nonlinear constraints,
linear and quadratic programming, updating matrix factorizations

1. Introduction.
1.1. Background. The major application of sparse matrix techniques in optimiz-

ation up to the present has been in the implementation of the simplex method for
linear programming (LP) (see, e.g., Dantzig (1963)). In fact, commercial codes for
large LP problems seem to have predated codes for sparse linear equations (even
though solving a sparse LP problem requires solving many sparse linear systems). In
the commercial world today, more sparse matrix computation is probably expended
on linear programs than on any other type of problem, and linear programs involving
thousands of unknowns can be solved routinely. Because of the great success of the
simplex algorithm and the wide availability of LP codes, many large-scale optimization
problems tend to be formulated as purely linear programs. However, we shall see that
this limitation is often unnecessary.

Before considering particular methods, we emphasize that methods for large-scale
optimization have a special character attributable in large part to the critical importance
of linear algebraic procedures. Since dense linear algebraic techniques tend to become
unreasonably expensive as the problem dimension increases, it is usually necessary to
compromise what seems to be an "ideal" strategy. (In fact, an approach that would
not even be considered for small problems may turn out to be the best choice for
some large problems.) Furthermore, the relative cost of the steps of many optimization
methods changes when the problem becomes large. For example, the performance of
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unconstrained optimization algorithms is often measured by the number of evaluations
of the objective function required for convergence. Although simplistic, this is a
reasonable gauge of effectiveness for most problems of low dimension because the
number of arithmetic operations per iteration tends to be small, and the amount of
work required for storage manipulation is negligible. However, as the size of the
problem grows, the "housekeeping" (cost of arithmetic and data structures) becomes
comparable to, and may even dominate, the cost of function evaluations.

Most optimization methods are iterative; we shall consider algorithms in which
the (k + 1)th iterate is defined as

(1.1) Xk+l Xk q- OZkPk,

where tk is a nonnegative scalar, and the n-vector Pk is called the search direction.
One of the primary applications of sparse matrix techniques in optimization is in solving
one or more systems of linear equations to obtain Pk.

It is usual for thousands of iterations to be required to solve a single large
optimization problem, and hence it might appear that the computation time required
would be enormous, even with the best available sparse matrix techniques. Fortunately,
the linear systems that define Pk/l are usually closely related to those that define Pk
(and the degree of closeness can be controlled to some extent by the choice of
algorithm). In addition, the sequence {Xk} will often converge to the solution with only
mild conditions on { Pk}. Consequently, there is a certain flexibility in the definition of
Pk. The design of algorithms for large-scale optimization problems involves striking a
balance between the effort expended at each iteration to compute Pk and the number
of iterations required for convergence.

1.2. Summary. The three main subdivisions of optimization are discussed in turn
(unconstrained, linearly constrained, and nonlinearly constrained). A common
denominator is the need to solve many systems of linear equations, and the need to
update various factorizations in order to deal with sequences of related equations. We
indicate situations where off-the-shelf software can be applied. Symmetric positive-
definite solvers are mainly useful for unconstrained problems, while unsymmetric
solvers are essential for dealing with linear constraints. There is an inevitable emphasis
on the latter because most large optimization problems currently being solved involve
sparse linear constraints.

The principal updating problem is that of replacing one column of a square matrix.
However, there exists only one generally available package for updating sparse factors
in situ. We therefore focus on methods that allow an off-the-shelf solver to be used
repeatedly on the same matrix with different right-hand sides. Such methods facilitate
more general updates to sparse matrices. In one instance, a sparse indefinite solver is
needed.

The final section on nonlinear constraints covers methods that solve a sequence
of simpler subproblems, to which the preceding comments apply.

2. Unconstrained optimization.
2.1. Methods for dense problems. The unconstrained optimization problem in-

volves the minimization of a scalar-valued objective function, i.e.

minimize F(x).

We assume that F is smooth; let g(x) and H(x) denote the gradient vector and Hessian
matrix of F.
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Many techniques are available for solving unconstrained problems in which n is
small (for recent surveys, see, e.g., Brodlie (1977), Fletcher (1980), Gill, Murray and
Wright 1981 )). The most popular methods compute the search direction as the solution
of a system of linear equations of the form

(2.1) HkPk --gk,

where gk is the gradient of F at xk, and H is a suitable symmetric matrix that is most
often intended to represent (in some sense) H(x,). If H is positive definite, the
solution of (2.1) is the step to the minimum of the local quadratic approximation to
F at x:

(2.2) minimize g[p + p’Hkp.

The major distinctions among algorithms involve the definition of Hk.
When Hk is the exact Hessian at Xk or a finite-difference approximation, the

algorithm based on solving (2.1) for Pk is called a Newton-type method. Newton-type
methods tend to be powerful and robust when properly implemented, and exhibit
quadratic convergence under mild conditions. However, certain difficulties arise when
Hk is indefinite, since the quadratic function (2.2) is unbounded below and the solution
of (2.1) may be undefined. Numerous strategies have been suggested for this case, and
often involve defining Pk as the solution of a linear system with a positive-definite
matrix that is closely related to the Hessian. These techniques include the modified
Cholesky factorization of Gill and Murray (1974) and various trust-region strategies
(see, e.g., Mot6 and Sorensen (1982)).

When an exact or finite-difference Hessian is unavailable or too expensive, a
popular alternative is to use a quasi-Newton method (see Dennis and Mor6 (1977) for
a survey). In a quasi-Newton method, the matrix Hk is an approximation to the Hessian
that is updated by a low-rank change at each iteration, based on information about
the change in the gradient. The hope is that the approximation will improve as the
iterations proceed. Quasi-Newton methods typically display a superlinear rate of
convergence in practice, and are often more efficient (in terms of computation time)
than Newton-type methods.

When n becomes very large, two related difficulties can occur with methods that
solve (2.1) directly: excessive computation time and insufficient storage for the n x n
matrix Hk. Fortunately, the Hessian matrices of many large unconstrained problems
are quite sparse, and density tends to decrease as n increases. Large problems can
thus be solved efficiently using techniques that exploit sparsity in Hk to save work
and/or storage, or that do not require storage of Hk.

2.2. Newton-type methods. When the Hessian is sparse and can be computed
analytically, a Newton-type method can be implemented by applying standard sparse
procedures to solve Hkpk --gk" In particular, when Hk is positive definite, any efficient
technique for computing a sparse Cholesky factorization may be applied in this context
(for a survey of available software, see Duff (1982)). Although many linear systems
may need to be solved before the method converges, all of them have the same sparsity
pattern, and hence the structure needs to be analyzed only once.

Indefiniteness in a sparse Hessian may be treated using the procedures mentioned
for the dense case. The modified Cholesky factorization (Gill and Murray (1974)) has
been adapted in a straightforward fashion to treat sparsity (see Thapa (1980)). One
advantage of the modified Cholesky approach is that indefiniteness can be detected



SPARSE MATRIX METHODS IN OPTIMIZATION 565

and corrected while constructing the factorization of the positive-definite matrix to be
used in computing Pk; hence, only one sparse factorization needs to be computed at
each iteration. With trust-region methods, pk may be obtained using off-the-shelf
software for a sparse Cholesky factorization; however, these methods typically require
more than one factorization per iteration.

When the gradient is available, but the exact Hessian is not, a finite-difference
approximation to the Hessian may be used as H. In the general case, this requires n
gradient evaluations. However, if the sparsity pattern of the Hessian is known a priori
it is possible to choose special vectors that allow a finite-difference approximation to
H(x) to be computed with many fewer than n evaluations of the gradient.

For example, suppose that H(x) is tridiagonal"

/

H(x)

XXX

XXX

XX

Consider the vectors

1
Yi hit Zi112

(g(x + hzi)--g(Xk)), i= 1, 2,

where z (1, 0, 1, 0,. .) , z2 (0, 1,0, 1,. .) , and h is an appropriate finite-differ-
ence interval Let Yl.i denote the ith component of Yl, and similarly for Y2. The vectors

Yl and. Y2 are approximations to the sums of odd and even columns of Hk, respectively.
Therefore,

O2F O2F a2F 02F
+, and so on.Y1,1 02Xl, Yz,I OXIOX2, Y,2

OXlfX2 OX2fX3

Thus, for example,

a2F

In this fashion, all the elements of H can be approximated with only two evaluations
of the gradient, regardless of the value of n.

The idea of analyzing the sparsity pattern of the Hessian in order to determine
suitable finite-difference vectors has been the subject of much recent interest. An
algorithm for finding finite-difference vectors for a general sparse (unsymmetric) matrix
is given by Curtis, Powell and Reid (1974), and is based on grouping together columns
in which there are no overlapping elements. In the unsymmetric case, the problem of
finding a minimum set of vectors can be viewed as a graph coloring problem in the
directed graph that represents the sparsity pattern. A proof that finding the minimum
set is NP-hard is given in Coleman and Mor6 (1983), along with practical algorithms
(see also Coleman and Mor6 (1982a)).

A similar relationship with graph coloring can be developed for the case of a
symmetric matrix. For example, the requirement of symmetry for a sparse matrix
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means that the associated column-interaction graph will be undirected. The problem
of finding a minimum set of finite-difference vectors for a symmetric matrix is NP-
complete (a proof for a particular symmetric problem is given in McCormick (1983);
see also Coleman and Mor6 (1982b)). Nonetheless, effective algorithms have been
developed based on graph-theoretic heuristics. The algorithms are based on principles
similar to those for the unsymmetric case, but are considerably complicated by exploit-
ing symmetry.

A finite-difference Newton-type method for sparse problems thus begins with a
procedure that analyzes the sparsity pattern in order to determine suitable finite-
difference vectors. Algorithms for finding these vectors have been given by Powell and
Toint (1979) and Coleman and Mor6 (1982b). Once a sparse finite-difference Hessian
approximation has been computed, a sparse factorization can be computed as with the
exact Hessian.

2.3. Sparse quasi-Newton methods. Because of the great success of quasi-Newton
methods on dense problems, it is natural to consider how such methods might be
extended to take advantage of sparsity in the Hessian. This extension was suggested
first for the case of sparse nonlinear equations by Schubert (1970), and was analyzed
by Marwil (1978). Discussions of sparse quasi-Newton methods for optimization and
nonlinear equations are given in Toint (1977), Dennis and Schnabel (1979), Toint
(1979), Shanno (1980), Steihaug (1980), Thapa (1980), Powell (1981), Dennis and
Marwil (1982) and Sorensen (1982). In the remainder of this section we give a brief
description of sparse quasi-Newton methods applied to unconstrained optimization.

In quasi-Newton methods for dense problems, the Hessian approximation Hk is
updated at each iteration by the relationship

H+ H + U.

The update matrices Uk associated with many dense quasi-Newton methods are of
rank two, and can be shown to be the minimum-norm symmetric change in Hk, subject
to satisfying the quasi-Newton condition

(2.3)

where Sk Xk+l--Xk and Yk gk+1--gk (see, e.g., Dennis and Mor6 (1977)). By suitable
choice of the steplength Ofk in (1.1), the property of hereditary positive-definiteness
can also be maintained (i.e., Hk+I is positive definite if Hk is). However, the update
matrices Uk do not retain the sparsity pattern of the Hessian.

The initial approach to developing sparse quasi-Newton updates was to impose
the additional constraint of retaining sparsity on the norm-minimization problem
(Powell (1976); Toint (1977)). Let 3c be defined as the set of indices {(i, ])lHij(x) -0},
so that represents the specified sparsity pattern of the Hessian, and assume that Hk
has the same sparsity pattern. A sparse update matrix Uk is then the solution of

minimize uIIu

(2.4)
subject to (Hk + U)Sk Yk,

t =t:

Uij=O for(i,j)Ac.
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Let r() denote the vector Sk with the sparsity pattern of the jth column of Hk
imposed. When the norm in (2.4) is the Frobenius norm, the solution is given by

(2.5) Uk
j-I

where ej is the jth unit vector and is the vector of Lagrange multipliers associated
with the subproblem (2.4). The vector A is the solution of the linear system

(2.6) QA Yk HkSk,

where

Q (r)r()+ [[r()l122ei)e.
j=l

The matrix Q is symmetric and has the same sparsity pattern as Hk; Q is positive-
definite if and only if IIr(J)l] > 0 for all j. (The sparse analogue of any quasi-Newton
formula may be obtained using a similar analysis; see Shanno (1980) and Thapa (1980).)

Thus far, sparse quasi-Newton methods have not enjoyed the great success of
their dense counterparts. First, there are certain complications that result from the
requirement of sparsity. In particular, note that the update matrix Uk (2.5) is of rank
n, rather than of rank two; this means that the new approximate Hessian cannot be
obtained by a simple update of the previous approximation. Second, an additional
sparse linear system (2.6) must be solved in order to compute the update. Finally, it
is not possible in general to achieve the property of hereditary pogitive-definiteness
in the matrices {Hk} if the quasi-Newton condition is satisfied (see Toint (1979) and
Sorensen (1982)); in fact, positive-definiteness may not be retained even if Hk is taken
as the exact (positive definite) Hessian and the initial Xk is very close to the solution
(see Thapa (1980)).

In addition to these theoretical difficulties, computational results have tended to
indicate that currently available sparse quasi-Newton methods are less effective than
alternative methods (in terms of the number of function evaluations required for
convergence). However, hope remains that their efficiency may be improvedmfor
example, by relaxing the quasi-Newton condition (2.3), or by finding only an approxi-
mate solution of (2.6) (Steihaug (1982)). For a discussion of some possible new
approaches, see Sorensen (1982).

2.4. Conjugate-gradient methods. The term conjugate-gradient refers to a class
of optimization algorithms that generate directions of search without storing a matrix.
They are essential in circumstances when methods based on matrix factorization are
not viable because the relevant matrix is too large or too dense. We emphasize that
there are two types of conjugate-gradient methodsmlinear and nonlinear.

The linear conjugate-gradient method was originally derived as an iterative pro-
cedure for solving positive-definite symmetric systems of linear equations (Hestenes
and Stiefel (1952)). It has been studied and analyzed by many authors (see, e.g., Reid
(1971)). When applied to the positive-definite symmetric linear system

(2.7) Hx -c,

it computes a sequence of iterates using the relation (1.1). The vector Pk is defined by

(2.8) Pk --(HXk + c) + flk-lPk-1,

and the step length ak is given by an explicit formula. The matrix H need not be
stored explicitly, since it appears only in matrix-vector products.
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With exact arithmetic, the linear conjugate-gradient algorithm will compute the
solution of (2.7) in at most m (m <= n) iterations, where m is the number of distinct
eigenvalues of H. Therefore, the number of iterations required should be significantly
reduced if the original system can be replaced by an equivalent system in which the
matrix has clustered eigenvalues. The idea of preconditioning is to construct a transfor-
mation to have this effect on H. One of the earliest references to preconditioning for
linear equations is Axelsson (1974). See Concus, Golub and O’Leary (1976) for details
of various preconditioning methods derived from a slightly different viewpoint.

The nonlinear conjugate-gradient method is used to minimize a nonlinear function
without storage of any matrices, and was first proposed by Fletcher and Reeves (1964).
In the Fletcher-Reeves algorithm, Pk is defined as in the linear case by (2.8), where
the term Hxk + c is replaced by g, the gradient at x. For a nonlinear function, a in
(1.1) must be computed by an iterative step-length procedure. When the initial vector

P0 is taken as the negative gradient and a is the step to the minimum of F along pk,

it can be shown that each p is a direction of descent for F.
Many variations and generalizations of the nonlinear conjugate-gradient method

have been proposed. The most notable features of these methods are:/3 is computed
using different definitions; p is defined as a linear combination of several previous
search directions; P0 is not always chosen as the negative gradient; and a is computed
with a relaxed linear search (i.e., ak is not necessarily a close approximation to the
step to the minimum of F along p). Furthermore, the idea of preconditioning may
be extended to nonlinear problems by allowing a preconditioning matrix that varies
from iteration to iteration.

It is well known that rounding errors may cause even the linear conjugate-gradient
method to converge very slowly. The nonlinear conjugate-gradient method displays a
range of performance that has not yet been adequately explained. On problems in
which the Hessian at the solution has clustered eigenvalues, a nonlinear conjugate-
gradient method will sometimes converge more quickly than a quasi-Newton method,
whereas on other problems the method will break down, i.e. generate search directions
that lead to essentially no progress. For recent surveys of conjugate-gradient methods,
see Gill and Murray (1979), Fletcher (1980) and Hestenes (1980).

2.5. The truncated linear conjugate-gradient method. Much recent interest has
been focussed on an approach to unconstrained optimization in which the equations
(2.1) that define the search direction are "solved" (approximately) by performing a
limited number of iterations of the linear conjugate-gradient method.

Consider the case in which the exact Hessian is used in (2.1). Dembo, Eisenstat
and Steihaug (1982) note that the local convergence properties of Newton’s method
depend on p being an accurate solution of (2.1) only near the solution of the uncon-
strained problem. They present a criterion that defines the level of accuracy in p
necessary to achieve quadratic convergence as the solution is approached, and suggest
systematically "truncating" the sequence of linear conjugate-gradient iterates when
solving the linear system (2.1) (hence their name of "truncated Newton method").
(See also Dembo and Steihaug (1980) and Steihaug (1980).)

This idea has subsequently been applied in a variety of situationsmfor example,
in computing a search direction from (2.1) when H is a sparse quasi-Newton approxi-
mation (Steihaug (1982)). We therefore prefer the more specific name of truncated
conjugate-gradient methods. These methods are useful in computing search directions
when it is impractical to store Hk, but it is feasible to compute a relatively small number
of matrix-vector products involving H. For example, this would occur if Hk were the
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product of several sparse matrices whose product is dense (see 3.3.1). Truncated
conjugate-gradient methods have also been used when the matrix-vector product Hkv
is approximated (say, by a finite-difference along v); in this case, the computation of
pk requires a number of gradient evaluations equal to the number of linear coniugate-
gradient iterations (see, e.g., O’Leary (1982)). In order for these methods to be
effective, it must be possible to compute a good solution of (2.1) in a small number
of linear conjugate-gradient iterations, and hence the use of preconditioning is
important.

With a truncated coniugate-gradient method, complications arise when the matrix

H is not positive definite, since the linear coniugate-gradient method is likely to break
down. Various strategies are possible to ensure that p is still a well-defined descent
direction even in the indefinite case. For example, the coniugate-gradient iterates may
be computed using the Lanczos process (Paige and Saunders (1975)); a Cholesky
factorization of the resulting tridiagonal matrix leads to an algorithm that is equivalent
to the usual iteration in the positive-definite case. If the tridiagonal matrix is indefinite,
a related positive-definite matrix can be obtained using a modified Cholesky factoriz-
ation. Furthermore, preconditioning can be included, in which case the linear conjugate-
gradient iterates begin with the negative gradient transformed by the preconditioning
matrix. If the preconditioning matrix is a good approximation to the Hessian, the
iterates should converge rapidly. Procedures of this type are described in O’Leary
(1982) and Nash (1982).

Further flexibility remains as to how the result of a truncated conjugate-gradient
procedure may be used within a method for unconstrained optimization. Rather than
simply being used as a search direction, for example, p may be combined with previous
search directions in a nonlinear conjugate-gradient method (see Nash (1982)).

3. Linearly constrained optimization.
3.1. Introduction. The linearly constrained problem will be formulated as

LCP minimize F(x)

subject to x b,

l<=x<_<_u,

where the m n matrix is assumed to be large and sparse. For simplicity, we assume
that the rows of are linearly independent (if not, some of them may be removed
without altering the solution).

The most popular methods for linearly constrained optimization are active-set
methods, in which a subset of constraints (the working set) is used to define the search
direction. The working set at x usually includes constraints that are satisfied exactly
at xk; the search direction is then computed so that movement along p will continue
to satisfy the constraints in the working set.

With problem LCP, the working set will include the general constraints x- b
and some of the bounds. When a bound is in the working set, the corresponding
variable is fixed during that iteration. Thus, the working set induces a partition of x
into fixed and free variables.

We shall not be concerned with details of how the working set is altered, but
merely emphasize that the fixed variables at a given iteration are effectively removed
from the problem; the corresponding components of the search direction will be zero,
and thus the columns of corresponding to fixed variables may be ignored. Let A
denote the submatrix of corresponding to the free variables at iteration k; each
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change in the working set corresponds to a change in the columns of Ak. Let nv denote
the number of free variables, and the vector Pk denote the search direction with respect
to the free variables only.

By analogy with (2.2) in the unconstrained case, we may choose Pk as the step
to the minimum of a quadratic approximation to F, subject to the requirement of
remaining on the constraints in the working set. This gives Pk as the solution of the
following quadratic program:

minimize g[p + 1/2pTHkp
p

(3.1)
subject to Akp O,

where gk denotes the gradient and Hk the Hessian (or Hessian approximation) at Xk
with respect to the free variables.

The solution Pk and Lagrange multiplier Ak Of the problem (3.1) satisfy the nv + m
equations

which will be called the augmented system.
One convenient way to represent p involves a matrix whose columns form a basis

for the null space of A. Such a matrix, which will be denoted by Z, has nv-m
linearly independent columns and satisfies AZ 0. The solution of (3.1) may then
be computed by solving the null-space equations

(3.3) Z2HkZkPz --Z2gk

and setting

(3.4) Pk Zkpz.

Equations (3.3) and (3.4) define a null-space representation of Pk (SO named because
it explicitly involves Zk). The vector Zgk and the matrix ZHkZk are called the
projected gradient and projected Hessian.

3.2. Representation ot the null space. The issues that arise in representing Zk
when Ak is sparse illustrate the need to compromise strategies that are standard for
dense problems. In the rest of this section, we shall drop the subscript k associated
with the iteration.

In dense problems, it is customary to use an explicit LQ or some other orthonormal
factorization of A in order to define Z. If AQ (L 0), where the orthonormal matrix
Q is partitioned as (Y Z) and L is lower triangular, then AZ 0. In this case, Z has
the "ideal" property that its columns are orthonormal, so that formation of the
projected Hessian and gradient does not exacerbate the condition of (3.3) and (3.4).
Unfortunately, for large problems computation of such a factorization is normally too
expensive. (Some current research is concerned with efficient methods for obtaining
sparse orthogonal factorizations; see George and Heath (1981). However, the need
to update the factors is an even more serious difficulty; see Heath (1982) and George
and Ng (1982).)

If an orthogonal factorization is unacceptable, a good alternative is to reduce A
to triangular form using Gaussian elimination (i.e., elementary transformations com-
bined with row and column interchanges). This would give an LU factorization in the
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form

I
(L 0),

where P1 and P2 are permutation matrices, U is unit upper triangular, and L is lower
triangular. The matrices P1 and P2 would be chosen to make U well-conditioned and
W]I reasonably small. The required matrix

would no longer have orthonormal columns, but should be quite well conditioned,
even if A is poorly conditioned.

Unfortunately, it is not known how to update the factorization (3.5) efficiently in
the sparse case when columns of A are altered. However, (3.5) indicates the existence
of a square, nonsingular submatrix drawn from the rows and columns of A. We shall
assume for simplicity that this matrix comprises the left-most columns of A, i.e.

(3.7) A=(B S),

where B is nonsingular. (In practice, the columns of B may occur anywhere in A.) It
follows from (3.7) and (3.5) (with P1 and P2 taken as identity matrices) that BW+ S O,
so that W =-B-1S. Thus, Z has the form

As long as B in (3.7) is nonsingular, the matrix Z (3.8) will provide a basis for the
null space of A. In the absence of the ideal factorization (3.5), the aim must be to
choose a B that is as well.conditioned as conveniently possible, since this will tend to
limit the size of wII and hence the condition of Z.

The partition of the columns of A given by (3.7) induces a partition of the free
variables, which will be indicated by the subscripts " and s". The rn variables x
are called the basic variables. The remaining s free variables (s- nv- m) are called
the superbasic variables. For historical reasons, the fixed variables are sometimes called
the nonbasic variables.

An advantage of the form (3.8) for sparse problems is that operations with Z and
Zr may be performed using a factorization of the matrix B; the matrix Z itself need
not be stored. For example, the vector Zrg required in (3.3) may be written as

(3.9) Zrg=-SrB-rgn+gs.

(The vector on the right-hand side of (3.9) is called the reduced gradient; note that it
is simply the projected gradient with a particular form of Z.) Thus, Zg may be
obtained by solving Brv gn, and then forming gs-Srv. Similarly, to form p Zpz,
we have

p=(-BI-1St pz.__(-B-1SPz,Pz /

which gives the system

BpB -Spz.
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With the reduced-gradient form of Z (3.8), the problems of representing a null
space and computing the associated projections reduce to the familiar operations of
factorizing and solving with an appropriate square B.

3.3. Solving for the search direction. At each iteration of an active-set method
for LCP, the search direction p with respect to the free variables solves the subproblem
(3.1). We have seen that there are mathematically equivalent representations of p;
the way in which p is computed for sparse problems depends on several considerations,
which will be discussed below.

3.3.1. Solving the null-space equations. For sparse problems, it will generally not
be possible to solve (3.3) by explicitly forming and then factorizing ZTHZ. Even if H
and B are sparse, the projected Hessian will generally be dense. Thus, if a factorization
of the projected Hessian is to be stored, the number of superbasic variables at each
iteration must be sufficiently small (i.e., the number of fixed variables must be
sufficiently large). Fortunately, for many large-scale problems there is an a priori upper
bound on the number of free variables. For example, if only q of the variables appear
nonlinearly in the objective function, the dimension of the projected Hessian matrix
at the solution cannot exceed q.

Furthermore, even if the dimension of Z’HZ is small, forming the projected
Hessian may involve a substantial amount of work; when Z is defined by (3.8),
computation of ZHZ requires the solution of 2s systems of size m m. For this
reason, a Newton-type method in which the projected Hessian is recomputed at each
iteration is not generally practical. By contrast, quasi-Newton methods can be adapted
very effectively to sparse problems in which the dimension of the projected Hessian
remains small, by updating a dense Cholesky factorization of a quasi-Newton approxi-
mation to the projected Hessian; this is the method used in the MINOS code of Murtagh
and Saunders (1977), (1980).

When the projected Hessian cannot be formed or factorized, the null-space
equations may be solved using an iterative method that does not require storage of
the matrix, such as a truncated conjugate-gradient method (see 2.5). In order for
this approach to be reasonable, the computation of matrix-vector products involving
Z and H must be relatively cheap (e.g., when H is sparse); in addition, a good
approximation to the solution of (3.3) must be obtained in a small number of iterations.
Even when the Hessian is not available, a truncated conjugate-gradient method may
be applied to (3.3) by using a finite-difference of the gradient to approximate the
vector HZv; an evaluation of the gradient is thus necessary for every iteration of the
truncated conjugate-gradient method. Note that this is one of the few methods in
which H is not required to be sparse.

Each of the above methods for solving the null-space equations can be adapted
to allow for changes in the working set ( 3.5).

3.3.2. Solving the range-space equations. The null-space equations provide one
means of solving for p in the augmented system (3.2), by eliminating &k. When H is
positive definite, a complementary approach is to solve for & first, via the range-space
equations

AH-1AT" AH-Ig, Hp AT" g.

This method would be appropriate if H were sparse, and if A had relatively few rows.
The application of a range-space approach to quadratic programming is discussed by
Gill et al. (1982).
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3.3.3. Solving the augmented system. An alternative method for obtaining p
involves treating the augmented system directly. (Variations of this idea have been
proposed by numerous authors; see, e.g., Bartels, Golub and Saunders (1970)). The
most obvious way to solve (3.2) is to apply a method for symmetric indefinite systems,
such as the Harwell code MA27 (Duff and Reid (1982)). In order for the solution of
(3.2) to be meaningful, the matrix ZTHZ must be positive definite. Verifying positive-
definiteness in this situation is a nontrivial task, since of course the matrix ZTHZ is
not computed explicitly. However, the result may sometimes be known a priorimfor
example, when H itself is positive-definite.

Both H and A change dimension when the working set is altered. Updating
procedures for this case are discussed in 3.6.2.

3.4. Factorizing and solving a square system. The linear systems involving B and
B are typically solved today using a sparse LU factorization of B. Surveys of
techniques for computing such a factorization are given in Duff (1982) and Duff and
Reid (1983). The analyze phase of a factorization consists of an analysis of the sparsity
pattern alone (independent of the values of the elements), and leads to a permutation
of the matrix in order to reduce fill-in during the factorization. The factorphase consists
of computation with the actual numerical elements of the matrix.

We shall mention a few features of certain factorization methods that have
particular relevance to optimization (see Duff and Reid (1983) for more details). Since
active-set algorithms include a sequence of matrices that undergo column changes, the
factorization methods were typically developed to be used in conjunction with an
update procedure.

The p4 algorithm of Hellerman and Rarick (1971), (1972) performs the analyze
phase separately from the factor phase, and produces the well-known "bump and
spike" structure, in which B is permuted to block lower-triangular form with relatively
few "spikes" (columns containing nonzeros above the diagonal). This procedure is
very effective if B is nearly triangular. Also, the factor phase is able to use external
storage, since it processes B one column at a time. Column interchanges are used to
stabilize the factorization. (Row interchanges would destroy the sparsity pattern.) If
an interchange is needed at the ith stage, it is necessary to solve a system of the form
L/_ly ei and to compute the quantities yTaj for all remaining eligible spike columns
aj. This involves significant work and also degrades the sparsity of the factors. Thus,
a rather loose pivot tolerance must be used to avoid many column interchanges (e.g.,
I/zl < 104, where/x is the largest subdiagonal element in any column of L divided by
the corresponding diagonal).

The Markowitz algorithm (Markowitz (1957)), on the other hand, performs the
analyze and factor phases simultaneously, and hence must run in main memory. It
computes dynamic "merit counts" in order to determine the row and column permuta-
tions to preserve sparsity and yet retain numerical stability. The Markowitz procedure
can achieve a good sparse factorization even with a rather strict pivot tolerance (e.g.,

In order to indicate how these factor routines perform on matrices that arise in
optimization, we give results on five test problems. In the first three problems, the
matrix B has "staircase" structure (see, e.g., Fourer (1982)); constraints of this form
often arise in the modeling of dynamic systems, in which a set of activities is replicated
over several time periods. The fourth and fifth problems arise from the optimal power
flow (OPF) problem (see e.g., Stott, Alsac and Marinho (1980)). In this case, B is the
Jacobian of the network equations of the power system, and has a symmetric sparsity
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TABLE
Summary of problem characteristics.

Stair Stair 2 Stair 3 OPF OPF 2

B rows 357 745 1,170 1,200 3,400

B nonzeros 3,500 3,600 7,100 9,000 29,000

p4 blocks 5 13

p4 spikes 66 101 157 715

pattern (which is not at all triangular!) Table 1 shows some of the relevant features
of the problems described, including the results of factorization with the p4 algorithm.

The number of nonzeros in the initial LU factorization of B is shown in the first
two rows of Table 2. The p4 algorithm is as implemented in the MINOS code of
Murtagh and Saunders (1977), (1980); the Markowitz procedure is the Harwell code
LA05 (Reid (1976), (1982)). Note that the large number of spikes in the first OPF
problem is bound to cause difficulties for the p4 algorithm.

TABLE 2
Number of nonzeros in initial LU factorization and after k updates.

Stair Stair 2 Stair 3 OPF OPF 2

LoUo with p4 (MINOS) 9,400 16,200 32,000 30,400

LoUo with Markowitz (LA05) 5,400 4,700 13,500 13,800 75,000

k 50 50 50 30 40

L U with LA05 7,800 6,000 17,100 15,300 83,000

3.5. Column updates. For problems of the form LCP, each change in the working
set involves changing the status of a variable from fixed to free (or vice versa). When
a previously fixed variable becomes free, a column of is added to A; this poses no
particular difficulty, since the new column can simply be appended to S. When a free
variable is to become fixed, a column of A must be deleted, and complications arise
if the column is in B. Since the number of columns in B must remain constant (in
order for B to be nonsingular), it is necessary to replace a column of B with one of
the columns of S.

Assume that we are given an initial B0, which thereafter undergoes a sequence
of column replacements, each corresponding to one of the free variables becoming
fixed on a bound. Let Ik denote the index of the column to be replaced at the kth
step, ak denote the lkth column of B, Vk denote the new column, and el denote the
lkth column of the identity matrix. After each replacement, we have

(3.10) Bk Bk-1 + Vk ak)e.

We shall consider several ways in which systems of equations involving Bk can be
solved following a sequence of such changes.



SPARSE MATRIX METHODS IN OPTIMIZATION 575

3.5.1. The product-form update. The standard updating technique used in all
early sparse LP codes was the product-form (PF) update (e.g., Dantzig and Orchard-
Hays (1954)). It follows from the definition of Bk that

B B_ T,

where
T(3.11) Bk_lY v and T I + y elk) e

Note that Tk is a permuted triangular matrix (with only one nontrivial column);
equivalently, T is a rank-one modification of the identity matrix. The matrix T can
be represented by storing the index l and the vector

After k such updates we have

(3.12) B BoTIT2"" Tk.

Given a procedure to solve systems of equations involving Bo, (3.12) indicates that
solving Bv b is equivalent to solving the k + 1 linear systems

(3.13) Bovo=b, Tv=vo, ..., Tvk=v_

where the systems involving T are easy to solve. As k increases, the solution process
becomes progressively more protracted, and the storage required to store the updates
is strictly increasing. Therefore it becomes worthwhile to compute a factorization of
B from scratch. Most current systems use an initial triangular factorization Bo Lo Uo
(see 3.4), and recompute the factorization after k updates (typically k _-< 50).

The PF update has two important advantages for sparse problems. First, the
vectors {y} may be stored in a single sequential file, so that implementation is
straightforward. Second, any advance in the methods for linear equations is immediately
applicable to the factorization of Bo, since the update does not alter the initial
factorization. Thus, Bo may be represented by a "black box" procedure for solving
equations (involving both Bo and BoT).

Unfortunately, the PF update has two significant deficiencies. It is numerically
Tunreliable if lelkykl is too small (since T is then ill-conditioned), and the growth of

data defining the updates is significantly greater than for alternative schemes.

3.5.2. The Bartels-Golub update. The instability of the PF update was first made
prominent by Bartels and Golub (1969), who showed as an alternative that an LU
factorization can be updated in a stable manner (see also Bartels, Golub and Saunders
(1970); Bartels (1971)). Given an initial factorization Bo=LoUo, the updates to L
are represented in product form, but the sparse triangular matrix U is stored (and
updated) explicitly. Thus, instead of the form (3.12) we have

(3.14) B LoT1 T2 TqUt =- LU,

where each T represents an update whose construction will be discussed below.
At the kth step, replacing the /th column of B-I gives

B L_ U,

where /_) is identical to Uk-1 except for its /th column. Since Uk-1 is stored as a
sparse matrix, it is desirable to restore U to upper-triangular form U without causing
substantial fill-in. To this end, let P denote a cyclic permutation that moves the /th
row and column of U to the end, and shifts the intervening rows and columns forward.



576 P. GILL, W. MURRAY, M. SAUNDERS AND M. WRIGHT

We then have

pT/p

The nonzeros in the bottom row of PTIQP may be eliminated by adding multiples
of the other rows. However, it follows from the usual error analysis of Gaussian
elimination (e.g., Wilkinson (1965)) that this procedure will not be numerically stable
unless the size of the multiple is bounded in some way. Hence, we must allow the last
row to be interchanged with some other row. Formally, the row operations are stabilized
elementary transformations (Wilkinson (1965)), which are constructed from 22
matrices of the form

or /--
1 1 x

(Note that the transformation//includes a row interchange.) Each such transformation
is represented by the scalar x, and is unnecessary if the element to be eliminated is
already zero. Numerical stability is achieved by choosing between M and//so that
the multiplier x is bounded in size by some moderate number (e.g., Ixl <- 1, 10 or
100). The matrices {T} in (3.14) are constructed from sequences of matrices of the
form (3.15).

Unfortunately, elimination of the nonzeros is easier said than done" in the sparse
case. Any transformation of type r amounts to a form of fill-in, since the location of
nonzeros in the interchanged rows is unlikely to be the same. A complex data structure
is therefore needed to update U without losing efficiency during subsequent solves.
(Holding individual nonzeros in a linked list, for example, would not be acceptable in
a virtual-memory environment.)

The implementation of the BG update by Saunders (1976) capitalizes on the
bump and spike" structure revealed by the p4 procedure (see 3.4). Each triangular
factor is of the form

and fill-in can occur only within Fk. If Uo contains s spikes, the dimension of Fk will
be at most s + k. Storing F as a dense matrix allows the BG update to be implemented
with maximum stability (11--< 1 in (3.15)), and the approach is efficient as long as s
is not unduly large (say, s-< 100). This implementation has been used for several years
in the nonlinear programming system MINOS (Murtagh and Saunders (1977), (1980)).
During that period, the number of spikes in U0 has proved to be favorably small for
many sparse optimization models. However, two important applications are now known
to give unacceptably large numbers of spikes: time-period models (for which B has a
staircase structure) and optimal power-flow problems (for which B has a symmetric
sparsity pattern). Some statistics for these problems are given in Table 1 ( 3.4).
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Another implementation of the BG update has been developed by Reid (1976),
(1982) as the Fortran package LA05 in the Harwell Subroutine Library. It strikes a
compromise between dense and linked-list storage by using a whole row or column
of Uk as the "unit" of storage. Thus, the nonzeros in any one row of Uk are held in
contiguous locations of memory, as are the corresponding column indices, and an
ordered list points to the beginning of each row. To facilitate searching, a similar data
structure is used to hold just the sparsity pattern of each column (i.e., the row indices
are stored, but not the nonzeros themselves; see Gustavson (1972)). This storage
scheme is also suitable for computing an initial LU factorization using the Markowitz
criterion and threshold pivoting--a combination that has been eminently successful in
practice, particularly on the structures mentioned above. Table 2 ( 3.4) shows the
sparsity of various initial factorizations B0 LoUo computed by subroutine LA05A,
and the moderate rate of growth of nonzeros following k calls to the BG update
subroutine LA05C.

Given the row-wise storage scheme for the nonzeros of Uo, it was natural in
LA05A for the stability test to be applied row-wise. (Thus, each diagonal of U0 must
not be too small compared to other nonzeros in the same row.) This standard threshold
pivoting rule is appropriate for single systems, but unfortunately is at odds with the
aim of the BG update. The effect is to control the condition of U0, with no control
on the size of the multipliers/x defining L0.

A preferable alternative is to apply the threshold pivoting test column-wise, in
order to control the condition of L0. The resulting Lo, and hence all subsequent factors
Lk, will then be a product of stabilized transformations T. It follows that the factors
of Bk are likely to be well conditioned if Bk is well conditioned, even if Bo is not.

In order to apply the column-wise stability test efficiently, the data structure for
computing U0 needs to be transposed. This and other improvements will be incorpor-
ated in a new version of LA05 (Reid, private communication).

At the Systems Optimization Laboratory we have recently implemented some
analogous routines as part of a package LUSOL, which will maintain the factorization
LkBk--Uk following various kinds of updates. The matrices Bk may be singular or
rectangular, and the updates possible are column replacement, row replacement,
rank-one modification, and addition or deletion of a row or a column. The condition
of Lk is controlled throughout for the reasons indicated above. We expect such a
package to find many applications within optimization and elsewhere. One example
will be to maintain a sparse factorization of the Schur-complement matrix Ck (see

3.5.4-3.6.2), often called the working basis in algorithms for solving mathematical
programs that have special structure. GUB rows and imbedded networks are examples
of such structure; see Brown and Wright (1981) for an excellent overview.

3.5.3. The Forrest-Tomlin update. The update of Forrest and Tomlin (1972)
was developed as a means of improving upon the sparsity of the PF update while
retaining the ability to use external storage where necessary. In fact the FT update is
a restricted form of the BG update, in which no row interchanges are allowed when
eliminating the bottom row of pTOp. This single difference removes the fill-in difficulty
(but at the expense of losing guaranteed numerical stability).

Algebraically, a new column Wk is added to Uk-1, the Ikth column and row are
deleted, and the transformations M are combined into a single "row" transformation
Rk I + e rk elk) T. It can be shown that the required vectors satisfy

(3.16) Lk-l Wk Vk, and U-lrk elk,
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and the new diagonal of Uk is rTWk Most importantly, the multipliers tz are closely
related to the elements of rk, and these can be tested a posteriori to determine whether
the update is acceptable (see also Tomlin (1975)). In practice a rather undemanding
test such as [tzl -< 106 must be used to avoid rejecting the update too frequently. The
FT update is now used within several commercial mathematical programming systems.

3.5.4. Use of the Schur complement. The work of Bisschop and Meeraus (1977),
(1980) has recently provided a new perspective on the problem of updating within
active-set methods. Suppose that for each update a vector vj replaces the/jth column
of B0. A key observation is that the system BkX b is equivalent to the system

(3.17) (B0 Vk)
where

Vg (/)1/)2"" Vk), I (el, el2"’" elk) T.
Note that the rectangular matrix I is composed of k rows of the identity matrix
corresponding to indices of columns that have been replaced. Since the equations
Iky 0 set k elements of y to zero, the remaining elements of y and z together give
the required solution x. Similarly, the system B[y d is equivalent to

if d and d; are constructed from d appropriately (with the aid of k arbitrary elements,
such as zero).

The matrix in (3.17) may be factorized in several different ways. In the next two
sections we consider the simplest factorization

(3.19) (BVk)
where

(.a0) B0Y , C -I
The k x k matrix C is the Schur complement for the partitioned matrix on the left-hand
side of (3.19). It corresponds to a matrix of the ubiquitous form D-WB-V (e.g.,
see Cottle (1974)).

3... slee-e. From (3.17) and (3.19) we see that the
vectors y and z needed to construct the solution of Bx b may be obtained from
the equations

(3.21a) Bow b,

(.b) Cz -,
(3.21c) y w- Yz.
Similarly, the solution of By d is obtained from the two linear systems

(.al c2z -(3.22b) Bgy=d-I2z.

Assuming that Y is available, the essential operations in (3.21) and (3.22) are a solve
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with Bo and a solve with Ck. If k is small enough (say, k-<_ 100), Ck may be treated
as a dense matrix. It is then straightforward to use an orthogonal factorization QkCk
Rk Q Qk L Rk upper triangular) or an analogous factorization LkCk Uk based on
Gaussian elimination (Lk square, Uk upper triangular). These factorizations can be
maintained in a stable manner as Ck is updated to reflect changes to Bk. (The updates
involve adding and deleting rows and columns of Ck; see Gill et al. (1974).) The
stability of the procedures (3.21) and (3.22) then depends essentially on the condition
of Bo. In other words, if B0 is well conditioned, we have a stable method for solving
BkX b for many subsequent k.

The method retains several advantages of the PF update. The vectors to be stored
(columns of Yk) satisfy BoYk Vk, which is analogous to (3.11). These vectors should
have sparsity similar to those in the PF update, and they can be stored sequentially
(in compact form on an external file, if necessary). A further advantage is that whenever
a column of Ck is deleted, the corresponding vector Yk may be skipped in subsequent
uses of (3.21c). This gain would tend to offset the work involved in maintaining the
factors of Ck. Because of the parallels, the method described here amounts to a practical
mechanism for stabilizing an implementation based on the PF update.

3.5.6. The Schur-complement update. One of the aims of Bisschop and Meeraus
(1977), (1980) was to give an update procedure whose storage requirements were
independent of the dimension of B0. This is achievable because the matrix Yk is not
essential for solving (3.17) and (3.18), given Vk and a "black box" for Bo. For example,
(3.2 lc) may be replaced by

(3.23) Boy b- VkZ,

and hence storage for Yk can be saved at the expense of an additional solve with B0.
Similarly, (3.22a) is equivalent to

Bw=dl, Cz=d2-V[w,

again involving a second solve with B0. Note that the original data Vk will usually be
more sparse than Yk, SO that the additional expense may not be substantial.

The storage required for a dense orthogonal factorization of Ck (k:z) is small for
moderate values of k. As with the PF update, any advance in solving linear equations
is immediately applicable to the equations involving B0.

The method is particularly attractive when B0 has special structure. For example,
certain linear programs have the following form"

minimize cTX
subject to (B0 N)x b,

l<_x<-u,
where B0 is a square block-diagonal matrix"

B0 block-diag (Do D1 DN).

Assuming that the square matrices Dj are well conditioned, B0 provides a natural
starting basis for the simplex method.

With the Schur-complement (SC) update, an iteration of the simplex method on
such a problem requires four solves with B0, and hence four solves with each matrix
Dj. In certain applications, the matrices D are closely related to Do (e.g., in time-
dependent problems), in which case a further application of the Schur-complement
technique would be appropriate. A simplex iteration then involves only solves with Do.
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This is a situation in which one factorization is followed by hundreds or even
thousands of solves (involving both Do and Dff). Thus, it is useful for black-box solvers
to be tuned to the case of multiple right-hand sides.

3.5.7. The partitioned LU update. Recall that the PF approach accumulates
updates in a single file, while the BG and FT methods seek to reduce the storage
required for the updates by updating two separate factors (one implicitly through a
file of updates, the other explicitly). Here we suggest leaving L0 and U0 unaltered (in
effect, treating them as two "black boxes" for solving linear systems), and accumulating
two files of updates. In place of the block factorization (3.19) we can write

with the same definition (3.20) of C. After the kth update, the new column of W
and row of R satisfy

(3.25) Low v and Ur el.

The similarity of (3.25) with the equations (3.16) for the FT update leads us to suppose
that the storage requirements would be at least as low as for the FT update. Apart
from the need to store and update C, all implementation advantages are retained (in
fact improved upon, since U0 is not altered). As with the PF and SC updates, the
stability depends primarily on the condition of Bo. We could therefore regard the
factorization (3.24) as a practical and stable alternative to the FT update.

3.5.8. Avoiding access to Bo. In active-set methods, it is often necessary to solve
the equations Bx v, where v is a column of the matrix . Although v will not be
a column of B, it could be a column of B0. If B0 were not stored in main memory,
it would be desirable to access its columns as seldom as possible. In this section we
shall show that with the PF update or the Schur-complement updates, the elements
of B0 need not be accessed once the initial factorization has been completed.

Assume that v is the/th column of B0, so that v Boel by definition. For the PF
update it follows by substituting the expression for v in (3.13) that

TI Tkx el,

which gives an equation for x that does not involve v or B0. With the Schur-complement
approach, (3.21a) reduces to w e, while (3.23) can be rearranged to give Bo(y- et)
-Vz. In either case, when solving for x we can avoid not only an explicit reference
to the elements of B0 but also a solve with B0.

Similarly, it is often necessary to solve By d and then to form yrv for
each column v that has bee replaced in B0. (The quantities are the reduced costs
or reduced gradients for variables that have been removed from B0.) If denotes the
product By, then by definition of v it follows that yTv trec With both the PF and
the Schur-complement updates, is a by-product of the procedure for computing y.
Thus, and all relevant values ) are available at no cost.

These results confirm that B0 need exist only in the form of a "black box" for
solving linear systems.

3.6. Other applications of the Sehur-eomplement update. Historically, the formu-
lation LCP has been used because it involves only column updates to B, which have
appeared to be the least diNcult kind of update to implement for sparse problems.
However, the Schur-complement approach also applies to more general sequences of
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related square systems. As with column replacement, the key is to solve a partitioned
system that involves the original matrix.

3.6.1. Unsymmetric rank-one updates. Consider the case in which Bo undergoes
a sequence of rank-one modifications:

Bk Bk- + vks Bo + VkS.
The solution of BkX-" b is part of the solution of the extended system

(3.26) (B0 :;)(:)(0
(Kron (1956), Bisschop and Meeraus (1977)). Given factorizations of B0 and the
Schur complement Ck =-I-SB- Vk, the solution may be obtained from

CkZ =-Sw, Box b- Vkz,

where Bow b. An alternative that would require more storage but less work could
be obtained by using Bo Lo U0 and storing the vectors defined by Lo
Let Rk denote the matrix whose jth column is rj, and similarly for Wk. In this case,
the solution of (3.26) would be obtained from

Ckz =-Rv UoX 1)- Wkz

where Lov b. Either approach is an alternative to updating a factorization of Bk itself
(e.g., Gille and Loute (1981), (1982)), which is even more difficult to implement than
the BG update.

We emphasize that column or row replacements are best treated as a special case,
not as a sequence of general rank-one modifications.

3.6.2. A symmetric Schur-complement update. It was observed in 3.1 that in
some circumstances the search direction can be computed by solving the linear system
(3.2) involving the augmented matrix

(3.27) Mk=
Ak

Within an active-set method, changes in the status of fixed and free variables lead to
changes in H and A. When a variable becomes fixed, the corresponding row and
column of Mk are deleted; when a variable is freed, a new row and column of Mk are
added.

Instead of updating a factorization of Mk, we can start with some M0 and work
with an augmented system of the form

If a variable is fixed at the kth change, the kth column of Sk is an appropriate coordinate
vector; if the /th variable is freed, the column is

(h,)Sk
at

where ht is obtained from the/th column of the full Hessian, and at is the/th column
of s. The solution of the augmented system corresponding to the kth working set can
then be obtained using a factorization of M0 and a factorization of the Schur comple-
ment Ck SM-
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3.7. Linear and quadratic programming. Two important special cases of LCP are
linear and quadratic programs. Since there are no user-supplied functions, the computa-
tion in linear and quadratic programming methods involves primarily linear algebraic
operations.

3.7.1. Large-scale linear programming. Large-scale linear programs occur in
many important applications, such as economic planning and resource allocation.
Methods and software for large-scale LP have thus achieved a high level of sophistica-
tion, and many of the techniques discussed in 3 were designed originally for use
within the simplex method.

Much research has involved linear programs with special structure in the constraint
matrix--for example, those arising from networks or time-dependent systems. It is
impossible to summarize methods for specially-structured linear programs in a survey
paper of this type. However, to illustrate the flavor of the work, we consider staircase
linear programs (which were used in the examples of 3.4). These arise in modeling
time-dependent processes; the recent book edited by Dantzig, Dempster and Kallio
(1981) is entirely devoted to such problems. It has long been observed that the simplex
method tends to be less efficient on staircase problems than on general LPs. To correct
this deficiency, work has tended to proceed in two directions. First, the simplex method
can be adapted to take advantage of the staircase structure, by using special techniques
for factorizing, updating, and pricing (Fourer (1982)). Second, special-purpose methods
can be designed to exploit particular features of the problem. For staircase problems,
several variations of the decomposition approach (Dantzig and Wolfe (1960)) have
been suggested. The basic idea is to solve the problem in terms of smaller, nearly
independent, subproblems.

3.7.2. Large-scale quadratic programming. /k general statement of the quadratic
programming problem is

minimize c TX + 1/2X THx

subject to x b,

l<=x<=u,

where H is a symmetric matrix.
An early approach to quadratic programming was to transform the problem into

a linear program, which is then solved by a modified LP method (e.g., Beale (1967)).
The most popular quadratic programming algorithms are now based on the active-set
approach described in 3.1 (for a comprehensive survey of QP methods, see Cottle
and Djang (1979)), and the search direction is defined by the subproblem (3.1).
Efficient methods for sparse quadratic programs thus involve specializing the techniques
discussed in 3.3 for the special case when the Hessian is constant.

4. Nonlinearly constrained optimization. The nonlinearly constrained optimiz-
ation problem is assumed to be of the following form:

NCP minimize F(x)

subject to c(x)= O,

l<=x<-u,

where c(x) is a vector of m nonlinear constraint functions. We shall assume that these
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constraints are "sparse", in the sense that the m x n Jacobian matrix A(x) of c(x) is
sparse. For simplicity, we shall usually not distinguish between linear and nonlinear
constraints in c(x). However, it is usually considered desirable to treat linear and
nonlinear constraints separately.

Problems with nonlinear constraints are considerably more difficult to solve than
those with only linear constraints. There is an enormous literature concerning methods
for nonlinear constraints; recent overviews are given in Fletcher (1981) and Gill,
Murray and Wright (1981). In this section, we shall concentrate on the impact of
sparsity rather than attempt a thorough discussion of the methods.

One aspect of NCP that is directly relevant to sparse matrix techniques is that
any superlinearly convergent algorithm must consider the curvature of the nonlinear
constraint functions, and thus the Hessian of interest is the Hessian of the Lagrangian
function rather than the Hessian of F alone. Let the Hessian of the Lagrangian function
be denoted by W(x, A) H(x)-i_ AiHi(x), where Hi is the Hessian of Ci. At first,
it might appear unlikely that this matrix would be sparse, since it is a weighted sum
of the Hessians of the objective function and the constraints. However, sparsity in the
gradient of a nonlinear constraint always implies sparsity in its Hessian matrix. For
example, if the gradient of c(x) contains five nonzero components, the corresponding
Hessian matrix H(x) can have at most 25 nonzero elements. Furthermore, there is
often considerable overlap in the positions of nonzero elements in the Hessians of
different constraints. Thus, in practice the Hessian of the Lagrangian function is often
very sparse.

The usual approach to solving NCP is to construct a sequence of unconstrained
or linearly constrained subproblems whose solutions converge to that of NCP. Early
methods included unconstrained subproblems based on penalty and barrier functions
(see Fiacco and McCormick (1968)). Unfortunately, these methods suffer from inevi-
table ill-conditioning; they have for the most part been superseded by more efficient
methods.

4.1. Augmented Lagrangian methods. Augmented Lagrangian methods were
motivated in large part by the availability of good methods for unconstrained optimiz-
ation. The original idea was to minimize an approximation to the Lagrangian function
that has been suitably augmented (by a penalty term) so that the solution is a local
unconstrained minimum of the augmented function (Hestenes (1969), Powell (1969)).

In particular, an augmented Lagrangian method can be defined in which Xk/l is
taken as the solution of the subproblem

minimize LA x, Ak, Pk

(4.1)
subject to -<_ x _-< u,

where the augmented Lagrangian function LA is defined by

P(4.2) LA(X,A,p)=--F(x)--ATc(x)+-C(x)Tc(x).
The vector A is an estimate of the Lagrange multiplier vector, and p is a suitably
chosen nonnegative scalar. Alternatively, it is possible to treat any general linear
constraints by an active-set method ( 3.1), and to include only nonlinear constraints
in the augmented Lagrangian function. Whatever the definition of the subproblem,
the algorithm has a two-level structure"outer" iterations (corresponding to different
subproblems) and "inner" iterations (within each subproblem).
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The Hessian of interest when solving (4.1) is the Hessian of LA (4.2), which is
W(x, k)+pkA(x)TA(x). The sparsity patterns of W(x, ,) and the Hessian matrix of
LA are sometimes very similar. Hence, techniques designed to use an explicit sparse
Hessian may be applied to (4.1).

The Jacobian matrix A(x) need not be stored explicitly in order to solve the
subproblem (4.1). If a fairly accurate solution of (4.1) is computed, an improved
Lagrange multipler estimate may be obtained without solving any linear systems
involving A(x). However, in several recent augmented Lagrangian methods, (4.1) is
solved only to low accuracy in order to avoid expending function evaluations when
Ak is a poor estimate of the optimal multipliers;, in this case, some factorization of the
matrix A(x+l) is required to obtain an improved Lagrange multiplier estimate (by
solving either a linear system or a linear least-squares problem). The relevance of the
storage needed for the Jacobian and/or a factorization depends on the number of
nonlinear constraints and the sparsity of the Jacobian.

4.2. Linearly constrained subproblems. The solution of NCP is a minimum of
the Lagrangian function in the subspace defined by the gradients of the active con-
straints. This property leads to a class of methods in which linearizations of the nonlinear
constraints are used to define a linearly constrained subproblem, of the form

(4.3)

minimize F(x) A k
r

C(X) AkX)

subject to A(x- x) -c,

where ck and A denote c(x) and A(x) (Robinson (1972), Rosen and Kreuser
(1972)). With this formulation, the Lagrange multipliers of the kth subproblem may
be taken as the multiplier estimate ;tk/l in defining the next subproblem, and will
converge to the true multipliers at the solution. When c(x) contains both linear and
nonlinear functions, only the nonlinear functions need be included in the objective
function of (4.3). Under suitable assumptions, the solutions of the subproblems con-
verge quadratically to the solution of NCP. A further benefit of the subproblem (4.3)
is that linear constraints may be treated explicitly.

One of the important conditions for convergence with the subproblems (4.3) is a
"sufficiently close" starting point; thus, some procedure must be used to prevent
divergence from a poor value of x0. Rosen (1980) suggested a two-phase approach,
starting with a penalty function method. In the MINOS/AUGMENTED system of
Murtagh and Saunders (1982), the objective function of the subproblem is defined as
a modified augmented Lagrangian of the form

pk
(4.4) LA(X, Ak, Pk) F(X)- A k(X) +-- k(X) Tk(X),

where

k(X) C(X)--(Ck + Ak(X-- Xk)).

Methods based on solving (4.3) have several benefits for sparse problems. The
ability to treat linear constraints explicitly is helpful for the many large problems in
which most of the constraints are linear. As noted in the Introduction, it is often a
feature of sparse problems that the cost of evaluating the problem functions is domi-
nated by the sparse matrix operations. The superiority of SQP methods ( 4.3.2) for
dense problems results from the generally lower number of function evaluations
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compared to methods based on (4.3); for sparse problems, however, the function
evaluations required to solve (4.3) may be insignificant compared to the savings that
would result from solving fewer subproblems. If an active-set method of the type
described in 3.3.1 is applied to (4.3), only the projected Hessian needs to be stored
(rather than the full Hessian). Thus, methods based on (4.3) will tend to be more
effective than augmented Lagrangian methods for problems in which the Hessian of
the Lagrangian function is not sparse and the projected Hessian can be stored as a
dense matrix.

4.3. Methods based on linear and quadratic programming. We now consider two
classes of methods in which the subproblems are solved without evaluation of the
problem functions (in contrast to the methods of 4.1 and 4.2).

4.3.1. Sequential linear programming methods. Because of the availability and
high quality of software for sparse linear programs, a popular technique for solving
large-scale problems has been to choose each iterate as the solution of an LP subprob-
lem; we shall call these sequential linear programming (SLP) methods. They were first
proposed by Griffith and Stewart (1961); for a recent survey, see Palacios-Gomez,
Lasdon and Engquist (1982).

One crucial issue in an SLP method is the definition of the linear functions in the
subproblem. A typical formulation is

minimize g’(x x)

subject to Ak(x- xk) -c,

l<=x<_u.

With some formulations, the LP may not be well posedfor example, there may be
fewer constraints than variables. The usual way of ensuring a correctly posed subprob-
lem is to include additional constraints on the variables, such as bounds on the change
in each variable. In general, the latter are also needed to ensure convergence.

SLP methods have the advantage that the subproblems can be solved using all
the technology of sparse LP codes. They tend to be efficient on two types of problems:
those with nearly linear functions, particularly slightly perturbed linear programs; and
those in which the functions can be closely approximated by piecewise linear functions
(e.g., the objective function is separable and convex). Unfortunately, on general
problems SLP methods are at best linearly convergent unless the number of active
constraints at the solution is equal to the number of variables. Furthermore, the speed
of convergence critically depends on the technique that defines each subproblem.

Recently, some of the techniques used in SQP methods ( 4.3.2) have been applied
to the SLP approachsuch as the use of a merit function to ensure progress after
each outer iteration. Such techniques cannot be expected to improve the asymptotic
rate of convergence of SLP methods, but they should improve robustness and overall
effectiveness.

Beale (1978) has given a method that is designed to make extensive use of an
existing LP system. The nonlinearly constrained problem is assumed to be of the form

minimize c(x)
X,y

(4.5) subject to A(x)y-- b(x),

l<=x<=u,

v<=y<-w.
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A special nonlinear algorithm is then used to adjust x; for each value of x, a new
estimate y is determined by solving an LP.

4.3.2. Sequential quadratic programming methods. The most popular methods
in recent years for dense nonlinearly constrained problems are based on solving a
sequence of quadratic programming subproblems (see Powell (1982) for a survey).
At iteration k, a typical QP subproblem has the form

minimize 1/2p rHkp + gp

subject to Akp =--Ck

l- xk <= p <- u Xk,

where Hk is an approximation to the Hessian of the Lagrangian function. The solution
of the QP subproblem is then used as the search direction p in (1.1). The step a is
chosen to achieve a suitable reduction in some merit function that measures progress
toward the solution. In the dense case, the most popular method is based on taking
H as a positive-definite quasi-Newton approximation to the Hessian (Powell (1977)).
However, the many options in defining the QP subproblem have yet to be fully
understood and resolved (see Murray and Wright (1982), for a discussion of some of
the critical issues).

Further complex issues are raised when applying an SQP method to sparse
problems (see, e.g., Gill et al. (1981)). The general development of methods has been
hampered because methods for sparse quadratic programming are only just being
developed, and are not yet generally available for use within a general nonlinear
algorithm. However, Escudero (1980) has reported some success with an SQP
implementation in which a sparse quasi-Newton approximation is used for H (see
also 3.7.2).
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1. Introduction. It is quite possible to discuss software without reference to the
applications for which it is needed. For basic supportive calculations, such as extracting
roots and evaluating trigonometric functions, the set of users is too diverse to warrant
description. Computations with small matrices for normal scientific use are in such a
good state that there is really no need to know the application in order to understand
the algorithm. At the other extreme it is essential to have some grasp of the problems
of weather prediction in order to appreciate the software that has been developed for
that daunting task.

Although eigenvalue calculations involving large sparse matrices are not as difficult
as solving the coupled nonlinear differential equations governing the weather, they
are at the frontier of our expertise. Moreover the cost of a big computation depends
on the billing algorithm in the operating system and this can be complicated (not to
say arbitrary). Unfortunately the price of generality in programs is high. Consequently
it does help to know something of what today’s users really want.

For those readers unacquainted with the state of the art in small eigenvalue
computations we tell the EISPACK story in 2. EISPACK is a definitive set of routines
for dense matrices. The next two sections deliver the result of our inquiry into the
community of users of sparse eigenvalue programs. The sad conclusion is that there
are a good number of such programs, they are heavily used, they were often developed
outside the numerical analysis community and would not be judged adequate by
EISPACK standards. Nevertheless these programs seem to be tuned to their users’
needs and perform adequately inside packages addressed to specific ambitious tasks.
Nevertheless greater reliability is needed before human beings need not be concerned
with the sparse matrix phase of their challenging computations.

Section 5 describes the striking difference between methods for dense matrices
and methods for sparse matrices.

Section 6 does describe the contributions of the numerical analysts to the sparse
eigenvalue problem. At the time of this writing none of them sits inside a large
applications package and so their usage is very light on the national scene. These codes
are important standard bearers but should be regarded as the front runners in a race
that is not yet over. The massive testing phase which characterized EISPACK has not
been applied to the codes mentioned in this section.

Section 7 contrasts subspace iteration with the Lanczos algorithm, 8 mentions
a couple of simple points whose importance has become more widely appreciated

* Received by the editors December 27, 1982, and in final form September 12, 1983. The author
gratefully acknowledges support from the Office of Naval Research under contract N00014-76-C-0013.
This essay arose from a talk delivered at the Sparse Matrix Symposium held at Fairfield Glade, Tennessee
in October, 1982.

" Department of Mathematics, University of California at Berkeley, Berkeley, California 94720.
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during the five years since the 1978 sparse matrix meeting. Finally 9 describes some
software that is still under development.

Terminology. It is vital to science that one not be more precise than is necessary
for the purpose in hand. In this essay words like small, large and sparse play a key
role. Yet their meaning will depend on the user’s computing system.

We say that an n x n matrix is small if two n n arrays can be held in the fast
store, in addition to any programs that are needed; otherwise the matrix is large. This
binary distinction should not be pressed too hard or it will crumble. The purists say
that a matrix is sparse if it has only a few nonzero elements in each row, not more
than 50 say. By this definition a matrix with 90% of its elements zero would not be
sparse because (1/10)n2> 50n for large enough n(n> 500).

Our definition suggests that it is reasonable to use similarity transformations to

help find the eigenvalues of small matrices. Our definition also suggests that one should
cherish the zero elements of sparse matrices.

The exploitation of sparsity in the execution of triangular factorization has given
rise to a valuable and vigorous research area called sparse matrix technology. The
reviews of Duff describe it well (Duff (1983)). It turns out that this technology is not

directly relevant to eigenvalue problems. There are two classes of methods: those that
employ explicit nondiagonal similarity transformations and those that do not. That is
all. If it is attractive to use explicit similarity transformations then please use them.
Our concern here is with the other class, whatever the character of the matrix.

G.W. Stewart (1976) gave a concise review of numerical methods for sparse
eigenvalue problems. That reference covers the background of most of the software
we discuss here. Since then there have been important refinements to the Lanczos
algorithm. Both Davidson’s method and the ideas sketched in the section on recent
developments are of more recent vintage.

2. EISPACK. EISPACK is an organized collection of some 40 FORTRAN
subroutines which compute some or all eigenvalues of a given matrix with or without
the corresponding eigenvectors. This large number of subroutines reflects the yearning
for efficiency. EISPACK has special techniques for real matrices, for symmetric
matrices, for tridiagonal matrices (aij=0 if i-Yl> 1), and for upper Hessenberg
matrices (aij 0 if j > 1).

The first issue of EISPACK appeared in 1974. The package was distributed by
the code center of the Argonne National Laboratory, Argonne, Illinois, and the
indispensable EISPACK guide was published by Springer-Verlag (Smith et al. (1974)).
To complete most eigenvalue calculations it is necessary to invoke more than one
subroutine. For example, a nonsymmetric matrix B might be first "balanced" by a

diagonal similarity transformation, B --> DBD- =: C; next C is reduced to Hessenberg
form, C--> ptCp=: H with P orthogonal, and then H is reduced to quasi-triangular
form T (to within working accuracy), H--> O’HO =: T with O orthogonal. The eigen-
values of B are found along the diagonal of T.

A second edition of EISPACK appeared in 1977 (Garbow et al. (1977)) and a
third appeared in 1983. Each edition removed blemishes found in some subroutines
and added new programs. We enlarge on this topic further on.

A remarkable aspect of EISPACK is that its first version deliberately eschewed
the production of new algorithms. The goal was "simply" to translate into FORTRAN
some of the ALGOL programs in the famous Handbook for Automatic Computation,
Volume II, Linear Algebra, J. H. Wilkinson and C. Reinsch (1971). The authors were
the acknowledged leaders in the art of matrix computations. The Handbook appeared
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in 1971 and represented a truly international cooperation. Not all the programs were
written by Wilkinson or Reinsch but each contribution was carefully scrutinized by
them and, more often than not, improvements were incorporated into the final versions.
Moreover most of the programs had already been published in Numerische Mathematik
and so had been refereed, and tested, and were available in the public domain.

Why mention these details? Because the exercise of translating these ALGOL
programs into FORTRAN was far from trivial and, incredible as it may seem, blemishes
were found in a number of the Handbook’s programs. Of course, the EISPACK team
was aiming high. One aim of the enterprise was to examine the variations in performance
when the programs were used on most of the operating systems available at that time.
For example, there are virtual memory systems in which storage is split up into pages.
The system’s algorithm for fetching pages, when they are not present, can have a
strong effect on the time needed to execute a matrix computation. Fortunately it was
possible to express the algorithms so that they would perform adequately on all the
major systems.

The next aspect of EISPACK that should be remembered is the massive effort at
testing the programs, in an adversary manner, before their release. About 15 computing
groups in the USA and Canada agreed to install and test the trial programs they
received from Argonne. As bugs and blemishes were uncovered there were several
iterations on the programs.

A nasty thought must be stirring in the reader’s mind. How can an algorithm be
published in Numerische Mathematik after careful refereeing, be subject to scrutiny
and testing by Wilkinson and Reinsch prior to inclusion in the Handbook, be translated
into FORTRAN by the EISPACK team with close attention to detail, be tested by
various sites charged with that duty, and yet retain a bug or even a blemish? Either
the people involved in this development are not truly competent or there is more to
the production of software for the mass market than meets the eye. If the latter, then
what precisely are the difficulties? We all await a succinct description of the intellectual
problems that would establish mathematical software as a genuine subdiscipline of
computer science.

Last, but not least, we should emphasize the effort expended by the team on the
documentation and uniform coding style. It is a mistake to speak of "good" documenta-
tion because documentation which satisfies A may not be suitable for B. It is reasonable
to speak of documentation being suitable for a given class of users. The EISPACK
Guide has intimidated some people but, at the time it appeared, it glowed with virtue
in comparison with most other samples of documentation. Moreover nothing on this
scale had been attempted before by the experts on mathematical software.

Inadvertently EISPACK has provided a common vocabulary (the names of its
subroutines) to eigenvalue hunters. EISPACK was a highly visible distillation of what
had been learnt by the matrix eigenvalue community during the previous 20 years. It
was good for public relations. It predated LINPACK by 3 or 4 years and yet most
people consider the eigenvalue problem to be significantly more difficult than the linear
equations problem. We will not try to explain this anomaly.

To numerical analysts EISPACK seemed to be the solution to the practical
eigenvalue problem. What else remained?

1. EISPACK routines are not fast enough for signal processing applications where
the output is needed in microseconds, see Speiser and Whitehead (1982).

2. EISPACK manipulates matrices as conventional two-dimensional arrays or
uses a conventional one-dimensional representation of symmetric matrices. Except for
the tridiagonal and Hessenberg form, EISPACK does not try to exploit zero elements
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in the original matrix. Moreover the stable similarity transformations used by most of
the subroutines will quickly destroy any initial sparsity. The fixed in-core data structure
makes EISPACK codes nearly independent of the computer and operating system.
This crucial property permits a definitive package of FORTRAN programs to be of
general use.

The field is not dead by any means. _As users become more sophisticated they are
finding more and more need for eigenvalues and eigenvectors, usage grows.

_As the fast storage capacity of many computer systems continues to grow so does
the domain of EISP_ACK. Sound advice to a casual user is to use EISP_ACK whenever
possible, even if the matrix is 500 by 500 and sparse.

Who will then remain unsatisfied? The next section supplies an answer.

3. Who wants eigenvalues of large, sparse matrices? EISPACK subroutines have
been used quite extensively and it has been assumed that the population of users is
so large and so diverse that there is little point in examining the market more closely.
Yet conversations with a variety of users over several years have forced the author to
the following surprising explanation of the current state of affairs.

The market for eigenvalue programs can be divided into two quite different camps:
intensive users and sporadic users. The intensive users already spend (in total) a few
million dollars a year on the extraction of eigenvalues because spectral analysis is
essential to their daily work. They need efficiency and have already crafted their
programs to exploit the special features of their tasks. General purpose programs with
meticulous code designed to cope with any difficulty which might arise are not cost
effective for this group. Of course, the more enlightened intensive users will collaborate
with experts as their special purpose software evolves to meet more exacting demands.
Actually the class of intensive eigenvalue hunters also splits into two quite distinct
subclasses: those with small, dense matrices in signal processing and those who generate
larger and larger matrices as they make their mathematical models more realistic. The
signal processors may be driven to solve their problems with hardware rather than
software and we will concentrate here on the large matrix problem.

The sporadic user has neither the incentive nor the inclination to study matrix
methods. The need for some eigenvalues arises and the user wants to obtain them
with minimal fuss. Reliability is more important than efficiency and EISP_ACK is the
answer ,to his prayers. We suggest that the number of sporadic users whose matrices
are too large for EISP_ACK is currently very low.

The foregoing remarks do not lessen the value of developing good methods for
all sorts of large eigenvalue problems. The number of sporadic users will increase.

4. Intensive users.
4.1. Structural engineers. Most eigenvalue calculations arise at the heart of analy-

ses of structures subject to small vibrations. There is an n n global stiffness matrix
K and an n n global mass matrix M. Both are symmetric and real, K is positive
definite. The usual task is to find all the eigenvalues hi in a given interval at the left
end of the spectrum (i.e., near 0), together with their eigenvectors zi,

(K-hiM)zi=O, i= 1,2,"’.

The z determine the shapes of the fundamental modes of vibration of the structure
and the , determine the associated natural frequencies 27r//, i= 1, 2,. ..

The nonzero elements of K and M are integrals and more arithmetic operations
are needed to form K and M than to compute a few eigenvalues.
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In 1978 one company paid $12,000 to obtain 30 eigenvalue/vector pairs for a
problem with n 12,000. This cost excludes program development. A good finite
element package was used with the technique called subspace iteration for the eigen-
value extraction. Professor E. Wilson (Civil Engineering Department, University of
California, Berkeley) estimates that structural engineers spent about $10 million in
1978 on eigenvalue computations. A typical problem today will have n- 500, and 20
modes will be computed. Nevertheless, there is continued demand to analyze more
complicated structures in greater detail. Problems with n > 10,000 and 400 modes
have been solved. There is current interest in the vibration of piping systems in modern
nuclear reactors.

4.2. Quantum chemists. The method of configuration interaction (CI) has become
the preferred technique for deducing observable properties of real (or hypothetical)
molecules from their detailed electronic structure. The CI method approximates the
solution of the clamped nuclei Schr6dinger equation by expanding it in terms of
orthogonal functions made out of products of single and double electron spin orbitals.
More details are given in Shavitt (1977) and Davidson (1983). These papers show
that interesting, difficult, special eigenvalue problems are being solved quite indepen-
dently of the numerical analysis community. Great ingenuity goes into the calculation
of the real symmetric matrix H (H for Hamiltonian). The nonzero elements of H are
multiple integrals and constitute only 10% of the positions. Unfortunately they are
scattered over the matrix in a way that precludes any simple structural template. Each
eigenvector represents a wave function and its eigenvalue is the energy of the associated
state.

In these chemical computations the determination of H requires 10 to 100 times
more work than the extraction of the eigenvector belonging to the smallest (i.e., most
negative) eigenvalue. Davidson estimates that $100,000 is spent per year in the USA
on eigenvalue/vector computations in chemistry. Usually only the smallest pair is
required. A typical calculation has the order n 10,000, but this is expected to increase
sharply. During the summer of 1982 the ethylene molecule C2H4 was analyzed in
collaborative work at Cambridge University and the University of California, Berkeley.
For this problem

n 1,046,758.

This calculation demonstrated convincingly the need to include excited states in the
expansion. In other words the simpler models in CI are not adequate for the detail
required in current investigations.

It is sad that most numerical analysts have never heard of the special eigenvalue
methods invented by the chemists. These are described in Davidson (1983).

4.3. Plasma physicists. An interesting nonsymmetric application occurs in resis-
tive magneto-hydrodynamics (MHD) theory that combines Maxwell’s and fluid flow
equations. The hot plasma is confined by magnetic fields. MHD equilibria and their
stability are of special interest. Resistivity (7 0) is the most important nonideal effect
since the related instabilities cause the plasma to break away from the magnetic field.

The spectrum of the normal modes connected with linearized perturbations around
an equilibrium state is to be computed. The equilibria considered have cylindrical
symmetry and depend only on the radius r. This symmetry permits separation of
variables in the perturbed state x

x(r, O, z, t)= e’x(r) exp[i(mO+ nz/L)],
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where 3’ is the crucial growth rate, L is a length, and m, n characterize the perturbation.
Then x(r) satisfies the equation

3’x f(x, r/, equilibrium),

where f is a nonhermitian operator involving space derivatives only. This equation is
usually solved by applying a finite element Galerkin procedure that yields the matrix
eigenvalue problem

where c is the vector expansion coefficient of x(r) and 3’ is the (complex) growth rate,
F is nonhermitian, M is symmetric positive definite and each matrix is block tridiagonal.
Their order is d 12N, where N denotes the number of radial mesh points.

In one center (the Max Planck Institute of Munich) N is currently taken as 50 and
the problem is solved by band OR (on a Cray-lS)! If any eigenvalue 3’ has a positive
real part then there is an exponentially growing instability in the equilibrium. The
spectrum of the operator f is quite complicated, containing different branches" namely
the fast, slow and Alfven modes. It has been found that only in ideal MHD (rt--0) do
the Alfven and slow modes form continua associated with singular eigenfunctions. For
any finite resistivity these modes are damped, i.e., the eigenvalues 3’ leave the imaginary
axis.

The physicists need to examine the stability of two-dimensional toroidal
(Tokamak) equilibria where the different m-harmonics in the perturbations all couple.
The associated matrices F and M are still banded but their order exceeds 104. Efficient
computation of the eigenvalue with largest real part is required.

This group is potentially intensive but at present they await viable software for
their 2D problems.

There are interesting nonsymmetric eigenvalue problems which arise in economics
and operations research, see Karlin (1959), Kleinrock (1976), Seneta (1981), but it is
not clear that these users are in the intensive classmyet.

The present intensive users have developed their own eigenvalue software. In fact
the structural engineers discovered the method of simultaneous iteration for themselves
but gave it a more descriptive name, subspace iteration. The method itself is quite
obvious and what counts is the implementation. It is sad that the beautiful program
RITZIT developed by H. Rutishauser in 1968/69 and published in the handbook of
Wilkinson and Reinsch, had no influence on the structural engineers working in the
USA, although in Britain the work of Jennings did employ some of the techniques
embodied in RITZIT. By the time the RITZIT quality does creep into the finite element
packages subspace iteration will have been displaced by modern versions of the Lanczos
algorithm.

5. How to exploit sparsity. It is possible to approximate an eigenvalue of a linear
operator by "sampling" at well chosen points in its domain. Thus the simple power
method samples the action of a matrix A on the sequence of column vectors x, Ax,
A2x, A3x, The sequence of Rayleigh quotients of these vectors converges quite
rapidly to the dominant eigenvalue of A. Recall that the Rayleigh quotient of a vector
v is vtAv! vtv. Consequently there are methods that need only be given a subroutine,
call it OP for operator, which returns Av for any given vector v.

This is the only way in which A appears in the method. The structure and sparsity
of A can be exploited by the user in writing code for OP. In other words, the buck is
passed to the user! He, or she, is in the best position to take advantage of A’s
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characteristics to speed up the formation of Av. When v has 10,000 components one
pays attention to this matrix-vector product. All the software we describe below
actually ignores sparsity completely; that feature is hidden in OP.

This situation is in stark contrast to EISPACK and to the direct solution of linear
equations where a number of clever devices are used to take advantage of zero elements.
Some of these sparse techniques may be used by the subprogram OP, but none of that
work appears explicitly in the eigenvalue codes. Nevertheless the development of
methods based on the user-supplied subprogram OP represents a beautiful division of
labor: the method is not obscured by details of A’s structure.

This is the place to mention a serious confusion that has arisen in the past in the
assessment of methods. We focus on symmetric matrices for the rest of this section.
At a certain level of abstraction the power method is identical to inverse iteration.
One technique works with A, the other with A-1. Inverse iteration performs the useful
task of finding the eigenvalue nearest to 0 but pays the significant price of factoring
A (to LU) in order to form w A-iv (by solving Lu v and Uo u). If a sparse
eigenvalue program is used to compute eigenvalues of A it makes an enormous
difference whether the subroutine OP delivers Av or A-iv.

Subspace iteration finds eigenvalues close to r by factoring A-rI and letting
OP deliver (A-rI)-Iv. When r =0 the eigenvalues near 0 are computed first and
quite rapidly.

The Lanczos algorithm is somewhat different. It produces eigenvalues at both ends
of the spectrum of the linear operator represented by OP, the more extreme ones
emerging before the interior ones. Thus Lanczos offers the hope of computing the
eigenvalues of A nearest 0 without the pain of invoking some sparse factorization of A.
In this sense Lanczos has been compared with subspace iteration. The performance
depends quite strongly on the matrix but as the order n grows (n > 100 say) Lanczos
fares worse and worse and is soon eclipsed by subspace iteration. Lanczos will have
computed perhaps 50 unwanted eigenvalues near c for every eigenvalue near 0. This
is because, in most given problems, the larger eigenvalues are much better separated
than the small ones. (OP is approximating an unbounded operator.) Although Lanczos
is optimal in certain important respects it is a hopeless task to compute the smallest
eigenvalue without either factoring A, or solving Av b iteratively, or having a good
approximation to the wanted eigenvector. This is certainly the case when n > 1,000.

The solution is easy. Give Lanczos the same OP subroutine as subspace iteration.
Then the power of Lanczos reveals itself quickly. Both methods are then working with
(A-r)-1 to find eigenvalues near r.

6. Software for the masses. By the time a matrix expert has seen his program
appear in a refereed journal he probably never wants to see it again. The program
comes to dominate its creator. Dr. R. C. Ward (ORNL) is well aware of the consequent
difficulty of getting good matrix programs into the hands of nonexpert users. In
conjunction with the Sparse Matrix Symposium of 1982 in Fairfield Glade, Ward, and
his colleagues at Oak Ridge, created a public catalog of software (Heath (1982)) for
sparse matrix problems, including eigenvalue extraction. This helped to focus the
production of good software.

A nonexpert will still be annoyed at seeing perhaps six programs all designed for
the same task and all based on, say, the Lanczos algorithm. His annoyance is forgivable
but unwarranted. He should understand that the sparse eigenvalue problem is still a
research topic. The experts do not yet know the best way to implement the Lanczos
algorithm (to block or not to block, to orthogonalize the Lanczos vectors a lot, a little,
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or not at all), or how to handle secondary storage. Thus it is good that there are several
rival programs until a reasonable consensus is reached. None of the codes has been
subjected to widespread testing in a variety of computer systems.

It is difficult to appreciate the difficulties of software production without some
acquaintance with the variety of computing systems in which the software may be
used. Here is a typical example. Professor Ruhe’s program STLM (see Table 1) was
developed in Sweden. It was transferred to an identical CDC computer running the
"same" operating system at Boeing Computer Services. STLM did not work at first
but in fact the discrepancies were minor and easily fixed by the experts present. That
is not the point of the story. What happened next was that STLM appeared to be a
very expensive way to compute the desired eigenvectors. A little investigation revealed
that the billing algorithm in the operating system at Boeing was quite different from
the one used in Sweden. In particular there were heavy charges both for the quantity
of data transferred from the fast memory and for the number of transfers. A far from
trivial modification of the program was needed to adapt it to the local pricing system.

In general it is difficult for the author of a program to know the full range of
billing algorithms. Even if it were possible to code an algorithm so that it never did
badly on any current pricing mechanism it is likely that the code would never do well
either. One possibility is to require certain pricing ratios as arguments to a subroutine.
The defect with that approach is the severe increase in complexity of such programs.
The good ship Portability may well founder on the rock called Operating Systems.

I now turn to the programs in Tables 1 and 2 and apologize to the authors of
good published Lanczos programs that are not there. All the programs compute one
or more eigenvalue/vector pairs of the symmetric problem (A-AB)z =0, unless the
contrary is stated. Comments are given at the side. The programs are in FORTRAN,
most in the ANSI standard version of FORTRAN 66. All are portable to some extent,

TABLE
Symmetric problems, Lanczos based.

Author Name Lines Distributor Comments

J. Cullum and LMAIN 2,100 authors A-AI only
R. Willoughby LVMAIN (IBM) no orthogonalization

J. Cullum and BLMAIN 1,000 IBM A-,I only
R. Willoughby block, limited reorthogonalization

D. S. Scott LAS02 3,288 NESC* Block
selective orthogonalization

T. Ericsson and STLM 6,500 authors Shift and invert strategy
A. Ruhe (Sweden) (see 8)

no orthogonalization

B. N. Parlett and EA15AD 648 Harwell**
J. Reid

All eigenvalues in a given
interval

no eigenvectors
no orthogonalization

A-M only

* National Energy Software Center, Room C-235, Bldg. 221, Argonne National Laboratory, Argonne,
IL 60439.

** Harwell Library, Bldg. 8.9, AERE, Harwell, Oxfordshire, England.
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TABLE 2
Symmetric problems, other methods. Few of the programs stand alone.

Author Name Lines Distributor Comments

I. Duff EA12 427 Harwell* A- AI only
RITZIT inspired

P. J. Nikolai SIMITZ 550 IMSL** or
author

A-AB
RITZIT inspired
(TOMS***)

A. Jennings SI ---500 author
(Ireland)

A-AB
(Internat. J. Numer. Meth.

Engrg.)

J. A. Wisniewski
and A. H. Sameh

TRACMN 586 authors A-AB
minimizes the trace of

sections of A-AB

E. R. Davidson EIGEN 1,000 author
(Univ. Washington
Dept. Chemistry)

perturbation technique
A-AI

stands alone

Nonsymmetric problems.

A. Jennings and LOPSI --500 authors subspace iteration
W. Stewart (Ireland) (TOMS***)

* Harwell Library, Bldg. 8.9, AERE, Harwell, Oxfordshire, England.
** International Mathematical Statistical Library, GNB Bldg., 7500 Bellaire, Houston, TX 77036.
*** ACM Transactions on Mathematical Software.

some are completely portable. Between 30 and 60% of the lines are COMMENTS.
A potential user should consult the catalog (Carpenter (1982) list) for more information
on the programs.

6.1. Programs based on Lanczos. The modern versions of the Lanczos algorithm
are not simple and most of them are described in Parlett, (1980, chapt, 13). A brief
summary will be given here, but please see the discussion in 8 for some important
details.

Lanczos algorithms are iterative in nature. A starting vector (or block of vectors)
is chosen and at each step a new vector (or block) is added to the sequence. In exact
arithmetic these vectors are mutually orthogonal and of unit length. A characteristic
and pleasing feature is that only the two most recent vectors (or blocks) are needed
in the computation of the next one. In addition to these vectors the Lanczos method
builds up a symmetric (block) tridiagonal matrix T, each step adds a new row (and
column) to T. Quite soon some eigenvalues of T begin to approximate some eigenvalues
of the operator hidden in OP. Almost always it is the extreme eigenvalues which are
well approximated.

Sometimes an extreme eigenvalue is approximated to full working precision (say
15 decimals) after only 30 Lanczos steps. It is rare, however, that one can solve a
linear system correct to 4 decimals after only 30 steps of the conjugate gradient
algorithm (which is intimately related to the Lanczos algorithm), unless an excellent
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preconditioner is used. Thus it seems "easier" to find a few extreme eigenvalues and
eigenvectors of A than to solve Ax b!

On some systems EISPACK routines can be called automatically and it is natural
to use them. However in order to stand alone such a program must explicitly include
these subroutines. This is a small irritation.

The codes. All of the programs in Table 1 stand alone, they do not invoke other
packages explictly. This feature turns out to be attractive to new customers.

The only program which can be obtained, independently of the author, from the
Argonne Code Center (now called NESC, the National Energy Software Center) is
Scott’s LAS02. Documentation is available on an accompanying file. This code has
been used extensively at Oak Ridge National Laboratory on a variety of structural
analysis problems.

Documentation for the Cullum and Willoughby codes is obtainable in book form
(Cullum and Willoughby (1983)). Their programs use little or no reorthogonalization
of the Lanczos vectors but have developed ingenious ways to identify which eigenvalues
of the auxiliary tridiagonal matrix actually belong to the original matrix. Their code
is shorter than the rival codes.

The Swedish program uses blocks but does little reorthogonalization. Its chief
feature is a sophisticated mechanism for choosing the shifts r in the spectral transform
technique launched by Ruhe and described in 8. A careful comparison of LAS02
with STLM would be very interesting for the small band of specialists in matrix
eigenvalue computations and would help in progress towards a preferred implementa-
tion of the Lanczos algorithm.

The program EA15AD is much shorter than the others because it does not use
blocks, does not do any reorthogonalization, and finds eigenvalues, only, not even
their multiplicity. The user selects the interval to be explored. If the interval happens
to be empty the code will report that fact in reasonable time. This is noteworthy
because the code assumes that OP delivers Av and so triangular factorization is not
available. Thus the standard technique for checking the number of eigenvalues in an
interval is not available. The latest version also permits the computation of eigenvectors
by an auxiliary package EA15ED.

6.2. Programs not based on Lanczos. There are dozens of programs for computing
eigenvalues, see the catalog Carpenter (1982, p. 37) for a list from the year 1981
alone. I apologize to neglected authors for the bias in my selection.

There are a number of long, sophisticated, implementations of subspace iteration
buried in finite element packages. As such they are beyond the limits of this survey.
However the first three programs in Table 2 are available realizations of subspace
iteration.

This paragraph sketches the method. An initial set of orthogonal vectors is chosen.
The number of vectors in the set is the dimension of the subspace. Call it p. The proper
choice of p is important and difficult. These vectors may be considered as the columns
of an nxp matrix X. At step j the subroutine OP is used to compute Y:=
(A-oB)-Xj-1. Next the Rayleigh-Ritz approximations from the column space of Y
are computed. These Ritz vectors go into the columns of the matrix Xj. They provide
the best orthonormal set of approximate eigenvectors that can be obtained by taking
linear combinations of the columns of Y. After a while some of the columns of X
provide excellent approximations to some eigenvectors of the pair (A, B). There are
a number of variants of this scheme and several clever tricks in the implementation.
See Parlett (1980, Chapt. 14), Jennings (1981) or Stewart (1976) for more details.
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The Achilles’ heel of the technique is the selection of block size. The first two
programs are by numerical analysts and it would be interesting to see how they compare
with the codes embedded in the finite element (FEM) packages mentioned in 2. It
is likely that they are shorter, cleaner, more robust and more efficient than their FEM
rivals. On the other hand they have not been fine tuned for structural analysis problems,
and that might make a difference.

The entry TRACMN is the product of recent research. It is based on the fact that

trace [F A o’B F],

is minimized over all n x p matrices F when, and only when, the columns of F are the
eigenvectors belonging to the p eigenvalues closest to r. At each step, the current F
is adjusted in order to reduce the trace. We hope that the authors will compare it with
LASO2 or some similar rival technique.

LOPSI is the only program offered in the software catalog Heath (1982) for the
nonsymmetric problem. The program has been published in ACM Transactions on
Mathematical Software (a severe test) and employs subspaces iteration.

One version of Davidson’s method is realized in EIGEN and was listed in the
catalog of the now defunct National Resource for Computation in Chemistry (LBL,
Berkeley). The general reader is warned that Davidson’s method has been developed
for problems in quantum chemistry. The matrix must be strongly diagonally dominant
in order for this perturbation technique to be justified. When all the diagonal elements
of H are the same then Davidson’s method reduces to Lanczos. The difference is as
follows. At step j the Rayleigh-Ritz technique is used to produce the best approximation
v to the fundamental eigenvector that can be obtained as a linear combination of the
current basis vectors b,..., b. Let p(x) be the Rayleigh quotient, p(x)= x’Hx/x’x.
The residual vector

r:=(H-p(v))u.

is proportional to the gradient vector Vp at
Perturbation theory now says that if u. is a good approximation then an even

better one is

ai := (p(vi)-diag (H))-’
Davidson proposed to take as b+, the normalized component of a orthogonal to

b,,...,bl.
We make three observations.
(1) The "interaction" matrix or projection BtHB is not tridiagonal but full.
(2) The method aims at a particular eigenvalue/vector pair.
(3) When diag (H)= hI then a is a multiple of r and Lanczos is recovered.

This last assertion is not obvious, since v b, but it is true.
Observation 2 shows that Davidson is not really a rival to Lanczos. The methods

address different tasks. Moreover Davidson exploits the fact that good starting vectors
are available from chemistry.

7. Lanczos versus subspace iteration. These two rival techniques are both good
and address the same task. A comparison of them is given in Parlett, Nour-Omid and
Taylor (1983) and the conclusion there is that a modern, properly used version of the
Lanczos algorithm should be an order of magnitude faster than a good subspace
iteration program on problems with n > 500. The larger the number of modes wanted
the greater the advantage of the Lanczos algorithm.
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The fundamental theoretical advantage of the Lanczos is that it never discards
any information whereas subspace iteration, at each step, overwrites a set of approxi-
mate eigenvectors with a better set. What is surprising is that the simple Lanczos
algorithm needs only 5 or 6 n-vectors in the fast store at each step. Morever, it can
find multiple eigenvalues if some form of orthogonalization is used.

There are enough poor implementations of Lanczos available to complicate com-
parisons. The engineers who have devoted themselves to steady improvements of
subspace iteration are loyally defending the virtues of their codes. It will be interesting
to see what happens.

8. What have we learnt since 19787 Much could be said in answer to this question
but two items suggest themselves.

1. The importance to new users of stand alone programs. This point was made
in5.

2. The spectral transformation: The Lanczos algorithm requires that a general
linear problem

[K ZM]x 0

be reduced to standard form. There are several ways to accomplish this and it is vital,
for large problems, to choose a good one. Although the facts given below are elementary
and have been known to the specialists in matrix computations for a long time it is
fair to say that until A. Ruhe pointed out their implications in Ericsson and Ruhe
(1980) they were not given the proper emphasis. Of course, subspace iteration has
employed spectral transformations from the earliest days.

Ruhe proposed that the original problem be rewritten in the standard form

[M1/2(K-o’M)-IM1/2- vI]y=O
with y M1/2x, and r a shift into the interior of the interval which is to be searched
for eigenvalues A. This is quite different from the usual recommendation

[L-1KL-t-AI]z =0,

where M LL’ and z Ltx.
In the majority of large structural problems (with displacement formulation) M

is singular as well as diagonal, perhaps - of its diagonal elements are zero. The shift
tr is not fixed precisely so that there is no loss in assuming that K- crM is nonsingular
and can be factored in a stable manner without any row and column interchanges. If
K-crM LDL then the product s= M1/Z(K-o’M)-IM1/Zu is formed in stages:

19 M1/Zu, solve Lw v, solve DLtx w, s ’- M1/2X.

If the factorization of K trM is too costly then in principle (K trM) y Ml/Zu could
be solved by an iterative method. The point is that the subprogram OP in Lanczos
should return M1/Z(K-oM)-IM1/Zu when given u. Sparse techniques can be used
in factoring K- crM. This reduction of the problem transforms the spectrum according
to

1

Ai-o"

and so the eigenvalues /i closest to tr turn into the eigenvalues /]i closest to oe. These
are the ones which will appear first in a run of Lanczos algorithm. One way to recover
x from y is by solving (K- trM)x My. For large n the reduction in the number of
steps is so satisfactory that it will offset the cost of factorization. Without the spectral
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transformation it will often be necessary to take 1/2n or more steps of the Lanczos
algorithm in order to approximate the smallest 10 eigenvalues. Yet the Lanczos
algorithm is most effective when used with fewer than 200 steps.

9. Work in progress. It is surprising, at first, that the software reviewed above is
so narrowly focussed. So it is natural that a few investigators are working to "fill the
gaps", to provide robust programs for all the requests that might conceivably be made
for eigenvalues of various types of large matrix.

Normal matrices enjoy a full set of orthonormal eigenvectors and most methods
designed for real symmetric matrices extend naturally to normal ones. The most
important subclass of normal but nonsymmetric matrices are those that are skew and
Ward has developed efficient software for them, as described in Ward and Gray (1978).

Work on nonnormal sparse matrices is still in the experimental stage. The experts
are exploring the problem and there is no consensus on a preferred technique. Y. Saad
has adapted Arnoldi’s method for sparse problems. This is the natural extension of
the Lanczos idea but subject to the constraint of using orthonormal bases for the
associated Krylov subspaces. The auxiliary matrix generated in the course of the
algorithm is Hessenberg (i.e., hij 0 if > j + 1) rather than tridiagonal. This is not a
serious problem provided that fairly short runs of Lanczos are used, say 50 steps at
most. Saad is experimenting with variations on this method in which orthogonality is
given up in return for a banded structure in the Hessenberg matrix, see Saad (1980).

The Lanczos algorithm was generalized to the nonnormal case by Lanczos himself;
the procedure is obvious. Unfortunately it can break down. In Parlett and Taylor
(1981) it is shown how to restore a large measure of stability in return for a modest
increase in complexity. Some feature of the original, strict Lanczos algorithm must be
discarded if the breakdown is to be avoided. The new method looks ahead at every
step and decides whether to enlarge the Krylov subspace by one or two dimensions.
The auxiliary matrix is not quite triangular, there is a bulge every time the dimension
increases by two. Column and row eigenvectors are given equal status and condition
numbers are automatically computed.

Axel Ruhe is experimenting with a two-sided Arnoldi process but this work is at
an early stage.

What impedes the production of pleasing software for nonnormal problems is the
potential ill-condition of the problem itself. Expectations have been set by the sym-
metric case where the theory is most satisfactory. In the general case it is difficult to
generate useful error estimates, let alone error bounds, and this affects the selection
of stopping criteria. Numerical analysts would want to deliver condition numbers along
with the eigenvalues, but users do not want this information, especially if it increases
the cost by a noticeable amount.

We terminate this digression with a reminder that Jenning’s program LOPSI has
been published and is available to the public. LOPSI adapts subspace iteration to the
nonsymmetric case.

The most promising developments are close to the symmetric case. Many problems
in dynamics arise in the form

MY+ C. +Kx f,

where is the time derivative of the vector field x(t). The proper choice of the damping
matrix C is a challenge. The Scott and Ward (1982) program looks to the future and
presents software for the associated quadratic eigenvalue problem

(,2M + AC + K)u O.
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Their method is based on the Rayleigh quotient iteration. It does not take the easy
way out and reduce the quadratic problem to a linear one of twice the size.

The Lanczos programs in the software catalog Heath (1982) work very well in
combination with the spectral transformation discussed in 8. That approach is not

possible when the user cannot, or will not, allow the solution of linear systems of the
form

(K -o-M)v oo.

What can be done?
Scott observed (Scott (1981)), that when r is closest to the eigenvalue cr + of

the pair (K, M) then the vector x belonging to the eigenvalue 3 closest to zero for
the standard problem

(K crM- A1)x =0

is an approximate eigenvector of (K, M) belonging to r. He formulates an iterative
method in which a standard sparse eigenvalue problem is solved at each step for (y, x)
and + y converges monotonically to an eigenvalue of (K, M).

10. Conclusions. The eigenvalue problem for large, sparse matrices is not yet
understood well enough, in all its computational ramifications, to permit the rapid
deployment of impeccable software to the masses in the style set by EISPACK. Indeed
it is doubtful that the public is impatient for the arrival of this facility. Those with an
urgent need for such software prize efficiency above generality. They have developed
their own programs independently of the numerical analysts and will continue to do
so unless the matrix experts go to them and demonstrate that they can be useful.

The wide variety of computing environments is going to play havoc with naive
concepts of portability. "Transmission of thought" is one of the two basic themes of
science. The interesting and difficult task is to find an appropriate level at which sparse
software can be transmitted usefully. Perhaps each FORTRAN program should men-
tion the computing environments in which it performs dreadfully?
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DIRECT METHODS FOR SOLVING SPARSE
SYSTEMS OF LINEAR EQUATIONS*
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Abstract. We survey algorithms and software for solving sparse systems of linear equations by matrix
factorization, paying particular attention to recent developments. We classify the various algorithms according
to the type of system they solve (i.e. unsymmetric, symmetric definite, symmetric indefinite, unsymmetric
but with symmetric pattern) and whether they perform pivoting for numerical stability. We consider both
algorithms which work in main memory and those which use auxiliary storage.

We illustrate the performance of the major approaches which we discuss by runs on test problems.

Key words, sparse matrices, sparse linear equations, Gaussian elimination, sparse factorization, direct
methods

1. Introduction. In this survey, we study algorithms and software for solving the
system of linear equations

(1.1) Ax-b

where the coefficient matrix, A, is large and sparse. We consider matrix factorization
methods for solving (1.1) concentratin on Gaussian elimination which computes the
decomposition

(1.2) PAQ LU,

where P and Q are permutation matrices and L and U are (unit) lower and upper
triangular matrices respectively. If P and Q are chosen on the basis of the sparsity
pattern of A, without reference to actual numerical values, we refer to this process as
ANALYZE and to the subsequent numerical factorization of PAQ as FACTOR.
When the choice of P and Q and the actual factorization are performed together, we
talk of ANALYZE-FACTOR. Given the factors, we then SOLVE by forward substi-
tution

(1.3) Ly Pb,

followed by back substitution

(1.4) UOT"x y.

We divide our survey according to the property of the matrix A. In 2 we consider
the case when A is symmetric and positive definite, while in 3, we discuss the case
when A is structurally symmetric (including numerically symmetric but indefinite
systems). The solution of systems with an unsymmetric matrix is examined in 4 and
band and profile methods, which are efficient on matrices with a regular pattern, are
considered in 5. Some concluding remarks are made in 6.

We emphasize recent advances and concentrate more on algorithms than software.
We do, however, indicate which software in the catalog edited by Heath (1982) is
pertinent to our algorithmic discussion. A recent systematic survey of sparse matrix
software has been conducted by Duff (1982a). Although we comment on the merits
of various approaches, we are in no sense attempting to compare software. A more

* Received by the editors December 30, 1982, and in revised form October 8, 1983. This paper was
written by an employee of the United Kingdom Atomic Energy Authority. (C) UKAEA.

t Computer Science and Systems Division, AERE Harwell, Didcot, Oxfordshire, England OX11 0RA.
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critical comparison of features in software for solving sparse linear systems is given
by Duff (1979). The runs reported in this paper are used to illustrate particular points.
The test matrices used are taken from the data base discussed by Duff et al. (1982),
and the examples have been chosen to illustrate a wide range of cases.

We assume that the reader has some basic knowledge of sparsity and its exploita-
tion. For example, we assume that the phenomenon of fill-in is appreciated. For people
without this background, we recommend the book by George and Liu (1981), the
chapter by Duff (1982b) or the excellent SIAM News articles by George (1980).

In an article of this breadth some intentional omissions must be made. We do not
discuss in any detail the impact of new machine architectures and do not consider
algorithms and software specifically designed for particular architectures. We do not
describe direct methods based on Fourier transformations or cyclic or total reduction
(so called fast direct methods) nor do we give details of the increasing interrelationship
of direct and iterative methods through the use of preconditioning. There has been
substantial algorithmic and code development on the manipulation of sparse systems,
for example on bandwidth minimization. Although we discuss some preorderings in
4, we do not consider such auxiliary algorithms or routines in detail.

2. Symmetric positive definite systems. In this section we consider the case when
the coefficient matrix, A, is positive definite and so can be factored as

(2.1) PAPT LL

where P is a permutation matrix and L is a lower triangular matrix. Although the
Cholesky factorization (2.1) is numerically satisfactory for positive definite A, the
diagonal entries are often stored separately. This can save indexing storage, avoids
taking square roots, and is valid (even if potentially unstable) when A is not positive
definite. Our decomposition then becomes

(2.2) PAP LDL,
where L is now a unit lower triangular matrix and D is a diagonal matrix. Sometimes
D-1 rather than D is stored to avoid any divisions during the SOLVE phase.

Because the decompositions (2.1) and (2.2) are stable for any permutation matrix
P when A is positive definite, it is possible to choose P without reference to the actual
numerical values of A. For sparse matrices, this separation of determining P (the
ANALYZE phase) from the numerical factorization (FACTOR) is extremely sig-
nificant, since the permutation P can be computed on sparsity grounds alone.

There are several criteria which can be used in choosing P. Most of them either
try to reduce the number of nonzeros in L or constrain the structure of L. An example
of the latter is the variable-band scheme where all entries (including zeros) between
the first nonzero in each row and the diagonal are held. Variable-band solvers have
a low integer overhead at the expense of more nonzeros in the factors and are discussed
further in 5. Since it has been shown that the problem of finding an ordering to
minimize the fill-in is NP complete (Yannakakis (1981)) as is the minimization of
bandwidth (Papadimitriou (1976)), algorithms for choosing P are heuristic. There are
many heuristics available and the SPARSPAK package of George et al. (1980)
implements five. Of these, the most widespread, successful and general heuristic is that
of minimum degree. We will concentrate on this ordering strategy for the rest of this
section.

The minimum degree ordering strategy chooses as pivot at each stage the diagonal
entry from a row with least number of nonzeros, including fill-ins from previous pivotal
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steps. It is evident that such a choice minimizes the multiplication count at each step
and limits the number of potential fill-ins. Although it can be shown (for example,
Duff and Reid (1974)) that minimum degree need not minimize the total multiplication
count, it is cheap and easy to implement and performs very well in practice. Recent
implementations are very efficient and run in O(’) space, where r is the number of
nonzeros in the original matrix. Although in practice the time is also typically O(’),
such a bound has not been established except for some very special matrix structures.
The principal observation from which this high efficiency is obtained is that a full
submatrix of a sparse matrix can be represented compactly by an index list of its rows
and columns (K integers representing K(K + 1)/2 reals). If it is only the structure
which is required, then the nonzero values themselves need not be stored. These full
submatrices occur naturally in Gaussian elimination since the submatrix whose rows
(and columns) are those with nonzeros in the pivot column (row) will be full after
that elimination step. Subsequent eliminations will require the merging of all index
lists that involve the pivot in order to form the index set for the pivot row. Since the
sets merged in will not be needed thereafter, there is no possibility of failure for lack
of storage and indeed the storage demanded is very modest. Similarly the work is
modest when we work with index lists of length K in place of triangular arrays of
order K. This is illustrated in Table 2.1, where times are shown for the three phases
of code MA27 from the Harwell Subroutine Library (Duff and Reid (1982b)).

TABLE 2.1
Times in seconds on an IBM 3033 ]’or three phases of the

solution of positive definite systems.

Order
Nonzeros

ANALYZE
FACTOR
SOLVE

1,561 1,176 900
6,121 9,864 4,322

.428 .295 .300
1.101 .341 .575
.118 .043 .066

In sparse codes prior to 1976 such an observation was not used and the ANALYZE
phase mimicked FACTOR and was therefore slower since it also had to find and store
fill-ins. The table also indicates the time for SOLVE. This time is proportional to the
number of nonzeros in the factors and will usually be much less than for ANALYZE
or FACTOR.

After P has been determined, additional symbolic manipulation (sometimes called
SYMBOLIC-FACTOR) is performed just once to expedite subsequent FACTORs.
We have included the time for this in the ANALYZE figures in Table 2.1. Recent
work by George and Liu (1980) and others has shown that the symbolic factorize
phase can be performed in time and space proportional to the number of nonzeros in
the factors. This symbolic processing ensures that numerical factorization is dominated
by the arithmetic operations themselves.

Perhaps the most dramatic feature of the recent improvements to the implementa-
tion of the minimum degree algorithm has been the ability to use the fast and cheap
symbolic phases (which execute in a predetermined amount of space) to forecast the
much greater storage and work which will be required subsequently by the numerical
factorization. Thus it is possible to discover at fairly low cost whether it is worthwhile
to pursue a direct method of solution. Another significant advance in the minimum
degree algorithm has been the reduction in integer overhead by observing that because
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of fill-in, a row of the factors, L, may well have the same structure as the tail of the
previous row (Sherman (1975)). For example, in a factorization using the MA27 code
there are 17798 nonzeros in the factors of the nine-point discretization of the Laplacian
on a 30 30 grid but the number of integer indices required is only 5580. This saving
in overhead storage is illustrated again in 5 when we compare the minimum degree
ordering with more specialized techniques.

Software implementing the minimum degree algorithm efficiently is readily avail-
able for symmetric positive definite systems. Examples are YSMP (Eisenstat et al.
(1977a), (1982)), SPARSPAK (George et al. (1980), George and Liu (1981)), MA27
(Duff and Reid (1982a), (1982b)) and SYMFAC-NUMFAC-BKSLVE (Gustavson
(1972)). A comparison of the first three packages is given by Duff and Reid (1982a).
To our knowledge, the only software available for positive-definite complex Hermitian
matrices is ME27 (the complex counterpart to MA27) and CSPARSPAK (a complex
version of SPARSPAK written by Lewis for Boeing Computer Services).

3. Symmetric patterns. We now consider the case when the coefficient matrix
may sensibly be represented as having a symmetric pattern, possibly with a few zero
values in positions that we regard as part of the structure.

We first discuss the case when A is symmetric (i.e. aij aji) but it not necessarily
definite. Here we could, of course, take a chance and perform the decomposition (2.2)
using the algorithms and software discussed in 2. Although this approach will work
in many instances, it is not satisfactory in general because of possible numerical
instability or breakdown. We can, of course, use a code for unsymmetric systems but
then we lose any potential benefit from symmetry. We illustrate this loss in Table 3.1
where we can see the penalty incurred by using a more general code both in terms of
time for ANALYZE-FACTOR and FACTOR and in storage which is more than
doubled when symmetry is ignored. We give ANALYZE-FACTOR rather than
ANALYZE times here because the unsymmetric code cannot perform ANALYZE
by itself.

A stable method of decomposing indefinite systems while preserving symmetry
was developed by Bunch and Parlett (1971) and this was extended to the sparse case
by Duff et al. (1979). Stability is maintained by using pivots of the form

(3.1) ( akk akl)
ak

in addition to 1 1 pivots from the diagonal (akk say). A 2 2 pivot of the form (3.1)
is used if the 1 1 pivots ak and au are small relative to other entries in their rows.
Our stability criterion in the sparse case is that akk is suitable for use as pivot if

[akk[ > u.max

where the threshold parameter u is set by the user to a value in the range [0, 1/2). A
2 2 pivot is satisfactory if

akk akt {max{la/kl, [ail}}<max
ark all ] k,l

The threshold parameter u is chosen to give freedom to pivot for maintenance of
sparsity and must be less than 1/2 to ensure that a pivot will always be available.
Experience has shown that a value of around 0.1 is suitable. Munksgaard (1977)
implemented the suggestions of Duff et al. (1979) but the FACTOR is performed at



DIRECT METHODS FOR SPARSE EQUATIONS 609

the same time as ANALYZE to enable the stability tests to be performed and so the
times are high. Recently, Duff and Reid (1982a) have implemented 2x2 pivoting
within a multifrontal scheme. In this approach an analysis is performed exactly as for
the positive definite case and stability is ensured by perturbing this pivot choice during
numerical factorization. The perturbations are performed only within small submatrices
and the overhead for such pivoting is low (Duff and Reid (1982a)). The results for
the symmetric code in Table 3.1 were obtained using this multifrontal approach. An
added benefit is that pivoting for stability is being performed during FACTOR, not
possible in conventional codes that stick to the predetermined sequence. The gains of
using the multifrontal approach over Munksgaard’s code are evident from the results
given by Duff and Reid (1982a).

TABLE 3.1
Use of general code on symmetric systems. The codes used are MA28 (unsymmetric) and

MA27 (symmetric) from the Harwell Subroutine Library.

Order
Nonzeros

Time (seconds on an IBM 3033)
ANALYZE-FACTOR
Symmetric code
Unsymmetric code

FACTOR
Symmetric code
Unsymmetric code

SOLVE
Symmetric code
Unsymmetric code

Storage (words on an IBM 3033)
Symmetric code
Unsymmetric code

147 900 292 199
1,298 4,322 1,250 536

.12 .94 .17 .09

.60 7.43 .58 .20

.08 .64 .09 .04

.17 .96 .14 .05

.008 .067 .012 .006

.011 .055 .014 .006

6,950 46,728 7,616 3,727
15,020 108,029 17,166 7,468

When the coefficient matrix has a symmetric structure but is unsymmetric, the
choices are very similar. We can either risk using diagonal pivots chosen on sparsity
grounds alone, use a general unsymmetric code, or locally perturb a symbolically
chosen pivotal sequence. This latter approach is discussed by Duff and Reid (1982c)
and is similar to the multifrontal scheme discussed above except that the perturbation
now allows off-diagonal pivots within the full submatrices. The stability criterion is
then of the form

(3.2) la,,l>u.maxla,,[, ue[0, 1).

Both YSMP and SPARSPAK, which we discussed in 2, will solve either class
of problem using diagonal pivoting with no stability control. The code of Munksgaard
(1977), INDANL, is available from Lyngby and the multifrontal codes MA27
(indefinite) and MA37 (unsymmetric) are in the Harwell Subroutine Library. We defer
our discussion of software for the more general case until 4.

4. Unsymmetric systems.
4.1. Preordering to block triangular form. If the coefficient matrix is unsymmetric,

then there is an added degree of freedom available inasmuch as there is no need to
use the same permutations of rows and columns. Sometimes it is possible to permute
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the original system so that subsequent elimination can be restricted to submatrices of
the permuted structure. A good example of such a preordering is to permute the
matrix to block triangular form where the permuted matrix can be partitioned so that
the resulting block matrix is triangular. We illustrate this below for the case with 3
blocks on the diagonal.

(4.1) 0 A22 A23) x2 b2

0 0 A33] x3 b3

The system (4.1) can then be solved in the order

A33x3 b3,

A22x2 [I2 A23X3,

Ax b A2x2- A3x3,

so that the elimination operations are only performed within the blocks Aii(i=
1,..., 3) and the off-diagonal blocks are only used for forward substitution and are
not modified during the solution process. Matrices which can be permuted into the
form (4.1) are called reducible and occur frequently in chemical engineering,
econometrics and linear programming. Algorithms for obtaining the block triangular
form are normally divided into two phases. The first phase permutes the matrix to
ensure the diagonal is zero-free and the second applies a symmetric permutation to

get the required form. The first phase is the maximum matching problem for which
algorithms based on a depth first search have a worst case asymptotic complexity of
O(nr) where n is the order of the system and the number of nonzeros. On typical
problems, however, the matching phase executes in O(n)+ O(r) time and this is the
complexity of the second phase of the preordering. Harwell Subroutines MC21A (Duff
(1981a)) and MC13D (Duff and Reid (1978)) effect the two stages respectively and
are employed by the Harwell unsymmetric linear equation solver MA28 (Duff (1977))
to preorder the matrix prior to Gaussian elimination. Gustavson (1976) also has
software (FULL ASSIGN and BLTF) for performing this preordering. We illustrate
in Table 4.1, the low costs of block triangularization. The third case illustrates the
benefits which can be obtained. The runs in this table were performed using Harwell
Subroutine MA28. Further gains might be obtained on computing systems where
advantage can be taken of the fact that the decompositions of the blocks on the diagonal
can be performed simultaneously.

Not all systems can be permuted to a nontrivial block triangular form. For example,
the matrix in the first column of Table 4.1 is irreducible. Common extensions to block

TABLE 4.1
Times in seconds on an IBM 3033 for block triangularization.

Order
Nonzeros

Block triangularization
ANALYZE-FACTOR

(after block triangularization)
ANALYZE-FACTOR

(without block triangularization)

900 199 822
4,380 701 4,841

0.3 .03 .25
11.4 .21 .48

11.4 .24 1.52
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triangularization are preorderings to bordered triangular or bordered block triangular
form but, although algorithms have been proposed for these orderings (for example,
Hellerman and Rarick (1971)), they have not yet established themselves as useful
general tools partly because the border tends to be rather wide. The Hellerman and
Rarick algorithm has been incorporated in a general linear equation solver by Stadtherr
and Wood (1983).

4.2. Pivoting considerations. It is tempting to use the fast ordering algorithms of
2 and 3 to obtain a pivotal sequence for unsymmetric problems. A common way

of doing this is to employ a minimum degree ordering on the pattern of A +AT or
the symmetric pattern whose upper (or lower) triangle is the same as the upper (or
lower) triangle of A. This is the diagonal pivoting approach adopted by the unsymmetric
version of the YSMP code (Eisenstat et al. (1977b)). Diagonal pivoting will produce
sparse factors if the pattern is nearly symmetric and will be stable if the matrix is
diagonally dominant. However, fill-in can be high if the structure is far from symmetric
and severe instability or breakdown can occur when diagonal pivoting is used on
general systems. We illustrate these points in Table 4.2, reproduced from Duff (1979).
Diagonal pivoting performs well on a matrix with a nearly symmetric pattern (first
column) but does very badly on the more unsymmetric pattern of order 822. In both
cases, the accuracy of diagonal pivoting is poorer.

TABLE 4.2
Diagonal pivoting on unsymmetric matrices. The codes used were YSMP

(diagonal) and MA28 (general).

Order
Nonzeros

Nonzeros in factors
Diagonal
General

Times in seconds on an IBM 370/168
ANALYZE-FACTOR

541 822
4,285 5,607

14,025 95,292
13,623 6,653

Diagonal
General

FACTOR
Diagonal
General

SOLVE
Diagonal
General

12 norm of error
Diagonal
General

1.98 31.89
3.99 14.98

.29 16.18

.56 2.72

.03 .21

.05 .03

810-6 8X10-9

4 X 10-9 10-11

The unsymmetric versions of the YSMP code or the SYMFAC/NUMFAC code
(Gustavson (1972)) do not perform any pivoting for stability. It is possible, however,
to perturb an initial pivotal sequence (either diagonal or unsymmetric) in a similar
way to the multifrontal approach mentioned earlier. The MA37 code discussed in 3
can be used in exactly this way. Another approach is to process the rows in pivotal
order and within each row to choose the entry in the pivot column at that stage if it
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satisfies a threshold test

(4.2) lal > u.max la;I, o < u < a.

Otherwise, some other nonzero in the row which satisfies the test is used as pivot. The
code NSPFAC of Sherman, which is an improvement on his earlier code NSPIV
(Sherman (1978)), uses this strategy. Kaufman (1982) has incorporated code based
on the ideas of YSMP and NSPFAC within the framework of the PORT library.
Unfortunately, there is as yet no implementation of symbolic unsymmetric pivoting
which is as efficient as the symmetric ordering algorithms discussed in 2 so there is
no cheap way of obtaining an ordering to drive these routines when the coefficient
matrix is far from symmetric.

The most established and robust technique for general unsymmetric matrices is
to combine a threshold test of the form (4.2) with some sparsity control and determine
a pivotal sequence by executing an ANALYZE-FACTOR phase. For the unsymmetric
case, the sparsity analogue of minimum degree is to choose as pivot a nonzero for
which the product of the number of other nonzeros in its row with the number of
other nonzeros in its column is a minimum. This Markowitz (1957) criterion then
minimizes the number of multiplications/additions for the step and limits the fill-in.
It can be combined with the threshold test (4.2) in the following way. The nonzeros
are searched in approximate order of increasing Markowitz count and the one with
lowest Markowitz count satisfying the threshold criterion is chosen as pivot. The
ordered access to the nonzeros requires a fairly elaborate data structure. Several codes
use variants of this strategy including MA28 (Duff (1977)), SSLEST (Zlatev et al.
(1978)) and Y12M (Zlatev et al. (1981)). A variant of MA28 is incorporated in the
NAG library as subroutines F01BSF and F04AXF.

A major difference between these unsymmetric codes and the symmetric ones
discussed earlier is that the ANALYZE-FACTOR times are now greater. This is seen
clearly if we compare the runs in Table 4.3 with those of Table 2.1. As in the symmetric
case, the SOLVE times are substantially smaller than those for ANALYZE-FACTOR
or FACTOR. The Harwell code MA28 was used for the runs in Table 4.3.

TABLE 4.3
Times in seconds on an IBM 3033 for three phases of the solution of

unsymmetric systems.

Order
Nonzeros

ANALYZE-FACTOR
FACTOR
SOLVE

199 822 541
701 4,841 4,285

.11 1.33 1.72

.03 .19 .36

.01 .02 .03

There are two modifications to the Markowitz/threshold strategy which are worth
discussing. Because of fill-in, the reduced matrix during sparse Gaussian elimination
becomes progressively denser and so the use of a sparse matrix code with its complicated
data structures and integer overhead is increasingly inefficient. The SLMATH code
DMOOP (IBM (1976)) switches to a code for full matrices when the reduced matrix
is full while the Harwell code MA31 (Munksgaard (1980)) for symmetric positive
definite systems and an experimental version of MA28 (Duff (1982c)) switch at a user
set density. Surprisingly, not only is there a significant speed advantage in switching
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at quite low densities (dependent on the structure of the matrix and the machine used),
but there is also an overall reduction in storage since the increase due to storing explicit
zero values is more than offset by the reduction in integer overhead (Duff (1982c)).
The other modification involves restricting the number of rows or columns which will
be searched when looking for the nonzeros with lowest Markowitz count. While for
many systems good implementations of a Markowitz strategy involve little searching
(Duff (1979)), on systems with a regular structure the pivot search can be expensive.
For example, on a five diagonal matrix of order 2000 with bandwidth 42, the time
taken for ANALYZE-FACTOR by the MA28 code on an IBM 3033 was reduced
from 51.0 to 25.9 seconds when searching was restricted to three rows (the choice of
three has been found empirically to be optimal over a wide range of problems).
Furthermore, the number of nonzeros in the factors and the scaled residual were not
significantly altered by this restriction. The codes SSLEST and Y12M implement
restricted Markowitz as does a new version of MA28 (Duff et al. (1984)) where the
option of an efficient implementation of full Markowitz has been retained because it
has been found to be slightly but consistently better on irregular structures.

4.3. Use of drop tolerances. The principal problem with direct methods for solving
sparse linear systems is in storing the factors which, because of fill-in, are usually far
denser than the original matrix. If fill-ins which are substantially smaller than original
entries are dropped from the structure, the storage will be reduced and the factorization
obtained will be exact for a matrix

B=A+E

where the error matrix E will have small norm relative to A although it will not be
at rounding error level. It is then possible to use this factorization of B as a precondition-
ing for an iterative method. Drop tolerances have been employed by MA31, where
the iterative scheme used was conjugate gradients, and by Y12M and the new version
of MA28 where iterative refinement is used as the iterative scheme. The subject of
partial factorizations and preconditionings for iterative methods is also discussed by
Eisenstat (1983).

4.4. Use of orthogonal decompositions. It is possible to use a QU (O orthogonal,
U upper triangular) rather than an LU decomposition to solve the system (1.1).
Although the stability is very satisfactory, such methods have not been greatly favored
for full systems because of the extra work involved in the factorization. In the sparse
case, QU factorizations seem even less promising since there is considerably more
fill-in than with Gaussian elimination. For example, in a plane rotation between two
rows fill-in occurs in both the pivot and nonpivot rows and orthogonalization methods
based on elementary reflectors (e.g. Householder’s method) are even worse for fill-in
(Duff and Reid (1975)). If we can avoid storing Q, however, the situation is not so
gloomy. For the original system, QT can operate simultaneously on the matrix and
the right-hand side(s) before being discarded, while subsequent systems can be solved
through the reduced normal equations

(4.3) UUx=ATb.

Although the premultiplication by A in (4.3) can cause some information loss, the
conditioning of (4.3) is usually tolerable. George and Heath (1980) (see also, Heath
(1983)) make use of the observation that U is identical to the Cholesky factor of the
normal equations matrix by performing the symbolic phases on AA to get the structure
of U and a column ordering for the QU decomposition. Although this approach is
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primarily intended for the solution of linear least squares, it can also be used to solve
general unsymmetric systems. We show, in Table 4.4, some results sent to us by Mike
Heath from runs of MA28 (LU) and a prototype version of SPARSPAK-B (OU),
an extension to SPARSPAK.

TABLE 4.4
Use of OU decomposition to solve Ax b.

Order
Nonzeros

Total storage in words
LU
QU

Time for ANALYZE-FACTOR-SOLVE
in seconds on an IBM 3033
LU
OU

113 199 541
655 701 4,285

3,897 6,493 39,846
5,494 5,167 31,798

.07 .11 1.22

.30 .25 5.31

Although the storage for A which is necessary for solving further systems has not
been included in the figures for the QU decomposition, it is evident that the storage
is competitive with that required by the LU decomposition. The LLSS01 code of
Zlatev and Nielsen (1979), which computes U row by row in order, could be used to
solve linear systems using a QU decomposition.

4.5. Compiled code approach. All the techniques we have described so far can
be classified as a looping index approach. Other classes of methods are the compiled
code approach, where a loop free code for decomposing the matrix and solving the
system is generated in the ANALYZE phase (Gustavson et al. (1970)), and the
interpretative approach, where a simple code indicates the operations to be performed
(Bending and Hutchison (1973)). These techniques were compared by Duff (1979).
Their main problem lies in storing and executing the compiled code which can be very
long (typically several megabytes). Also, GNSO (Gustavsqn et al. (1970)) produces
its loop free code in Fortran, the length of which causes most Fortran compilers to
fail. However, for small problems for which the compiled code fits into main storage,
the speed during FACTOR and SOLVE is unsurpassed.

5. Regular patterns. The discretization of partial differential equations and the
finite element analysis of engineering structures usually gives rise to matrices which
can be ordered so that few nonzeros are far from the diagonal. This permits advantage
to be taken of variable-band storage (Jennings (1966)), also known as "profile" or
"skyline" storage, where all entries between the first nonzero in a row or column and
the diagonal are stored explicitly. Only one integer need be held per row or column
and all numerical processing is on full vectors. The disadvantage is that more reals
have to be stored and processed. Recent advances in the minimum degree algorithm,
outlined in 2, mean that the matrix must be well-suited for the variable-band method
for it to perform better. We illustrate this observation in Table 5.1, from Duff (1982b),
where we show results on a two-dimensional partial differential equation and on a
large power network. In the first case the methods are very comparable whereas in
the second the minimum degree algorithm is clearly superior. For problems for which
it is suited, the variable-band scheme has the advantages of much shorter code, good
vectorization possibilities and ease of implementation out-of-core. General-purpose
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TABLE 5.1
Minimum degree and profile scheme using reverse Cuthill-McKee

ordering. The SPARSPAK code was used for both orderings.

Order
Nonzeros
Problem class

Nonzeros in factors
Minimum degree
Profile

Total storage in words
Minimum degree
Profile

Time in seconds on an IBM 3033
ANALYZE
Minimum degree
Profile

FACTOR
Minimum degree
Profile

1,009 1,723
3,937 4,117
PDE Network

19,352 6,313
26,254 80,983

33,189 23,729
34,328 94,769

.649 .733

.239 .263

.761 .220

.764 2.957

software is available from NAG (F01MCF and F04MCF, written by Cox of NPL) for
in-core working and Harwell (MA15, written by Reid (1972)) for both in-core and
out-of-core working. Although these codes solve definite systems, it is not difficult to
extend variable-band techniques to solve nondefinite systems using partial pivoting.

The choice of ordering is important for the success of the variable-band technique.
A good automatic procedure is that of Gibbs, Poole and Stockmeyer (1976) and an
improved implementation has recently been published by Lewis (1982). As an example
of the gains that may be obtained, Loden (1980) used the Gibbs-Poole-Stockmeyer
algorithm to reduce, in a large scale production code where the variables were originally
ordered by hand from the underlying geometry, the number of reals stored from 83530
to 45375 and the operation count from 5.7 million to 1.7 million on a structures
problem with 691 degrees of freedom.

A closely related scheme is frontal elimination (Irons (1970), Hood (1976)). This
is normally used for finite element problems to permit the matrix assembly (addition
of the contributions from the individual elements) and elimination to take place together
in a single pass, without the overall matrix A ever being stored. However, it can also
be adapted to treat nonelement problems or already-assembled element problems by
accepting the matrix row-by-row (Duff (1981c)). The advantage over the band scheme
is principally organizational, but there can be sparsity gains since each variable is
eliminated as soon as its row and column is fully assembled. As for the band scheme,
high computational speeds are possible on vector machines (Duff (1981c), (1982c)).
The Harwell Subroutine Library code MA32 (Duff (1981b)) implements a general
purpose frontal scheme for unsymmetric matrices.

We indicate the usefulness of these approaches by two examples in Tables 5.2
and 5.3. The first is due to Loden (1980) and compares a general sparse out-of-core
solver (Reid (1978)), which uses a local minimum-fill criterion within a multifrontal
approach, with a variable-band solver (Felippa (1978)). Although the general sparse
approach reduces storage by the factor 2.7 and operation count by the factor 6.1, its
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TABLE 5.2
Comparison of two out-of-core codes on a large problem.

Order
Nonzeros

Nonzeros in factors
Operations (106)
Factor time
I/O time
Total program size

General
sparse Variable-band

3,423
113,062

229,605
9.4
5O

415
71,056

618,039
57.5
158
86

57,343

TABLE 5.3
Comparison of codes on a pde discretization.

Order
Nonzeros

FACTOR time
MA32 (frontal)
MA15 (variable-band)
SPARSPAK (sparse in-core)

SOLVE time
MA32 (frontal)
MA15 (variable-band)
SPARSPAK (sparse in-core)

Core storage (k-bytes)
MA32 (frontal)
MA15 (variable-band)
SPARSPAK (sparse in-core)

2,500
9,800

6.0
3.5
3.0

0.64
0.52
0.29

90
40

740

additional input-output make its overall cost greater. In Table 5.3 we show a com-
parison by Duff (1981c) between his frontal code MA32 for unsymmetric matrices,
Reid’s (1972) band-solver MA15 for symmetric matrices and SPARSPAK of George
et al. (1980) for treating general symmetric matrices in-core. Since MA32 is designed
for unsymmetric matrices, its storage and factorization time must be expected to be
about double that of the other two. The saving of core storage by the first two codes
is impressive. It is at the expense of little extra time for FACTOR, but some for
SOLVE because the nonzeros of the factors must be read from auxiliary storage.

6. Conclusions. We have emphasized some recent developments which excite us,
particularly the availability of cheap ANALYZE codes that do not unexpectedly run
out of storage and can predict the storage needed for actual factorization, along with
improvements to some old friends such as variable band and frontal codes and the
Markowitz algorithm for unsymmetric systems. There remains scope for further
improvement, for example in extending cheap ANALYZE to unsymmetric patterns
and in better exploitation of parallel hardware, but the overall picture is healthy. Good
reliable code is available for solving sparse sets of equations.
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ORDERING SCHEMES FOR PARALLEL PROCESSING
OF CERTAIN MESH PROBLEMS*

DIANNE P. O’LEARYf

Abstract. In this work, some ordering schemes for mesh points are presented which enable algorithms
such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite
difference method on computers consisting of a two-dimensional grid of processors. Convergence results
are presented for the discretization of u,,, + Uyy on a uniform mesh over a square, showing that the spectral
radius of the iteration for these orderings is no worse than that for the standard row by row ordering of
mesh points. Further applications of these mesh point orderings to network problems, more general finite
difference operators, and picture processing problems are noted.

Key words, parallel computation, mesh problems, finite difference methods, finite element methods,
nine-point operator

1. Introduction. Consider the standard uniform mesh finite difference approxima-
tion to the equation

Uxx + u,r f(x, y)

in a square domain with appropriate boundary conditions. The equation for each mesh
point involves data at that point and at its north, south, east, and west neighbors. The
Jacobi iterative method for this problem converges, and the iteration matrix has a
spectral radius of cos(Tr/n)= 1-O(1/n2), when the mesh is nn. The successive
overrelaxation method (SOR) with optimal choice of the relaxation parameter gives
an iteration an order of magnitude faster, with spectral radius [1-sin (’n’/n)]/[1 +
sin (r/n)] 1 O(1/n). Thus, for this problem SOR is preferred over the Jacobi
method for standard computers, since both take time proportional to n2 per iteration.
These standard results can be found, for example, in [23].

However, the Jacobi method has undergone a renaissance recently with the
development of computers with parallel design. On a computer with n 2 processors
connected in a two-dimensional grid with local communication only, one iteration of
Jacobi can be completed in time independent of n, while SOR still requires O(n) for
the first iteration if the mesh points are ordered row by row. (However, successive
iterations can overlap the first, and be completed in time independent of n.) More
details on these implementations will be given in 2.

SOR can be speeded for parallel computation by reordering the mesh points. For
example, using the checkerboard ordering (Fig. 5a: all even numbered mesh points
ordered after all odd points), the time per iteration using n2 processors is again
independent of n and the convergence rate is unchanged. The mesh can also be ordered
by lines into a block scheme, so that all new values on a line are determined at once.
If k lines are grouped together, the spectral radius is 1-O(k/n), but iteration time
increases with n [18].

The checkerboard ordering does not work so well for more complicated elliptic
equations or alternate approximation strategies. Whenever a finite difference mesh
point (or finite element unknown) is linked to one of its diagonal neighbors, the
checkerboard trick fails. The line methods are often still useful.

* Received.by the editors December 27, 1982, and in revised form November 19, 1983. This work was
supported by the Air Force Office of Scientific Research under Grant AFOSR-82-0078.

" Computer Science Department, University of Maryland, College Park, Maryland 20742.

620



ORDERING SCHEMES FOR PARALLEL PROCESSING 621

One purpose of this work is to develop ordering strategies for use in solving
certain discretizations of elliptic equations on parallel processors. These strategies are
applicable to any problem in which the equation for each mesh point involves data at
that point and any subset of its north, south, east, west, northeast, northwest, southeast,
and southwest neighbors. The goal is to make iteration time independent of n without
sacrificing convergence speed.

A second purpose is to note that these orderings are also useful in several classes
of problems unrelated to partial differential equations.

This work is related to work performed independently by Adams [1]. In that
paper, the four-color ordering of Fig. 5a is presented for the nine-point finite difference
operator, and some multicolored orderings for other couplings of mesh points are also
given. No theoretical results concerning rate of convergence are given, but numerical
experiments on elliptic partial differential equations are reported.

There has also been other work on parallel iterative methods (see, for example,
[8]). Most recent work (see [24] for an exception) has centered around implementation
of the conjugate gradient algorithm and appropriate preconditionings. Sameh [22]
discusses preconditioning partial differential equation problems by block Jacobi with
line red/black ordering. Kowalik, Kumar, and Lord [10] discuss block Jacobi, and
Kumar in her thesis [12] considers other preconditionings and examples. Lichnewsky
[16] discusses preconditioning with an incomplete Cholesky factorization under the
nested dissection ordering. Parter and Steuerwalt 19], [20] discuss convergence proper-
ties of various preconditionings based on block iterative methods.

Another aspect of the problem is the mapping of irregular mesh problems onto
regular arrays of processors. One heuristic approach is given in [3]. The measure of
success is taken to be maximizing the number of problem edges that match processor
connections. In [7], the mapping problem is studied for adaptive local refinements of
regular meshes.

In 2 we present some background on parallel computation and mesh problems.
In 3 we present orderings for mesh points and discuss convergence rates for the
system of equations corresponding to the nine-point finite difference approximation
to the operator Uxx + urn,. In 4 we discuss implications for more complicated problems,
including nonlinear systems of equations and constrained optimization problems.

2. Parallel computation of mesh problems. In this section, we consider sources
of mesh problems and the implementation of the Jacobi, Gauss-Seidel, and conjugate
gradient algorithms on parallel processors.

By a parallel computer system, we mean a set of processors, possessing some local
memory, capable of performing some arithmetic operations and connected in some
network so that each processor can communicate with "neighboring" processors and
perhaps with common memory. Examples of parallel processors include the Denelcor
HEP, the ILLIAC [2], DAP, BSP [11], FEM [9], the ZMOB [21], systolic arrays [13],
wavefront array processors [14], [15], and plans for the Japanese Fifth Generation
Computer System [17].

The examples we consider will assume that the processors are arranged in a
two-dimensional grid. Each processor should have at least one connected neighbor in
each adjacent row and column. This structure is of interest because in many sparse
matrix problems, the graph of the matrix has the structure of a planar mesh. Such
problems arise from diverse applications areas. Three are described below.

1) The discretization of elliptic partial differential equations imposes a regular or
irregular grid on the region. In two dimensions, a finite difference method often results
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in a rectangularly oriented grid in which each unknown is directly coupled to some
subset of eight compass-point neighbors. Finite element methods over irregular regions
produce less patterned grids, but are still characterized by local coupling only. Graded
grids, which introduce refinement into some subregions, also occur commonly in such
problems.

2) Network problems also exhibit a mesh structure, arising from limited con-
nectivity between nodes of the network. Such problems are typical in electrical power
system analysis, queuing theory models of communication networks, and geodesy.

3) Digital image processing problems also have mesh structure. In this case, the
grid is usually quite regular, resulting from digital coding of a gray level or color level
for each "pixel" or picture element. Typical pictures have 10,000-100,000 pixels. Key
problems are noise smoothing, feature extraction (e.g., finding region boundaries),
and scene analysis (e.g., determining the position of the light source). Often the problem
is formulated as a constrained optimization problem

min urA(u)u+ urb.
c<__u<__d

In noise smoothing, for example, u is the vector of digitized color levels, c and d
represent bounds on meaningful digitized colors, and A has the structure of a 9-point
operator, since a color at one point is most closely coupled to the eight neighboring
colors.

Jacobi-type iterative methods have been widely used for parallel computation of
mesh problems. Application to partial differential equations and network problems
seem to share a common heritage, but the developments for image processing were
independent. Such iterations take the form

U} k+l) tILt{u}k)" j is a mesh neighbor of i},

where is a function of several variables. Under a reasonable assignment of mesh
values to processor nodes, the ith process can access neighboring values efficiently,
update its own value, and be ready for the next iteration in time independent of the
size of the mesh. An example is given in Fig. 1. Here we have a rectangular grid of
processors, with nearest neighbor connections, applying the Jacobi iteration to a
five-point operator. In many applications, however, these schemes are only slowly
convergent, and more sophisticated methods are required.

Gauss-Seidel-like methods have also been considered. They take the form
(k+l)

ui [{u}k: ] is a mesh neighbor of and ]>-i}

U{. (/., ] is a mesh neighbor of and ] < i}].

FiG. 1. The Jacobi iteration for a five-point operator on a n x n grid of processors. (a) Step 1: Each
processorpasses its current mesh value to each ofits neighbors. (b) Step 2: Each processor updates its mesh value.
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When expressed in this form, ui cannot be updated until all of its neighbors with lower
indices are updated. This method is illustrated in Fig. 2 for the same problem as Fig.
1 with row by row ordering of mesh points. The first iteration takes time proportional
to n for an n n grid, but each successive iteration takes only two more time units.
Alternate orderings of mesh points are much better than this; we discuss them in the
next section.

FIG. 2. The Gauss-Seidel iteration for a five-point operator on a n x n grid of processors, using row by
row ordering of the mesh points.

An alternate way to consider Gauss-Seidel-type algorithms is to express them in
iteration matrix form. To solve Au b, for example, the iteration takes the form

U(k+l) (D- L)-l[b + Uu(k)]
where A D-L- U, L is strictly lower triangular, and U is strictly upper triangular.
Some researchers have proposed explicitly forming (D-L)-1 or some approximation
to it so that the iteration can be performed completely in parallel.

Because of success in solving problems on standard machines, methods like
conjugate gradients are attractive candidates for parallel processors. They impose one
further requirement on machine architectures, however: in addition to easy access to
mesh neighbors, it is also necessary to accumulate inner products. On a rectangular
n n grid of processors with only nearest neighbor connections, this is an O(n) process,
quite slow for large grids. Some additional processor communication channels are
necessary. Some alternatives follow:

(1) One common proposal is to add to each column of processors the ability to
accumulate an inner product quickly using a bus.

(2) Perfect shuffle connections among processors in each row and column reduce
inner product time to O(log n). Connections for a single column of n 16 processors
are shown in Fig. 3. Information in a processor is redistributed as if it were on a card
being shuffled in a deck. For n 16 processors, the successive reorderings are

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 2 10 3 11 4 12 5 13 6 14 7 15 8 16
5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
3 5 7 9 11 13 15 2 4 6 8 10 12 14 16
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The cycle repeats every log n steps. Thus, if originally each even processor j accumulates
the jth and (j+ 1)st elements in the inner product, then at stage 2, processors numbered
2, 4,. , 16/2 can accumulate four terms. At the third stage, 8-term partial sums can
be accumulated, and the 16-term inner product is available after log 16 steps. It can
then be communicated to each processor in another log n steps.

FIG. 3. Perfect shuffle connections among 16 processors.

(3) An arrangement with the same speed for inner products but with fewer
connections and fewer wire crossings is shown in Fig. 4. In this incomplete interchange,
the even processors send their information to the top of the grid in reverse order. The
successive reorderings for n 16 are

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 14 12 10 8 6 4 2 * * * *

* * 2 6 10 14 * * * * * *
* * 14 6 * * * *

Again, inner products can be accumulated in log n steps’and broadcast along the
reverse pathways.

FIG. 4. Incomplete interchange connections among 16 processors.

It is interesting to note that either the perfect shuffle or the incomplete interchange
connections shown above make multigrid iterations [4] possible on a nearest neighbor
grid, since examination of the permutation pattern shows that within log n steps,
rearrangements are made which could be used to place in proximity every other mesh
point, every fourth mesh point, every eighth, etc.

3. Orderings for nine-point operators. Figure 5 shows orderings of mesh points
which can make algorithms like SOR practical for parallel computation when the
equation at each mesh point depends on the point itself and any subset of its eight
immediate neighbors. To make the discussion clear, we will use the p3 scheme as an
example. The other schemes are similar and, in many cases, simpler.

Note in Fig. 5b that we have divided the mesh points into three groups. Those
labeled "1" are to be ordered before those labeled "2", and those labeled "3" are
last. Within each group, neighboring points--those in the same "P"ware numbered
consecutively in an arbitrary way. The matrix corresponding to the mesh in Fig. 5b
has the sparsity structure shown in Fig. 6. Notice that the pattern is

(1) Ar D2 u2 v2
B 7" C 7" D3 U3 /33
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FIG. 5a. Four colors are necessary for checkerboard ordering for a nine-point operator.
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FIG. 5b. The p3 ordering.

where D1, D2, and D3 are block diagonal matrices with blocks of size 5 x 5 or less,
and the vector ui consists of all variables numbered "i". For parallel processing, the
(k + 1)st step of this scheme would be as follows:

(1) Perform an iteration of block SOR on the first group of equations:

U]t+l) (1 O)U]k) H- oO]-I (/)1- Au(2)- Bu).
Note that each "P" group can be processed independently and concurrently by a
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FIG. 5c. The T ordering.
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FIG. 5d. The H +H ordering.

separate processor or group ot 5 processors. Only 5 x 5 linear systems need to be
solved directly.

(2) Process the second group of equations similarly:

u (2 + (I o u (2 + o;D I)2 A ru + Cu(3

Part of this computation could overlap (1).
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FIG. 5e. The Cross ordering.
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FIG. 5f. The Box ordering.

3 2

2

3 2

2

2

(3) Process the third group:

u(3+)= (1 0) u(3) + oD"(v3- Bru+1)- Cu(+)).
Computation of (l- o)u3k) could overlap (1), and computation of v3-Bruk+l) could
overlap (2).

This scheme can be implemented efficiently on computers with n2 processors (one
per point), n2/5 processors (one per "P"), or n2/15 processors (one per cluster of
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FIG. 6. Matrix sparsity structure for the p3 ordering.

three "P’s" numbered 1, 2, and 3). Communication is local: each P communicates
with at most six of its neighbors, and by distributing the mesh points in the natural
way, these will be on neighboring processors.

For illustration, we describe the algorithm for a two-dimensional grid of processors
with communication connections to horizontal and vertical neighbors only, assigning
three vertically adjacent "P’s" to each processor. A processor’s view of a typical
iteration is as follows:

(1) For its block of 5 equations for uk/l, each processor accumulates the terms
involving points in u and u2 from information it already has. When the necessary u3
values from the previous iteration arrive from (a subset of) the north, south, east, and
west neighboring processors, then the u3 terms are computed, a 5 5 linear system is
solved, and then u can be updated. Appropriate subsets of the 5 new u values are
then sent north, south, east, and west.

(2) Next, in a similar way, the processor accumulates terms for its 5 components
of uk/ which involve points in u2 and u3 and completes the update after Ul information
arrives from the 4 neighbors. Then the 5 new u2 values are sent north, south, east,
and west as appropriate.

(3) The third set of 5 points is updated and communicated in the same way.
The iteration is synchronized by the data flow rather than by any global communica-

tion. If fewer processors are available, the "P’s" can be enlarged, at the cost of solving
linear systems larger than 5 5: each number in the "P" can represent a j group
of mesh points for any integers j and l, giving 5flx5fl systems to be solved. The
iteration can be terminated after a fixed number of iterations or by a convergence
test. If the communication required for a convergence test requires m times the time
of an iteration, it could be performed roughly that often. Any global communication
paths in the grid of processors (such as the ones described for inner products in 2)
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are idle during the iteration process, and thus could be dedicated to convergence
communication.

To study the convergence rate of the p3 SOR method (as well as the others in
Fig. 5) we list some properties of the matrix of (1) corresponding to the nine-point
difference approximation to the Laplacian. Let D denote the block diagonal part; -L
the strictly lower triangular part; and -U the strictly upper triangular part. The main
tools we use are

(T1) [23, p. 91] For a regular splitting M-N of a Stieltjes matrix (one which is
symmetric, positive definite, and nonpositive off the diagonal), if M and N have no
common nonzeros, then putting more nonzero elements in M monotonically improves
the spectral radius of the iterative method

u - M-1Nu M- v.

(T2) [23, p. 124] For irreducible Stieltjes matrices, the "SOR theory" holds
"approximately"; i.e., for

2
(.0opt

1 +x/l- pE(j)

where p(J) denotes the spectral radius of the Jacobi iteration matrix, then, for the
SOR iteration using this value of the relaxation factor to,

O)op 1 < p(SOR) < /O)op 1.

We have the following properties:
(a) The original matrix is an irreducible Stieltjes matrix.
(b) The p3 Jacobi method (M D, N L/ U) and the p3 Gauss-Seidel method

(M D-L, N U), are regular splittings and thus convergent. They are also p-regular
splittings.

(c) By (T1), the rate of convergence for each p3 method is better than that for
the corresponding standard method.

(d) Consider dividing the mesh of Fig. 5b into blocks, each containing two vertical
lines of mesh points. By (T1), the spectral radius for the p3 Jacobi method is not less
than that for the two-line Jacobi method (since it is independent of ordering) and not
greater than the standard point-Jacobi method. Thus

P (J2-1ine) p(Jp3) P(Jpoint),

and, since P(JE-in) and P(Jpoint) are both 1-0(1/n) [18], so is p(Jt).
(e) By (T2), there is a value of to for which p(SORp)= 1-0(1/n). Thus, in

using the p3 ordering we have not sacrificed rate of convergence.
The p3 scheme is the most complicated of the schemes in Fig. 5. The pattern

repeats a shifted scheme of 4 columns. The other schemes are more regular.
The p3 and T3 schemes are balanced, dividing the mesh points into three groups

of equal size. The H+H and Cross schemes have about twice as many "1" points as
"2’s" or ("3’s"), and the Box scheme has three times as many "2’s" (or "3’s") as "l’s".

The patterns can be enlarged in various ways; for example, the H+H scheme
can be stretched in both dimensions, with each number in Fig. 5c representing a ] x
block; stretched vertically, with each number in a crossbar representing a 2] x block
while all other numbers represent j x blocks; stretched horizontally, with each number
in a vertical bar representing a ] 21 blck while all other numbers represent a ] x
block; or in a variety of other proportions.
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4. Further applications. We have shown how the mesh orderings of Fig. 5 can
be used to make the time per iteration of the standard stationary iterative methods
on a two-dimensional grid of processors independent of n without sacrificing rate of
convergence. We now discuss implications for more complicated algorithms and prob-
lems. In particular, we consider further cases in which iteration time is independent
of n.

A. Other connectivities and geometries. It is not critical that the mesh be equally
spaced, that the region be a square, or that each variable be directly coupled to all 8
neighbors. For example, hexagonal connections, and piecewise linear finite elements
over regular triangles, also fall within this scheme.

B. Nonlinear problems. The iterations of 2 can also be applied to nonlinear
systems of equations f(u)=0, where the Jacobian matrix of f has nine-point con-
nectivity structure.

C. Gradient methods. These mesh orderings can also be used to simplify steepest
descent or conjugate gradient algorithms for the problem

min uTAu u Tb,

or a nonquadratic version of it, where A is positive definite and has nine-point structure.
The standard algorithms require inner products over vectors of length n2. On two-
dimensional grids of processors with nearest neighbor connections only, this is an O(n)
process. An iteration can be derived, however, which holds two sets of variables
constant while solving problems involving the third. Each iteration would take the form:

For i= 1,2, 3
Decrease the function by changing ui, holding the other variables fixed. ("Decrease"
could mean solving the subproblem exactly or simply reducing the objective function
by several iterations of a gradient method.)

This breaks the problem into three parallel sets of small problems (5 unknowns each,
for the p3 ordering) which can be solved using local communication only.

This is a descent algorithm, but does not have the finite termination property of
conjugate gradients.

The mesh orderings can also be used with the standard preconditioned conjugate
gradient algorithm (see, for example, [5]). In this case the preconditioning operator,
iterations of the SSOR iteration, for example, could be applied in time independent
of n using only local communication, although the conjugate gradient iteration would
still require inner products of length n 2.

D. Constrained problems. Free boundary problems for partial differential
equations can lead to minimization problems with upper and lower bounds on the
variables [6]: for example,

min u T"Au- uTb, c <= u <= d,

or a similar problem with nonquadratic objective function. Iterations as in 2 (Jacobi,
Gauss-Seidel, SOR) are still applicable as long as each variable change is truncated
if necessary to keep the variable within range.

Gradient methods are also often used for constrained problems. In addition to
the inner products used to determine parameters, an additional global check is
ordinarily necessary to calculate the maximum step which keeps the variables within
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range. The orderings of 2 can be used to produce an algorithm in which the inner
products and step length checking for gradient methods are reduced to local operations.
The algorithm is analogous to that in (C) above.

E. Three-dimensional problems. These methods also extend to the solution of
three-dimensional problems on two-dimensional arrays of processors. For an n n p
grid, an iteration using the ordering schemes above crossed with a line scheme in the
third dimension would produce algorithms with iteration time proportional to p on a
two-dimensional grid of n2 processors with local connections.

Acknowledgments. Seymour Parter, G. W. Stewart, and David Young have made
helpful suggestions related to this work.

REFERENCES

[1] L. M. ADAMS, Iterative algorithms for large sparse linear systems on parallel computers, NASA
Contractor Report 166027, NASA Langley Research Center, Hampton, VA, 1982.

[2] G. H. BARNES, R. M. BROWN, M. KATO, D. J. KUCK, D. L. SLOTNICK AND R. A. STOKES, The
ILLIAC IV computer, IEEE Trans. Comput., C-17 (1968), pp. 746-757.

[3] SHADID H. BOKHARI, On the mapping problem, IEEE Trans. Comput. C-30 (1981), pp. 207-214.
[4] A. BRANDT, Multigrid solvers on parallel computers, in Elliptic Problem Solvers, M. Schultz, ed.,

Academic Press, New York, 1971.
[5] P. CONCUS, G. H. GOLUB AND D. P. O’LEARY, A generalized conjugate gradient method for the

numerical solution of elliptic partial differential equations, in Sparse Matrix Computations, J. R.
Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309-322.

[6] C. W. CRYER, P. M. FLANDERS, D. J. HUNT, S. F. REDDAWAY AND J. STANSBURY, The solution

of linear complementarity problems on an array processor, Tech. Sum. Rep. 2170, Mathematics
Research Center, Univ. Wisconsin, Madison, 1981.

[7] DENNIS GANNON, On mapping non-uniform P.D.E. structures and algorithms onto uniform array
architectures, in Proc. Internat. Conf. on Parallel Processing, Ming T. Liu and Jerome Rothstein,
eds., IEEE Computer Society, 1981.

[8] DON HELLER, A survey of parallel algorithms in numerical linear algebra, SIAM Rev. 20 (1978), pp.
740-777.

[9] H. JORDAN, A special purpose architecture forfinite element analysis, Proc. 1978 Conference on Parallel
Processing, IEEE Computer Society, pp. 263-266.

[10] J. S. KOWALIK, S. P. KUMAR AND R. E. LORD, Solving linear algebraic equations on a MIMD
computer, Proc. International Conference on Parallel Processing, IEEE Computer Society, 1980.

[11] DAVID J. KUCK AND RICHARD A. STOKES, The Burroughs scientific processor (BSP), IEEE Trans.
Comput. C-31 (1982), pp. 363-375.

[12] S. P. KUMAR, Parallel algorithms for solving linear equations on MIMD computers, Ph.D. thesis,
Computer Science Dept., Washington State Univ., Pullman, 1982.

[13] H. T. KUNG AND C. E. LEISERSON, Systolic arrays (for VLSI), in Sparse Matrix Proceedings 1978,
I. S. Duff and G. W. Stewart, eds., Society for Industrial and Applied Mathematics, Philadelphia,
1979, pp. 256-282.

[14] S. Y. KUNG, VLSI array processor for signal processing, Proc. Conference on Advanced Research in
Integrated Circuits, Massachusetts Institute of Technology, Cambridge, 1980.

[15] S. Y. KUNG, R. J. GAL-EZAR, K. S. ARUN AND D. V. BHASKAR RAO, Wavefront array processor:
architecture, language, and applications, IEEE Trans. Comput., C-31 (1982), pp. 1054-1066.

[16] A. LICHNEWSKY, Solving some linear systems arising in finite element methods on parallel processors,
Tech. Rep., Universit6 de Paris-Sud and INRIA, 1982.

[17] T. MOTO-OKA, ed., Fifth Generation Computer Systems, North-Holland, New York, 1982.
[18] SEYMOUR V. PARTER, On estimating the "rates of convergence" of iterative methods for elliptic

difference equations, Trans. Amer. Math. Soc., 114 (1965), pp. 320-354.
[19] SEYMOUR V. PARTER AND MICHAEL STEUERWALT, Another look at iterative methods for elliptic

difference equations, Computer Sciences Dept. Technical Report 358, Univ. of Wisconsin, Madison,
1979.

[20], Block iterative methods for elliptic and parabolic difference equations, SIAM J. Numer. Anal.,
19 (1982), pp. 1173-1196.



632 DIANNE e. O’LEARY

[21 CHUCK RIEGER, ZMOB: Hardwarefrom a user’s viewpoint, Proc. IEEE Computer Society Conference
on Pattern Recognition and Image Processing, August, 1981, pp. 399-408.

[22] AHMED H. SAMEH, Parallel algorithms in numerical linear algebra, CREST Conference 1981,
Bergamo, Italy, Academic Press, to be published.

[23] RICHARD S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[24] YEHUDA WALLACH AND V. KONRAD, On block parallel methods of solving linear equations, IEEE

Trans. Comput., C-29 (1980), pp. 354-359.



SIAM J. ScI. STAT. COMPUT.
Vol. 5, No. 3, September 1984 009

THE MULTIFRONTAL SOLUTION OF UNSYMMETRIC SETS
OF LINEAR EQUATIONS*

I. S. DUFF? AND J. K. REID?

Abstract. We show that general sparse sets of linear equations whose pattern is symmetric (or nearly
so) can be solved efficiently by a multifrontal technique. The main advantages are that the analysis time is
small compared to the factorization time and that analysis can be performed in a predictable amount of
storage. Additionally, there is scope for extra performance during factorization and solution on a vector or
parallel machine. We show performance figures for examples run on the IBM 3081K and CRAY-1 computers.

Keywords, frontal solution, Gaussian elimination, sparse matrices, unsymmetric equations, vectorization

1. Introduction. We consider the direct solution of sparse unsymmetric sets of n
simultaneous linear equations

(1.1) Ax=b

by an approach that is economical in the case where the pattern of nonzeros is symmetric
or nearly so. For symmetric positive definite matrices A any choice of diagonal pivots
for Gaussian elimination is numerically stable so they can be chosen on sparsity grounds
alone. This choice can be made symbolically much faster and in much less storage than
is needed for the actual numerical operations (George and Liu (1981)) and several
good codes exist that do this (George et al. (1980), Eisenstat et al. (1977), (1982),
Duff and Reid (1983)). By using frontal elimination (Irons (1970) and Hood (1976))
for the actual numerical operations and by including interchanges and the use of both
1 x l and 22 pivots, Duff and Reid (1983) extended this approach to symmetric
indefinite matrices without risking numerical instability. Here we further extend the
approach to unsymmetric matrices, assuming that the reader is familiar with our earlier
paper (Duff and Reid (1983)). Note that the conventional approach to factorizing an
unsymmetric sparse matrix with numerical pivoting is to perform the analysis and
factorization together, which is typically about six times more costly than the analysis
of a symmetric pattern. Note also that the original frontal method of Irons and Hood
is usually unable to use a pivotal sequence that is as economical in overall storage or
total number of floating-point operations. We illustrate this by showing some results
of using a frontal code in 4.

Our overall strategy is outlined in 2 and we explain our numerical factorization
in 3. Comparisons with other codes are made in 4 and conclusions drawn in 5.

When performing the numerical experiments for this paper, we have used sets of
test matrices covering a wide range of sparsity patterns and applications. Among the
test matrices used were those in Table 1.1. We used more matrices in our experiments,
but the above sample is representative of these and is sufficient to illustrate our points.

2. Overall strategy. Our overall strategy is to use the analysis algorithm of our
previous work on symmetric matrices (Duff and Reid (1983)) on the pattern of the
matrix A +A, creating an assembly tree and performing a depth-first search of it;
then to factorize A in a similar way to our earlier work, except that now the whole
of each frontal matrix is stored since it is unsymmetric and threshold pivoting with

* Received by the editors February 3, 1983, and in final revised form January 15, 1984. This article
was written by an employee of the United Kingdom Atomic Energy Authority. (C) UKAEA.

Computer Science and Systems Division, AERE Harwell, Oxfordshire, England OX11 0RA.
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TABLE 1.1
Test matrices.

Order Source Application

147 Johansson, Lund
1176 Erisman, Boeing
199 Willoughby, IBM
292 Ashkenazi, Nottingham

130, 541 Curtis, Harwell

406, 1561 George and Liu (1978)
144, 1072 Marro, Cannes
532, 1224 Ponting, Harwell

225 Bogle, Imperial College

1454 Lewis, Boeing
90O

Eigenvalue calculations in atomic physics
Electrical circuit analysis
Stress analysis
Normal equations matrix from surveying
Stiff ODE Jacobians from laser research and from

atmospheric pollution
Triangulation of L-shaped region
Aircraft structures
Oil reservoir modelling
Hydrocarbon separation problem in chemical

engineering
Power network
9-point discretization of the Laplacian on a 30 x 30

grid

row interchanges is introduced for numerical stability (see 3 for details); finally the
solution phase is similar except that now the upper triangular factor is no longer the
transpose of the lower triangular factor.

Notice that analyzing A +AT implies that a zero aij for which aji 0 is treated
as a nonzero which has the value zero. Thus our approach will work for any pattern,
but is likely to be inefficient for very unsymmetric patterns, and this is borne out by
our experience (see Tables 3.2 and 3.3).

An important feature of our approach is that we can predict the storage and
arithmetic requirements that would be needed for numerical factorization if no inter-
changes for stability are performed. This is particularly important since such a prediction
may well determine whether it is computationally feasible or attractive to continue
with the direct solution of the system.

Of course, the forecast may be optimistic for systems where interchanges are
required but our experience (see Table 3.2) is that for symmetrically structured
problems this inaccuracy is slight, although Ruhe and Ericsson (private communication)
report a more significant difference when using our symmetric code (Duff and Reid
(1983)) on problems with relatively small diagonal entries. This phenomenon of lack
of diagonal dominance is also indicated by the experiments of Duff (1983).

3. The numerical factorization. Because of the depth-first search of the tree
produced by our analysis routine we can, as in the symmetric case (Duff and Reid
(1983)), store frontal matrices corresponding to generated elements in a stack.

The basic step of the numerical factorization is then:
i) the assembly of the appropriate number of generated elements from the top

of their stack together with the so far unassembled nonzeros of the original
matrix which are in the rows and columns now available as pivots;

ii) the elimination of as many as possible of these rows and columns using row
interchanges, if necessary;

iii) the storage of the pivot rows and columns (which are part of the factorization);
iv) the placing of the reduced frontal matrix on the top of the stack of generated

elements.
The basic scheme is thus that of Duff and Reid (1983) but there are some significant

operational and organizational differences which we now discuss.
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Because of our experience in the symmetric case (Duff and Reid (1983)) we store
the frontal matrix afresh at every stage. We ensure that pivot candidates are the leading
rows and columns, thereby reducing the number of permutations required. That is,
the sort is done during the assembly rather than after it.

Since we follow our normal procedure (for example, used also in Harwell code
MA28) of allowing the user to input the nonzeros in any order, we must first sort the
matrix to avoid gross inefficiencies in the factorization. We will require the matrix in
tentative pivot order by arrow-heads. That is to say that the nonzeros in a row of the
upper triangular part of the matrix (permuted according to tentative pivot order)
immediately precede those of the corresponding column of the strictly lower triangular
part. An example is shown in Fig. 3.1. Sorting into this order enables a simple reuse
of the storage occupied by the sorted matrix.

2 3
6 7

4 9 10 11
8 12 14

5 13 15

FIG. 3.1. The positions of the nonzeros of a 5 5 matrix when ordered by arrowheads.

The storage organization we have used is illustrated for the reals in Figure 3.2
where the arrows indicate the directions in which the boundaries move. The associated
integers are held similarly in a separate array. We have chosen this scheme because
we wish to use a single array for the numerical processing and we also want to keep
garbage collections infrequent and simple. The simpler scheme used in the symmetric
case is not possible because we now need to store the pivot row and column (i.e. an
arrow-head form) in the factor space while wishing to hold the front matrix in normal
rectangular order for convenient row interchanges and eliminations.

Factors
Free
space

Remainder of
Front Stack Free

sorted input

%’-Stack bottom

FIG 3.2. Storage schemefor the reals during numericalfactorization where the arrows indicate the directions
in which the boundaries move.

We know, in advance, the space required for the numerical factorization when
no interchanges are necessary and additionally we know how much less space is required
if we allow the stack to overwrite the already processed input when the free space is
exhausted. This is the only form of garbage collection which we have and is particularly
simple. Garbage collections on the real and integer files are performed similarly but
completely independently. Table 3.1 shows examples of real and integer storage needed
to avoid garbage collections, the minimum storage needed and the number of collections
when minimum storage is used. The timing differences are comparable with the
uncertainty of the IBM timer, thanks to the few collections needed and their simplicity.

Since there are many cases when it is known a priori that the decomposition is
numerically stable for any sequence of diagonal pivots (for example, when the matrix
is diagonally dominant), we provide an option which does no numerical tests other
than ensuring that the pivots are all nonzero. If this option is not invoked then we
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TABLE 3.1
The effect of running with minimum space.

Order 147 1,176 292 406 1,561 144
Nonzeros 2,449 18,552 2,208 2,716 10,681 1,296
Total storage required

Reals 1000
No compress 7.7 45 8.0 16 85 3.3
Minimum 5.7 31 5.8 14 74 2.2
Total storage required

Integers 1000
No compress 4.3 28 5.4 8 32 2.8
Minimum 2.8 21 2.9 5 19 1.7
Number compresses

Real 9 2 10 8 10 9
Integer 4 3 8 4 5 8

Time (IBM 3081K secs.)
Plenty .065 .43 .057 .16 1.34 .115
Min. space .068 .44 .059 .16 1.34 .118

require that a pivot must satisfy the threshold criterion

> u. max [a,l (3.1)

where u is a preset parameter in the range [0, 1). The nonzero aik must, of course,
be available as a pivot candidate and note that this implies that there are no nonzeros
in column k outside the front so the maximum can be evaluated within the front. This
numerical test has been widely used in direct methods for sparse matrices and has
been found satisfactory, the parameter u permitting an adequate balance between
stability and sparsity preservation to be maintained. For a full discussion of stability
and threshold pivoting, see Reid (1977). We have found that the value 0.1 is usually
satisfactory.

TABLE 3.2
Storage for factors (excluding extra space needed during factorization but not during solution) and time

to find them, with and without pivoting (symmetric pattern examples). Times are for actual factorization only.

Order 147 1,176 292 1,561 1,454
Nonzeros 2,449 18,552 2,208 10,681 5,300
Real storage (words 1000)
No numerical pivoting 4.62 20.6 5.28 66.3 10.3
With pivoting, u--0.1 4.64 21.0 5.43 68.5 11.2

Integer storage (words 1000)
No numerical pivoting 1.46 6.85 2.56 18.4 9.30
With pivoting, u=0.1 1.47 6.86 2.57 18.4 9.38

Time (IBM 3081K secs.)
No numerical pivoting .065 .43 .057 1.34 .031
With pivoting, u =0.1 .068 .45 .062 1.42 .035

The results in Table 3.2 indicate that for symmetric patterns there is only slightly
more storage required when numerical stability considerations delay pivoting and
increase the front size. Thus the estimates from the analysis and tree search are a good
guide to that actually required. In order to see the effect of badly-behaved problems,
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Duff (1983) ran our code on a sequence of five-diagonal matrices with decreasing
diagonal entries. The increase in storage over the positive definite case was less than
50%.

TABLE 3.3
Time and storage ]:or matrices with unsymmetric patterns. The two cases of order 541 have quite different

numerical values. Here the sort time is included.

Order 199 130 541 541 225 1,224 532
Nonzeros 701 1,282 4,285 4,285 1,308 9,613 3,474
Asymmetry ratio .94 .24 .32 .32 .90 .39 .26
Reals in factors
(in 1000s)
MA28 (u =0.1) 1.6 1.3 12.6 14.7 1.7 43 9.56
new code (u =0) 9.8 1.6 15.7 15.7 7.1 91 9.71
new code (u =0.03) 17.9 1.6 15.7 39.3 11.4 109 9.71
new code (u =0.1) 18.4 1.6 17.5 53.2 12.0 140 9.71
new code (u =0.3) 19.1 1.6 20.7 77.6 12.0 173 9.71

Factor time
(IBM 3081K secs.)
MA28 (u =0.1) .026 .022 .18 .23 .02 1.1 .13
new code (u=0) failed .032 .26 .26 failed 3.4 .14
new code (u =0.03) .74 .033 .26 2.16 .28 4.7 .15
new code (u--0.1) .76 .033 .34 3.70 .30 7.8 .15
new code (u =0.3) .79 .033 .54 6.40 .31 10.7 .15

The situation can be quite different if the pattern is very nonsymmetric, as the
results in Table 3.3 show. We follow Duff (1983) in quantifying this asymmetry by
the ratio of the number of unmatched off-diagonal entries (aij 0 but aji 0) to the
total number of off-diagonal entries so that a symmetric matrix has ratio 0.0. (The
measure used by Erisman et al. (1983) is essentially the reverse of this.) Pivoting (i.e.,
u > 0) may be essential if the code is not to fail (the matrices of orders 199 and 225
have some zeros on the diagonal) and yet it may drastically increase the storage and
computing requirements. We show results for three values of the threshold parameter
where, for some examples, the sensitivity to u is apparent. We have not shown in the
table any measure of the accuracy of the results. The reason for this is that when
failure does not occur, there is little difference between the runs. This would argue
for a lower value of u to be the default, but we prefer 0.1 because of the added safety,
our experience with other codes, and the generally small increase in requirements over
lower values. Really these very nonsymmetric cases are outside the scope for which
the new algorithm has been designed. A code, such as MA28, which treats the matrix
as genuinely unsymmetric and uses a pivot sequence that takes advantage of the
unsymmetric sparsity pattern is likely to be more successful and comparative figures
are included in Table 3.3. It is apparent that MA28 performs particularly well when
the asymmetry ratio is high. Note, however, that MA28 generally has much higher
analyze times (see Table 4.1). Note also that in two cases (orders 130 and 532) our
new code behaved perfectly satisfactorily.

The storage structure which we use for the factors greatly reduces the integer
overhead as is evident in Tables 3.1-3.2 where sometimes substantially less words of
storage are required for the integers than for the reals. This feature, which is shared
by many codes for positive definite systems, is present because only one set of row
and column indices are stored for each set of eliminations on the one frontal matrix.
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4. Comparisons with other codes. We have developed a code based on the ideas
in this paper and have placed it in the Harwell Subroutine Library under the name
MA37.

YSMP (Yale Sparse Matrix Package, Eisenstat et al. (1977)) includes a code for
unsymmetric matrices A based on an analysis of the sparsity of the upper triangle of
A reflected in the diagonal. Since no numerical pivoting is performed it may fail, so
it is not as general a code as MA37 but we use it as a basis for comparison. To prevent
its failing we gave it only diagonally dominant matrices.

The conventional approach for unsymmetric sparse matrices involves taking
account of numerical values during the analysis of the sparsity structure and we have
run the Harwell code MA28 (Duff (1977)) as representative of this technique.

Another approach is that of George and Heath (1980) who use orthogonal
reduction to triangular form, based on the analysis of the structure of the matrix ArA.
Code based on this will be available under the name SPARSPAK-B, but unfortunately
was not available at the time of writing.

We have chosen to measure separately the three phases of analysis of the structure
(ANALYZE), numerical input and factorization (FACTOR), and solution using the
factors (SOLVE) since these correspond to the operations required once for a given
structure, once for given matrix values, and once for each right-hand side respectively.
We present the times in double precision on the IBM 3081K for these three phases
in Table 4.1 and the storage required in Table 4.2.

The MA28 and MA37 ANALYZE and FACTOR entries include sorting of the
user’s input matrix whereas YSMP requires the nonzeros to be ordered by rows. We
have therefore added the MA37 sorting times to the YSMP times in both cases. The
sort time is also displayed so the YSMP run time for a sorted case can be found by a

simple subtraction.
In Table 4.2, we have included all the storage required including overhead and

permutations and have given values in words for both the IBM, where reals occupy
two words and some integers (for example, row and column indices) occupy only half
a word, and the CDC where reals and integers both occupy one word. Both versions
are available in MA37 and MA28 but YSMP does not offer a half-word integer version
although comments are included to allow rapid conversion between precisions. Addi-

TABLE 4.1
Times (IBM 3081K seconds) for three phases.

Order 147 1,176 292 1,561 1,454 1,072 532 900
Nonzeros 2,449 18,552 2,208 10,681 5,300 12,444 3,474 4,322
ANALYZE
MA37 sort .018 .14 .016 .08 .04 .09 .03 .06
MA37 .033 .25 .049 .19 .15 .30 .07 .19
YSMP .054 .40 .062 .45 .22 .46 .32 .27
MA28 .290 1.50 .240 21.0 .44 15.0 .76 2.60

FACTOR
MA37 sort .020 .18 .018 .1 .05 .12 .03 .07
MA37 .085 .61 .075 1.4 .16 1.01 .14 .72
YSMP .075 .57 .058 1.4 .11 .99 .40 .76
MA28 .091 .68 .073 4.1 .11 1.80 .13 .77

SOLVE
MA37 .0058 .030 .0078 .080 .023 .054 .014 .044
YSMP .0060 .026 .0067 .078 .017 .052 .037 .043
MA28 .0060 .029 .0074 .112 .019 .065 .014 .043



MULTIFRONTAL SOLUTION OF UNSYMMETRIC EQUATIONS 639

tionally, the data structure used by parts of the YSMP code involves pointers which
require full integers (unless the number of nonzeros in the factors is severely limited)
so full-word integer storage has been assumed throughout. We have, however, not
included storage for the matrix reals in the YSMP ANALYZE because minor changes
to some statements in a sort routine yield a version that does not need the real arrays.

The examples displayed in Tables 4.1 and 4.2 were chosen from our test set to
be a representative sample of problems for which it is sensible to use MA37, that is
the structurally symmetric or nearly symmetric cases. All but the case of order 532
are structurally symmetric and that one is nearly so, but YSMP chose a poor pivot
sequence, presumably because it bases its choice only on the upper triangular part of
the matrix.

On ANALYZE timings MA37 is consistently better than YSMP and much better
than MA28. The FACTOR times are usually slightly worse than the less general YSMP
code and are broadly comparable with MA28. The SOLVE times are comparable with
MA28 and not as good as YSMP.

TABLE 4.2
Storage in thousands of Fortran words, with MA37 in minimum space.

Order 147 1,176 292 1,561 1,454 1,072 532 900
Nonzeros 2,449 18,552 2,208 10,681 5,300 124,444 3,474 4,322
ANALYZE (IBM)
MA37 3 24 4 18 13 18 6 12
YSMP 8 52 9 84 22 61 39 49
MA28 15 68 17 282 35 159 30 100

ANALYZE (CDC)
MA37 6 47 7 34 22 33 11 23
YSMP 8 52 9 84 22 61 39 49
MA28 15 73 176 263 41 148 29 92

FACTOR (IBM)
MA37 14 84 15 163 30 117 25 91
YSMP 23 128 25 241 57 177 113 142
MA28 16 79 18 271 39 160 32 102

FACTOR (CDC)
MA37 11 73 11 102 27 80 19 60
YSMP 15 86 17 162 39 118 76 95
MA28 16 88 18 234 42 146 31 94

SOLVE (IBM)
MA37 10 48 13 146 29 97 23 79
YSMP 15 67 17 203 35 135 100 115
MA28 13 58 15 257 31 146 27 93

SOLVE (CDC)
MA37 6 29 8 87 22 59 16 48
YSMP 10 45 11 136 24 90 67 77
MA28 11 48 13 208 27 118 22 75

Because of the overhead of assembling the frontal matrices in the multifrontal
approach, MA37 will do better on larger problems where the factors are significantly
denser than the original matrix. Thus we would expect MA37 to perform well on
matrices from discretizations of partial differential equations (examples of order 1561,
1072, 532 and 900) or from finite element based discretizations (order 147, 1176)
but less well on network problems (order 1454). This is broadly borne out by the
results in Table 4.1.
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On our set of test examples, our new code almost always requires less storage.
Finally, we demonstrate, in Table 4.3, the vectorization of our FACTOR and

SOLVE codes by comparing them with YSMP on the CRAY-1 computer. YSMP uses
indirect addressing throughout and hence does not vectorize which makes it less
competitive.

Most routines which vectorize better on the CRAY-1 than MA37 do so at the
expense of many more multiplications. Codes based on variable-band or frontal
techniques fall into this category. We ran the Harwell frontal code MA32 (Duff
(1981a)), which includes row interchanges but works with a single front, on the
examples in our table. We found that the FACTOR and SOLVE times for MA32
were significantly slower than MA37 on the IBM 3081K. For example, on the problems
of orders 1454 and 532 in Table 4.1, the MA32 FACTOR times were 1.93 and 1.32
seconds while the MA32 SOLVE times were .13 and .14 seconds. We were unable
to solve several of our problems because the front-size became too large, but for the
more banded structures (like those of the last two columns) the storage demands were
quite modest. On these two examples the in-core requirements of the FACTOR entry
of MA32 were only 33 and 15 thousand words on the IBM and 17 and 8 thousand
words on the CDC.

The better vectorization of MA32 on the CRAY-1 (the vectors encountered are
much longer than for MA37), yields more competitive times on that machine where
the MA32 FACTOR times for the same problems (orders 1454 and 532) were .269
seconds and .260 seconds respectively. Evidence of greater vectorization is more clearly
seen if the thousands of multiplications required by the algorithms are compared. They
are 79 and 579 for MA37 as against 1,680 and 811 for MA32.

TABLE 4.3
CRAY-1 timings in seconds of MA37 and YSMP.

Order 147 1,176 292 1,561 1,454 1,072 532 900
Nonzeros 2,449 18,552 2,208 10,681 5,300 12,444 3,474 4,322
FACTOR
MA37 (sort) .023 .17 .021 .10 .051 .12 .03 .07
MA37 .047 .33 .052 .44 .146 .37 .09 .25
YSMP .055 .39 .046 .81 .087 .59 .25 .46

SOLVE
MA37 .0023 .015 .0045 .029 .0186 .021 .0083 .017
YSMP .0030 .015 .0037 .040 .0092 .027 .0194 .023

5. Conclusions. We have described algorithms and code for the solution of sparse
linear equations using a multifrontal approach. Our software is primarily designed for
systems which are structurally symmetric or nearly so. We have, however, shown that
it can be used on quite general systems although it is better to use code specifically
designed for the general case. Our code incorporates numerical pivoting and so is
more robust than codes which pivot on the sparsity pattern alone. Nevertheless, we
have shown our software to be competitive in speed and storage on the IBM 3081K
with these less powerful codes and have demonstrated that, because of the vectorization
of the inner loop, it will generally outperform them on the CRAY-1.

Acknowledgments. We would like to thank the associate editor, Alan George,
and the referees for their helpful comments which have improved the presentation of
this work.
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A PROGRAM FOR FITTING RATE CONSTANTS
IN GAS PHASE CHEMICAL KINETICS MODELS*

G. D. BYRNE,’I" A. J. DEGREGORIA’i" AND D. E. SALANE’)’:I:

Abstract. This paper describes a program for developing gas phase chemical kinetics mechanisms.
Program input is a proposed chemical reaction mechanism specified in the usual stoichiometric form and
associated thermodynamic data. The program generates and solves the corresponding rate equations and
adjusts reaction rate constants to fit a user-provided data base of experimental values of concentrations of
certain chemical species. Examples are given.

Key words, kinetics, parameter estimation, inverse problems

1. Introduction. In this paper we outline a computer code which can be applied
to various gas phase chemical kinetics models. The basic idea is as follows. The user
develops an input file to describe the stoichiometry in a familiar chemical notation.
The user can then call the code which fits the specified parameters in the rate coefficients
so that the species concentrations fit user-supplied data. These data may represent
pilot plant data, laboratory data, or the data from a full-scale operating system.

The program uses the Chemical Kinetics package CHEMKIN [15] to translate
the reaction mechanism into a FORTRAN subroutine containing the rate equations.
The ordinary differential equation (ODE) solver LSODE [14], [16] is used to solve
the rate equations, and a constrained optimization procedure we have developed is
used to adjust reaction rate constants to fit an experimental data base. The optimization
algorithm has been implemented in a way that allows the user to fit fairly extensive
data bases.

Since the program uses CHEMKIN as an interface between the reaction mechan-
ism and the rate equations, the program can be used to model and find parameters
for a large class of proposed mechanisms. The mechanisms can be easily changed and
parameters selected for those reactions for which precise estimates are not available.
The program has been used successfully to measure rate constants in the Thermal
DeNOx process [9], [171i [18] where only a few of the several chemical species could
be measured experimentally.

The idea of solving the inverse problem described is not new. Deuflhard et al.
[8], Gear [12], Edsberg [11], and Chance et al. [7] are but a few of the workers in
this area. However, this is the first code to use CHEMKIN in an automatic way, to
our knowledge. In the actual application, we solved the same system of ODE’s or
kinetics model with several different sets of initial concentrations to get each set of
rate parameters. This complication does not appear in other examples we have seen.
In the Exxon Thermal DeNOx process we tuned several rate constants so that predicted
species concentrations fit an experimental data base which included data for a wide
range of temperatures. The modeling details of the computations were further compli-
cated by the small (short) time constants and the relatively few, but large measurement
times.

In what follows, the equations for gas phase kinetics are developed in 2. The
formal problem for the computation of the reaction rate parameters is given in 3.
Section 4 outlines a constrained Gauss-Newton method for solving the formal problem.

* Received by the editors March 2, 1983, and in revised form May 16, 1983.
t Exxon Research and Engineering Company, Clinton Township, Annandale, New Jersey 08801.
t Present address: Sandia National Laboratories, Albuquerque, New Mexico 87185.
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The code sketch is in 5, while numerical results are given in 6. Appendix 1 gives
the divided difference scheme we used for computing gradients and Jacobians. Appendix
2 is a description of the active constraint strategy. Finally, the derivation of the
termination condition for Algorithm 2 appears in Appendix 3.

2. The rate equations for elementary gas phase reactions. Elementary reversible
gas phase chemical reactions can be written in the form

K K

(2.1) Y ’,Xk Y
k=l k=l

for 1, 2,...,/, where I is the total number of reactions in the mechanism, K is
the number of chemical species in the mechanism, u’k, is the stoichiometric coefficient
of the kth reactant species in the ith reaction, u.i is the stoichiometric coefficient of
the kth product species in the ith reaction, and Xk is the chemical symbol for the kth
species.

The molar concentration of the kth chemical species at time will be denoted by
Xk(t) and the rate of production of the species by "gk(t)" For elementary reactions of
the form (2.1), the rate of production of the kth chemical species is defined by the
equations

(2.2) J(t)
i=1

where

K K

q=kt, I-I (Xk)""’-kr, I-I (Xk) ’’L’
k=l k=l

and ’k,i u"k,i lY k, i.

The forward reaction rate constant for the ith reaction, k,, is determined by the
generalized Arrhenius expression

(2.3) k, ATt3 exp -where A is the pre-exponential factor, /3 is the temperature exponent, and E the
activation energy. In (2.3), R is the universal gas constant and T denotes temperature.
The reverse reaction rate kr, is defined by the equation k, k,/k, where k, denotes
the equilibrium constant for the ith reaction. The equilibrium constant is given by the
expression

kc=exp(k=l-- )(--) ai

Kwhere a k=l ’k.i- S and H are the standard state entropy and enthalpy, respec-
tively, of the kth species and P denotes atmospheric pressure.

For certain reactions a third body may be required for the reaction to proceed
and this will change the form of the rate of progress variable, q. For example, if all
species have the same third body effect in a reaction, the rate of progress variable is

P
qiRT

where P denotes pressure and qi is given by (2.2). For the form of the rate of progress
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variable when the reaction includes third-body effects with enhancements for certain
species, we refer the reader to Kee, Miller, and Jefferson [15].

For given values of temperature, pressure, and species concentrations at time to,
(2.2) is an initial value problem consisting of K nonlinear ordinary differential
equations. Generally speaking, systems of differential equations associated with
chemical kinetics models are often quite stiff, since different chemical species in a
reaction mechanism may approach steady state on widely varying time scales. More
precisely, if the ratio of the length of the interval of integration to the smallest time
constant is large for a nonoscillatory system, the system is stiff. See the papers by
Byrne and Hindmarsh [4], [5] for a discussion of stiff systems in chemical kinetics.

LSODE was selected as the integrator, because it has many desirable features
general error control, robust and efficient algebra routines, good documentation,
dynamic storage allocation, and a good pedigree.

3. The minimization problem. A major consideration in chemical kinetics model-
ing is the choice of the forward reaction rate constants or, equivalently, the choice of
the parameters Ai,/3i, and E in the generalized Arrhenius expression (2.3). In complex
chemical mechanisms such as the Thermal DeNOx mechanism, experimental methods
and theoretical methods cannot provide sufficiently accurate estimates of all the
required rate constants, especially over a wide range of temperatures. If experimental
data are available, these data can be used to estimate unknown rate constants and to
obtain more accurate estimates of rate constants whose quoted errors are large.

Often, accurate estimates will be available for certain pre-exponentials, tempera-
ture exponents, and activation energies. We will let z denote a vector whose
components are the Arrhenius parameters for which precise estimates are not known.
Parameters for which accurate values are known will be held fixed while we try to
determine z so that the model "best fits" the experimental data base.

For the /th set of experimental conditions, let T denote temperature, P will be
used for pressure, and Xt(to) will denote the initial concentrations of the chemical
species. We use Y(t) to denote the chemical concentrations obtained by experiment
with the /th set of experimental conditions, and X(t, z) will denote the solution of
the initial value problem (2.2) at time and for parameters z.

The residual vector ft for the /th experiment is given by

f’(z) X(t, z)- Y(t’)
where is the residence time associated with the/th experiment. When the errors in
the components of f are normally distributed, weighted nonlinear least squares is the
most commonly used method for fitting the solution of (2.2) to available experimental
data [1]. More specifically, we wish to find z that minimizes the objective function

(3.1) 1/2F*(z) WvF(z)

where

V*= ((f’)*, (f)*,..., (f)*).
N is the total number of experiments, and Wv is the inverse of the variance-covariance
matrix of the vector F or a matrix of suitable scaling factors.

We, as well as others, have observed that if a vector of parameters z minimizes
(3.1), several parameters may be physically unrealistic (e.g., the wrong size or algebraic

* denotes the transpose of a matrix or a vector.
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sign). The experimental data may not be sufficient to correctly determine these
parameters, the reaction mechanism may be inaccurate or incomplete, or the objective
function may have several local minima. It is useful to know how well existing data
can be fit if the parameters are subject to physically realistic constraints. Instead of
(3.1), we consider the constrained nonlinear least squares problem

(3.2) min 1/2F*(z)F(z),

or equivalently,
N R

min 1/2 E (X(t’, z)- Y(t’)),
1=1

subject to the constraints, ai-<-z*ei <= bi for i= 1, 2,..., L where L is the number of
parameters selected for optimization. K denotes the number of species in each experi-
ment for which experimentally measured values are available. In the inequalities in
problem (3.2), ei is a unit vector with a one in the ith component (and zero elsewhere)
and ai and bi are, respectively, the lower and upper bounds for the ith parameter.

We note that if the matrix We is a positive definite and symmetric matrix, there
is no loss of generality in rewriting the objective function in (3.1) in the form that it
appears in (3.2). Unfortunately, in practice experiments are not often repeated; hence,
an accurate estimate of the variance-covariance matrix is seldom available.

4. The parameter estimation procedure. In choosing a parameter estimation
procedure, we knew that the program would be used to find parameters in the following
situations. First, measurements would be available for only a few of the K chemical
species in the mechanism and only at several different residence times. Second, the
chemical mechanisms would be moderately sizedu30 to 40 reactions and involving
20 to 30 species. Third, the number of experiments in a given data base would also
be large--usually around 80 experiments. As many as 80 systems of 20-30 stiff ODE’s
would need to be solved for each evaluation of the objective function or least squares
residual function. Consequently, evaluations of F(z) would be expensive.

For solving problem (3.2) we chose a Gauss-Newton method with a so-called
active constraint strategy [13] which we present in Appendix 2. This is, of course, a
standard method for solving nonlinear least squares problems subject to linear
inequality constraints. However, if the method is to be effective in the current applica-
tion, several details of implementation require careful attention.

Let (z) denote the objective function to be minimized in problem (3.2). Most
methods for minimizing are of the form

(4.1) 2=z-aB-’V(z)
where Vb is the gradient of b, B is an approximation to V, the second derivative
or Hessian of (Ve =[02/az 0z]), and a is a positive number chosen to insure that
(2) < (z). For problem (3.2),

(4.2) V =J*F
and

N R
fiv2fi(4.3t vzb J*vJv + E E .j- .

i= i=1

where Jv is the Jacobian of the residual vector F, and f. is the jth component of the
residual vector for the ith experiment. If the double summation term in (4.3) is
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dropped, and the approximation B J*FJF is used in iteration (4.1) along with (4.2),
the iterative scheme (4.1) is the Gauss-Newton method.

The dimensions of the matrix JF are N. K by L where K is the number of chemical
species for which experimental values of the concentrations are available. In order to
avoid excessive storage requirements when large experimental data bases are to be
fit, we note that

N

(4.4) J*FJF _, J’ J:
i=1

and
N

(4.5) J*FF= Y. J,f’
i=1

where Jr’ is the Jacobian of the residual vector for the ith experiment. If (4.4) and
(4.5) are used to compute the gradient and Hessian, a vector of length L and an L by
L array are the storage needed for the derivative information. Since computation of
JF is very costly, it is interesting to note that terms in (4.4) and (4.5) could be computed
simultaneously if several processors were available.

At each iteration the value of a is usually determined by solving the one-
dimensional minimization problem,

min ok(z- aB-Vck(z)).
a>0

See, for example, Ortega and Rheinboldt [20, Chap. 8]. Although this method of
calculating a is an important safeguard in general minimization packages [6], [10],
[19], it can in certain problems add considerably to the number of function evaluations
required in the parameter estimation. For the reaction mechanisms we examined, u 1
gave good results.

On the other hand, in the current application the accurate approximation of J,
is critical to the success of the Gauss-Newton method. We use the standard forward
difference approximation

fi(z W (A*el)el)-- fi(z)
(4.6) (J:,)e A’el
where A is a vector of small positive numbers and J, denotes the difference approxima-
tion to J,. The program we have developed uses the algorithm in Appendix 1 to
compute the vector A. In the current program, Algorithm 1 provides a way of relating
the accuracy of the underlying stiff ODE solver LSODE, and the choice of step size
in the forward difference approximation (4.6). The key is the recognition of the level
of the inherent error in the ODE solution and hence the concentration levels. This
error level must be accommodated in the differencing scheme in the Gauss-Newton
method.

An active constraint method was selected for solving problem (3.2) because such
a method forces all approximations to the optimal parameters to remain within the
physically realistic region. Also, in many problems a minimum exists within the
constrained region. In these cases, if a starting solution is sufficiently close to the
optimal solution, the constrained Gauss-Newton algorithm presented in Appendix 2
reduces to an unconstrained Gauss-Newton method and the additional costs of a
constrained optimization procedure are avoided. Furthermore, an active constraint
algorithm allows the user to make very minimal assumptions concerning the prior
distribution of the parameters to be estimated.
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5. A CHEMKIN-based program for analyzing gas phase kinetics. Fig. 5.1 gives
the basic outline of the program we have developed. The elements, chemical species,
and elementary reactions that govern the reaction are specified in the MECHANISM
FILE. For each reaction, the corresponding Arrhenius parameters must also be given
by the user if they have not been selected for optimization.

The THERMODYNAMIC FILE contains the information required to compute
the entropy and enthalpy for each species in the mechanism. Our program uses the
thermodynamic data base provided by CHEMKIN. This data base is known to be
adequate for a large class of gas phase reactions. The THERMODYNAMIC FILE
and the MECHANISM FILE are the same format as in other CHEMKIN applications;
for further details see the CHEMKIN user’s guide.

The MECHANISM FILE and THERMODYNAMIC FILE are read by the
CHEMKIN INTERPRETER. The stoichiometric information in these files is
assembled in the LINKING FILE. CHEMKIN routines are used in the FORTRAN
program to read the stoichiometric information in the LINKING FILE into work
arrays in the FORTRAN program.

MECHANISM FILE

THERMODYNAMIC FILE

CHEMKIN
INTERPRETER

LINKING
FILE

LINKING
FILE

EXPERIMENTAL DATA
BASE FILE

PARAMETER FILE

PARAMETER
ESTIMATION PROGRAM

PARAMETERS THAT
SOLVE PROBLEM (3.2)

Parameter Estimation Progratn includes:

CHEMKIN ROUTINES--To read the BINARY FILE which contains the stoichiometry for the
mechanism and to evaluate the rate equations.
Algorithm 2--To perform the constrained optimization.
LSODE--To solve the rate equations.

FIG. 5.1. CHEMKIN-based program ]:or fitting rate constants.

In the PARAMETER FILE the user indicates the reactions involving Arrhenius
parameters to be optimized, and specifies which parameters in a particular reaction
are to be optimized. The user provides initial estimates for these parameters as well
as upper and lower bounds. In the EXPERIMENTAL DATA FILE the user provides
the data base of experiments to be fit. Each experiment consists of a set of initial
conditions (i.e., temperature, pressure, and initial concentrations) and the correspond-
ing species concentrations at some residence time.

We have added a routine to the CHEMKIN SUBROUTINE Library which
computes xl(tl, z). In other words, for the /th set of initial conditions, the routine
computes the species concentrations as a function of time and the parameters specified
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by the user for optimization. The CHEMKIN subroutine, CKRAT, is used in the
subroutine that calculates Xt(tl, z). CKRAT evaluates the rate equations (2.2) and
LSODE is used to solve them. The constrained optimizer, Algorithm 2, repeatedly
calls XI(tl, Z) when the algorithm requires residual function values. The final program
output is a set of parameters that solve problem (3.2) and an evaluation of the model,
with the optimal parameters, for each set of initial conditions.

Note that the reaction mechanism can be changed and an optimization can be
performed to try to fit the new mechanism to the data base. No coding changes are
required. The following section shows examples of several reaction mechanisms in
which certain Arrhenius parameters were determined by our program.

6. Test examples. Example 1 shows the program being used to determine para-
meters in a well-behaved reaction mechanism where precise data is used in the fitting.
This "controlled" example is presented to illustrate the behavior of the numerical
algorithms in the program. Example 2 is more typical of the problems encountered
in practice. Here the program is used to determine parameters in a large reaction
mechanism where noise is present in the data to be fit, and measured values are
available for only several of the species in the mechanism.

Example 1. Hydrogen burn reaction.
In this example the program is used to recover the pre-exponentials in reactions

2, 3, 4, and 5 of the hydrogen burn reaction mechanism shown in Table 6.1. We
generated the experimental data to be fit by evaluating the reaction mechanism at
residence time .05 seconds, the Arrhenius parameters given in Tables 6.1 and 6.2, and
the following nonzero initial conditions: H2 .0002, 02 .02, N2 .97988, P 1 atm,
and T 1000 K (initial species values are in mole fractions). In Table 6.2 we show

TABLE 6.1
MECHANISM FILE for hydrogen burning reaction.

ELEMENTS
HON
END

SPECIES
H2 Oe N2 H O OH HOe H20
END

REACTIONS

5
6
7
8
9
10
11
12
13

H2+O2= 2OH
He+OH H20+H
H+O =OH+O
O+He=OH+H
H+Oe+M=HO2+M
OH+HO H20+O
H+HO2- 2OH
O+HO2 O2+OH
2OH=O+H20

H20/20./t

H2+M=2H+M H20/5/
O2+M=20+M
H+OH+M=HeO+M H20/20.0/
H+HO =H2+O

END

1.71013

1.21013
6.0X 1013
1.0X 1013
1.7X 106
2.23 10 le

1.851011
7.51023
1.3X103

0.0
0.0

-0.907
1.0
0.0
0.0
0.0
0.0
2.O3
0.500
0.500

-2.6
0.0

47,780.0
6,500.0

16,620.0
8,826.0
-870.0

0.0
0.0
0.0

-1,190.0
92,600.0
95,560.0

0.0
0.0

This indicates a third-body enhancement for the reaction (see [15]).
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TABLE 6.2
Trace of the algorithm for the unconstrained problem.

Iteration Objective function Gradient norm (11" II)

2.90 5.60
2 .250 .689
3 .290 3.18
4 .97710-2 .332
5 .279 10-4 .150 10-1

6 .305x10-8 .151x10-3

Initial parameter
approximation Exact parameterst Computed parameters

Zl .20 10 TM .122 10 TM .1220025 10 TM

z2 .10 1011 .180 1011 .1800007 1011
Z .32 10 TM .520 10 TM .5200005 10TM

Z .30 1016 .200 1016 .2000014 1016

Parameters used in reactions 3, 4, 2, and 5, respectively, to generate experimental data.

TABLE 6.3
Fit to data.

Computed values
Species of species IComputed-experimental]

H .343333 10-4 1.5 10-9

0 .199168 10-1 3.0 10-8

N .979880 10-1 3.5 10-7

H .498736 10-7 2.6 10-12

O .177672 10-5 2.9 10-11

OH .889328 10-6 1.9 10-11

HOe .124121 10-5 3.410-11

HzO .164593 10-3 1.9 10-9

The values in this column are the absolute values of the differences between
the values for the given species and the values of the species predicted by the model
using the optimal parameters.

the performance of the algorithm, and in Table 6.3 we compare the fit to the given
data. The objective function we used is given by (3.1) with Wv set to a diagonal matrix
whose nonzero entries are the reciprocals of the concentrations of the species to be fit.

For each iteration the value of A used in (4.6) is 10-3>( z. Algorithm 1 was used
to compute r at the initial parameter approximation, and this value was used throughout
the algorithm. In LSODE, the absolute error tolerance was set to 10-15 and the relative
error tolerance to 10-4 (see [14]).

In Table 6.4, we show the results of an optimization where z3 and z4 are subject
to the constraints, 7,3 .48 10TM and z4 . .25 >( 1016. All other initial conditions and
values of parameters controlling the optimization algorithm are the same as in the
unconstrained problem.

Example 2. Nitrogen chemistry reaction.
The program has been used successfully to fit a realistic nitrogen chemistry

mechanism to an extensive experimental data base. Table 6.5 gives the mechanism for



650 G. D. BYRNE, A. J. DEGREGORIA AND D. E. SALANE

TABLE 6.4
Trace of the algorithm for the constrained problem

Iteration Active constraints Objective function
Gradient norm (11"
(active variables only)

None 2.906543 4.186
2 None .249895 6.89 10-1

3 z4 (lower) .110626 4.51 x 10-1

4 z4 (lower)
.37371 x 10-1 1.46 10-1

z3 (upper)

5
Z4 (lower)

.265896 10-1 1.23 10-2
z3 (upper)

6 z4 (lower)
.26368 10-1 2.17 10-3

z3 (upper)

7 z4 (lower)
.26356 x 10-1 8.89 10-4

z3 (upper)

Final parameters Final gradient

Zl .196939 1018 8.89 10-4

z2 .158350 1011 8.76 10-5

Z .480 1014 --6.53 10-3

Z .250 1016 8.20 10-1

TABLE 6.5
MECHANISM FILE for reduced nitrogen chemistry.

ELEMENTS
HONHE
END

SPECIES
NO NH3 O H20 HE NO2 H OH N2 HO2 NH2 NH HNO O
END

REACTIONS
NH +O NH2 +OH

2 NH +OH NH +H20
3 HNO+M=NO+H+M
4 HNO/OH NO+
5 NH2+NO =NE+H+OH
6 NH2+O =NH+OH
7 NH2 +OH NH+H20
8 NH+O2 =HNO+O
9 H+O2 =OH+O

10 O+HO2-- 02+OH
11 OH+HO H20 +O
12 OH+OH O+H20
13 HO +NO NO +OH
14 O+NO2 =NO+G2
15 H+02+M=HO2+M H20/21./
16 NH3+M=NH2+H+M
17 NH2 +NO N2 +H20

.1500 1013

.3260 1013

.1860 1017

.3600 1014

.6000 1020

.1546 10 TM

6000 1011
.3000 10TM

.2200 1015

.4800 x 1014

.5000 1014

.6300 1013

.3430 1013

.1000 1014

.1500 1016

.4800 1017

.9000 1020

END

0.0
0.0
0.0
0.0

-2.46
0.0
0.68
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-2.46

6,040.0
2,120.0

48,680.0
0.0

1,866.0
1,000.0
1,290.0
3,400.0

16,800.0
1,000.0
1,000.0
1,090.0
-260.0
600.0

-995.0
93,929.0
1,866.0
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a simplified nitrogen chemistry model. Although the reactions and rate constants are
all physically plausible, the mechanism, as a whole, only describes nitrogen chemistry
in a qualitative manner.

Using the mechanism in Table 6.5, we havemanufactured the exact data base
shown in Table 6.6. The data base is comprised of 15 constant pressure, constant
temperature "experiments," which could be performed in a flow tube reactor. In all
experiments, 5 of the 14 species are initially nonzero. After the indicated residence

TABLE 6.6
Example data base 1Jno scatter.

Initial nonzero species concentrations (mole fractions):

NO =0.00025; NH3 =0.0004; 02 =0.04; H20=0.1; He=0.85935.

Pressure 1.1 atm.

Temperature (K) Residence times (s) NO NH3

1,000.0 0.5 0.0002379
1,000.0 1.0 0.0001432
1,000.0 1.5 0.0001181
1,000.0 2.0 0.0001096
1,000.0 2.5 0.0001057
1,200.0 0.5 0.0000533
1,200.0 1.0 0.0000309
1,200.0 1.5 0.0000218
1,200.0 2.0 0.0000168
1,200.0 2.5 0.0000136
1,400.0 0.5 0.0001842
1,400.0 1.0 0.0001837
1,400.0 1.5 0.0001836
1,400.0 2.0 0.0001836
1,400.0 2.5 0.0001836

0.0003903
0.0003139
0.0002937
0.0002868
0.0002837
0.0001360
0.0001009
0.0000851
0.0000751
0.0000680
0.0000012
0.0000000
0.0000000
0.0000000
0.0000000

TABLE 6.7
Example data base 2--with 1.8% scatter.

Initial nonzero species concentrations (mole fractions):

NO 0.00025; NH3 =0.0004; O =0.04; H20=0.1; He=0.85935.

Pressure 1.1 atm.

Temperature (K) Residence time (s) NO NH3

1,000.0 0.5 0.0002378
1,000.0 1.0 0.0001437
1,000.0 1.5 0.0001188
1,000.0 2.0 0.0001095
1,000.0 2.5 0.0001068
1,200.0 0.5 0.0000543
1,200.0 1.0 0.0000312
1,200.0 1.5 0.0000219
1,200.0 2.0 0.0000167
1,200.0 2.5 0.0000137
1,400.0 0.5 0.0001851
1,400.0 1.0 0.0001824
1,400.0 1.5 0.0001821
1,400.0 2.0 0.0001827
1,400.0 2.5 0.0001847

0.0003851
0.0003178
0.0002955
0.0002829
0.0002898
0.0001379
0.0001014
0.0000846
0.0000757
0.0000695
0.0000013
0.0000000
0.0000000
0.0000000
0.0000000
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times, 2 of the 14 species are measured. In Table 6.7 we show the same data base
with 1.8% r.m.s, scatter introduced in the output concentrations using a normally
distributed random number generator.

Table 6.8 summarizes the results of the optimization algorithm when applied to
these data bases. In both cases, three pre-exponentials were significantly perturbed in
the mechanism of Table 6.5, resulting in large initial objective functions. (The objective
function is defined by (3.1), where we choose Wv to be a diagonal matrix, each diagonal
element being the inverse of the corresponding species concentration at time zero.)
In both cases, the algorithm was unconstrained and convergence occurred after a few
iterations.

TABLE 6.8
Summary of unconstrained optimization examples.

Pre-exponential parameters
Data base Iteration Reaction number Objective function

7 11 17

0 .50001011 .7000 10TM .80001020 .50301000
12 .59201011 .591810TM .8876 102 .8229 10-5

2 0 .5000 1011 .7000 10TM .8000 1020 .4956 10
2 5 .5866X 1011 .5851 10TM .87951020 .3859 10-3

0 .5866 x 1011 .5851 xl0TM .8795 x 102 .6411 xl0-5

In fitting the exact data, the three pre-exponentials returned to within 1.5% of
their exact values, while the ratios of one to another returned to within 0.05% of their
exact values. The objective function is insensitive to changes which correspond to
multiplication of the three pre-exponentials by an overall constant, while it is sensitive
to changes in their ratios. The same behavior occurs with the scattered data. We
attempted an example with 5% scatter in the data and found that the algorithm did
not converge with the three parameters; however, it converged with any two of the
three. Since the objective function is so flat in one direction of the three-parameter
space, we lose the minimum when there is only a moderate amount of scatter in the
data. In order to obtain convergence with the three parameters when there is larger
scatter, we must increase the size of the data base.

In Table 6.8, we show the objective function on the exact data using the model
obtained with the scattered data. This objective function is as good as the one obtained
in fitting the exact data. This indicates that noise in the data can be filtered out even
in a case where the objective function is not that well behaved.

7. Concluding remarks. We have presented the outline of a general program for
analyzing gas phase chemical kinetics when a large data base of experiments is available.
The program used a constrained Gauss-Newton procedure that takes advantage of
the structure of the objective function and the fact that the constraints are simple
interval constraints. We have focused in this report on several important detailsmthe
storage efficient implementation and a method of choosing a differencing factor for
computing sensitivities which realizes the underlying error in the numerical solution
of the ODES that govern the reaction mechanism. The flexibility of the chemical
kinetics package, CHEMKIN, is also illustrated.

The program was initially developed to fit parameters in a mechanism where
chemical species concentrations were available for only several of the responses in the
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model. However, the number of experiments in the data base was quite large. When
a large amount of significant data is available, weighted least squares is an appropriate
fitting procedure. In other cases, an effective fitting procedure should take into con-
sideration the fact that errors in different components of each residual fl may be
correlated. A priori knowledge of the parameters should be utilized in determining
rate constants. Parameter fitting procedures such as those presented in Box and Draper
[2], Box et al. [3], and Stewart [22] should be used instead of nonlinear least squares.
We are currently adding these estimators to the program so the user has a choice of
fitting procedures.

Parameter estimators are available for cases where the variance-covariance matrix
is unknown and the errors in the residuals of a given experiment may be correlated
(see, for example, Stewart [22]). These estimators, however, require the minimization
of an objective function which is not least squares. Although there is now excellent
software [6] available for handling such problems, the general optimization problem
is more difficult. When the objective function is given by nonlinear least squares, for
many problems J*vJv is an accurate Hessian approximation; hence, the Gauss-Newton
method for nonlinear least squares is usually quite effective. Furthermore, the Hessian
approximation in the Gauss-Newton method can be augmented with a quasi-Newton
correction (see Dennis et al. [10]) to produce an even better algorithm. It should be
noted that when a nonlinear least squares objective function is used, fitting a large
data base may be practical. This may not be the case if a different objective function
is used. In realistic problems where experimentally measured values are not available
for all the chemical species in the model, it is usually not possible to make use of a
system of stiff ODEs (see the papers by Varah [23] and Yermakova et al. [25]).

Appendix 1.
ALGORITHM 1. Computation of a difference parameter.
Step 1. Choose the set of initial conditions from the experimental data base which

includes the smallest residence time t. Let z be the initial estimate of the
parameters selected for optimization.
Set r 0.

Step2. r=r+l.
For 1= 1,2,... ,L,

A--(Z*el)(.1) r.
mr (A, ArL) *.

For l=l,2,...,L,

X(z+Are)--X(z)

Step 3. If r =< 2 go to step 2.
If for some l, 1 =< =< L,

Ilmr+le- Aretll > [IAret- m-
then set A=(A-, A-, A-)* and stop.

Step 4. Go to step 2.

In Step 1 of the algorithm, the smallest residence time is chosen, because at this
time it is likely that many of the species concentrations will not yet have reached steady
state, and instabilities in the differencing scheme are most likely to occur. Initial values
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from several experiments and different choices of z could be used to determine a
suitable value for r, but we found no significant advantage to this approach. Schemes
such as Algorithm 1 are being used to check the accuracy and reliability of command
and control software [24].

Appendix 2.
ACTIVE CONSTRAINT ALGORITHM. In an active constraint method, lists of those

parameters that are equal to their upper or lower constraints are maintained and
updated at each iteration. We use F to denote the set of indices of those parameters
that are equal to their upper bounds at the kth iteration and F will be the set of
indices of those parameters that have attained their lower bounds.

Let zk be an approximation to the solution of problem (3.3) and assume zk satisfies
the constraints. When a new approximation, z- Ap, is computed, A is chosen so that

(1) ai =< (z Ap)* ei =< b
for i= 1, 2,...,L. If at the kth iteration,

(2a) (z ,p)*e b
then F+1 F t_J {i};
if

(2b) (z,-Xp)*e=a

then F/+I F, t.J {i}.

The following rule is used to determine if constraints should be excluded from
the new active sets. For any index i, if

(3a) F*Jr(z,)ei>O and iF
then F+1 Fk-{i};
if

(3b) F*JF(z,)ei < 0 and F
then F,+I F,-{i}.

The conditions in rule (3) indicate a new value for z*e can be found which decreases
the objective function and satisfies constraints. A similar criterion for dropping con-
straints can be found in Powell [21].

The algorithm can terminate successfully in either of two ways. A local minimum
of the objective function can be found within the constraint set. This situation can
occur if

(4a) IIJ*F(z)II<TOL
and

(4b) ai < z*ei < bi

for 1, 2,..., L. In condition (4a), TOL is a small positive number.
The other possibility is that the local minimum is on the boundary of the constraint

set. In this case some constraints are active and this situation is determined by the
following check. For each i, 1, 2,..., L, determine if one of the following three
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conditions holds:

(5a) F, and F*JF(zk)ei < 0

or

(5b) ir and F*JF(Zk)ei>O

or

(5c) IF*J (z )e,I <TOE.
If for each component of Zk, one of the conditions (5a), (5b), or (5c) is satisfied, then
the vector Zk cannot be perturbed in any way that significantly decreases the objective
function and satisfies constraints. For a derivation of these conditions, see Appendix
3. We now give the Gauss-Newton algorithm which uses this active constraint strategy.

ALGORITHM 2. Constrained Gauss-Newton method.
Step 1. Choose z0 such that

for i= 1, 2,. ,L. Let

and F {i: bi ;z*oei}.

ai <= 7.*0 ei <- bi

Flo { i" ai Z*o ei}

Repeat Steps 2-5, for k =0,... ,MAX where MAX denotes the maximum
number of iterations allowed.

Step 2. Use Algorithm 1 to find a suitable differencing factor /x for computing
required derivatives at step k.

Step 3. Compute J*.F(Zk) and J*F(z) according to (4.4), (4.5), and (4.6).
Step 4. (i) Apply condition (4) to determine if an unconstrained minimum was

located. If (4) is satisfied, stop.
(ii) Apply the check (5) to determine if a constrained minimum was

located. If satisfied, stop.
(iii) Check conditions (3a) and (3b) to determine if any constraints can

be deleted from active sets.
Step 5. Compute the solution p of the system

and set

Z+l z Apk

where A is chosen so that condition (1) is satisfied for i= 1, 2,..., L.
Choose the new active sets F/1 and F/1 according to rule (2).

Appendix 3. In this appendix we show that if Algorithm 2 reaches a point z such
that conditions (5a), (5b), and (5c) of Appendix 2 are satisfied with TOL =0, then
the algorithm has found a constrained local minimum for problem (3.2). Throughout
this section f will denote a twice continuously ditterentiable function with domain in
R and range in R. Further, ,2f will be assumed to be positive definite.

The following theorem concerning the Kuhn-Tucker conditions is given in Powell
[21]. This theorem provides conditions for the solution of the following problem:

(1) min f(z)
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subject to the constraints

(2) v* z>=sifor i=l,2,. ..,L

where viRLandsiR fori=l,2,...,L.
THEOREM 1. Let z satisfy (2). Let only the first n <= L of the constraints be satisfied

as equalities. Then z is a strong local minimum of f if and only if
(3) Vf(z)=y" v,, >o.i=1 i---

To show that z is a constrained local minimum if (5a), (5b), and (5c) of Appendix
2 hold, we assume, without loss of generality, that Algorithm 2 has reached a z such
that

z*ei=ai fori=l,2,...,m,

z*ei=bi fori=m+l,...,n,

ai<z*ei<b fori=n+l,...,L.

Suppose the termination conditions hold. In this case,

(4) Vf(z)*ei->0 for i= l, 2, m,

(5) Vf(z)*ei<-O fori=m+l,...,n,
Vf(z)*ei=O forn+l,...,L.

Let g’i =-ei; note that

(6) Vf(z)=i=l (efVf(z))ei+=m/ (,*Vf(z)).
From equation (6), conditions (4) and (5), and Theorem 1, we see that z is a solution
to the problem

min f(z)

such that

and

z*ei >: ai for 1, 2," , m,

Z* ei < bi for 1, 2, , n.

The conditions (5a), (5b), and (5c) of Appendix 2 guarantee that if the Hessian of
the objective function in problem (3.2) is positive definite at z, then there exists no
local descent direction which satisfies the constraints in problem (3.2). We note that
the termination conditions indicate a constrained local minimum even in certain cases
where V2f(z) is not positive definite (see Powell [21, Thm. 1.5]).
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COMPUTING A FEW EIGENVALUES AND EIGENVECTORS OF A
SYMMETRIC BAND MATRIX*

DAVID S. SCOTTI"

Abstract. This paper presents a new combination of the bisection algorithm and the Rayleigh quotient
iteration for computing a few eigenvalues of a symmetric band matrix. Both global and local convergence
results are proved and numerical examples are presented. The modification of the algorithm needed to
handle generalized eigenvalue problems is described.

Key words, eigenvalues, eigenvectors, symmetric band matrices, Rayleigh quotient iteration

1. Introduction. This paper describes a new algorithm for computing a few
specified eigenvalues and eigenvectors of a symmetric band matrix. The algorithm
was developed for use in conjunction with the symmetric block (or band) Lanczos
algorithm. At each step of the Lanczos algorithm it is necessary to compute a few
eigenvalues (and eigenvectors) of a symmetric band matrix. The eigenvalues are
specified by index and an approximate eigenvector is available which is often accurate,
although it can occasionally be completely wrong.

The new algorithm can compute eigenvalues by index or by location (i.e. all the
eigenvalues between zero and one) and can take advantage of approximate eigenvec-
tors if they are available. The local and global convergence rates of the algorithm are
given. Some numerical tests are described. Finally the changes necessary to make the
algorithm applicable to banded generalized eigenvalue problems are described.

2. The algorithm. The use of the bisection algorithm to compute eigenvalues of
tridiagonal matrices was introduced by Givens [1] in 1954. Bisection uses the Sturm
sequence property to compute the number of eigenvalues of a symmetric matrix A
less than a number o, by computing the triangular factorization of (A-rI). Thus
given any interval known to contain the desired eigenvalue, it is possible to compute
the eigenvalue count at some point in the interval and thereby shrink the size of the
interval known to contain the desired eigenvalue. In the absence of any ancillary
information the best choice for the shift r is the midpoint of the interval, which is
what the bisection algorithm uses. By repeating the process the eigenvalue can be
computed to any desired accuracy up to the roundoff error threshold.

Bisection of tridiagonal matrices is remarkably stable even without pivoting as
shown by Wilkinson [3, p. 302]. A careful implementation of tridiagonal bisection is
given [4, p. 249]. For larger band widths special pivoting is necessary to get a reliable
eigenvalue count. An ALGOL code (BANDET2) implementing this pivoting tech-
nique is described in [4, p. 70]. For some reason a FORTRAN version of this code
has not been incorporated into EISPACK.

Bisection gives a completely reliable way of computing eigenvalues. The eigenvec-
tors can then be obtained by inverse iteration. The main drawbacks with bisection
are that its asymptotic convergence rate is only linear and that there is no convenient
way to take advantage of approximate eigenvectors. Of course it is possible to switch
from bisection to some faster technique once an eigenvalue has been isolated. Wilk-
inson mentions this I-3, p. 306] although he adds the observation that for tightly

* Received by the editors March 30, 1982, and in revised form April 12, 1983.
I Computer Sciences Department, University of Texas at Austin, Austin, Texas 78712.
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clustered eigenvalues the advantage of switching will be slight, since most of the work
will be done in the isolation phase.

The basic idea of the new algorithm is to use a faster technique before the desired
eigenvalue has been isolated. Instead of just bisecting the current containment interval,
it is possible to maintain an approximate eigenvector and use the Rayleigh quotient
of the vector as the shift rather than the midpoint of the interval. A step of inverse
iteration applied to the approximate eigenvector can be performed at the same time
that the latest eigenvalue count is obtained. This is just the Rayleigh quotient iteration
(see [2, p. 69]) except that if the Rayleigh quotient is outside the containment interval,
the approximate eigenvector should be replaced by a random vector and the bisection
shift should be used.

There are two possible reasons why such an algorithm has not been described
before. One is the known existence of stagnation points of the Rayleigh quotient
iteration. The stagnation points are numerically unstable, but it is still impossible to
prove a global convergence result for an algorithm using Rayleigh quotient shifts. A
more practical problem is the fact that the Rayleigh quotient iteration often converges
monotonically. All the computed shifts are then on one side of the eigenvalue and
the containment interval does not become small. This is fatal if interval widths are
used for termination. Furthermore if the desired eigenvalues are specified by index,
then many steps of the algorithm may be taken before it is discovered to be converging
to one of the wrong eigenvalues. This false convergence can significantly degrade the
performance of an algorithm based on Rayleigh quotient shifts.

The surprising fact is that both problems can be cured by the same mechanism.
It would be best to have a way of choosing the shift so that a desired eigenvalue is
always in the smaller subinterval. This is not always possible but it is possible to
choose a shift so that the eigenvalue closest to the Rayleigh quotient is in the smaller
subinterval. What is needed is a bound on the distance from the Rayleigh quotient
to the nearest eigenvalue. Two potentially useful bounds are available. Given a
normalized vector x and its Rayleigh quotient 0, then there is an eigenvalue A of A
which satisfies (see [2, pp. 69, 222])

I-;tl_-<

and

where

II(A-0Z)xll
is the residual norm of x and the gap 3’ is the distance from O to the next closest
eigenvalue of A.

The vector x and its Rayleigh quotient 8 are already available from the algorithm
and the residual norm 8 can be easily computed. Thus the first bound is always
computable. The second bound is an improvement over the first whenever 8 < 3’. In
general the true gap is not known but a computable lower bound on the gap may be
available from the eigenvalue counts obtained from previous factorizations. Provided
that 8 lies in an interval known to contain only one eigenvalue, then a lower bound
on 3" can be computed as the distance from 8 to the nearest endpoint of this interval.
We now define 3" to be this computable lower bound (if it exists). Thus/3, the bound
on the distance from O to the nearest eigenvalue of A, will be just 8 unless 3’ exists
and 8 < , in which case/3 82/3".
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If instead of using 0 directly as the shift, it is perturbed toward (but not past) the
midpoint of the interval by/3, then the interval known to contain the eigenvalue
closest to 0 will be shrunk at least by a factor of two and perhaps much more. If the
eigenvalue closest to 0 is a desired eigenvalue, then convergence may proceed at a
much faster pace than bisection, while if the eigenvalue closest to O is not a desired
eigenvalue, then this fact is discovered immediately and the current approximate
eigenvector can be abandoned. If the Rayleigh quotient lies outside the current
containment interval, then the vector should be replaced by a random vector and the
bisection shift should be used. We call this the BPRQS (Bisection with Perturbed
Rayleigh Quotient Shift) algorithm. A formal description of the algorithm (for finding
one eigenvalue and eigenvector) is as follows"

BPRQS ALGORITHM

Given an interval [K 1, rl] known to contain the desired eigenvalue, a normalized
vector Xl, 01 the Rayleigh quotient of Xl, 1 the residual norm of Xl, and yl the
computable lower bound on the gap between O, and the second closest eigenvalue of
A (if it exists):

For/" 1, 2,. until convergence do 1-4
1. Compute the minimum error bound/3."

If (Yi does not exist or ,i < 6.)
Then/3. 6
Z se

2. Select a shift
Let i (K + (i)/2.
If 0. < ’i or 0. > r
Then (r. t; and set xi to a random vector
Else If 0i < tzi
Then o-; min {ti, 0; +/3;}
Else r; max {, 0;-/3;}

3. Factor (A-;) to get the new eigenvalue count, solve
(A- r;I)yi+l x;, and normalize y;+, to get x;+

4. Update the values:
If the desired eigenvalue is smaller than
Then .+ i and

Else /j+l O’j and

+, =xi+rAxi+,

Update y (if possible) from 0i+1 and the previous
eigenvalue counts.

Termination is based on the width of the containment interval or on the error bound
once the computed gap is larger than the residual norm.

3. Global convergence. The BPRQS algorithm converges globally to a particular
eigenvalue with an asymptotic convergence rate which is at least linear with rate
constant at least SQRT(1/2), as shown by the following theorem.
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THEOREM 1. For all steps of the BPRQS algorithm, the containment interval

after two more steps, that is [K.+2, )+z], will satisfy at least one o:
1. (i+2 i+2 (i i)/2
2. [i+2, (i+2) contains fewer eigenvalues than
Proof. If 0i is not in [xi, (i l, then the first step is a bisection step and the theorem

is true. Without loss of generality we now assume that 0 is in [i, i].
If 0 + Bi > i, then the next step is a bisection step and the theorem is true. So

we may assume that the next shift will be i 0i +
If the desired eigenvalue is in [i, i], then the theorem is true. So we may assume

that i+1 j and i+l j.
If 0i+1 is not in [i+l, (i+1], then the next step will be a bisection step and the

theorem will be true. So we may assume that 0i+l is in [i+1, (i+1].
Assume for now that 0i+1 i+1.
If 0i+l +fli+a i+1, then the next step will be a bisection step and the theorem

is true. So we may assume that gi+ Oj+l ++1.

If the desired eigenvalue is in [i+1, gi+l], then the theorem is true. So we may
assume that i+2 j+l and (j+2

If there is any eigenvalue in [ui, ui+], then the theorem is true. The bound fl is
computed using y only if the interval [0 -8, 0 +] is known to contain only the desired
eigenvalue. In this case [0- fl, 0 + fl also contains only the desired eigenvalue. Since
we have assumed that the desired eigenvalue is not in this interval at both step ] and
step ] + 1, it follows that both fli 8i and fli+x i+1.

The following lemma is needed to prove under the above assumptions that there
is an eigenvalue in the interval [ri, i+2].

LEMMA 2. Let 0 be the Rayleigh quotient of the normalized vecwr x and let be
its residual norm ([[A-OI)x[). Let y=(A-gI)-x for some number
([[(A-gI)-lx[[) is chosen w normalize y, let a be the Rayleigh quotient of y, and let p
be its residual norm. Then if 0 a then

Proofi

and

II(A or)x yT(A OI)x

by the Cauchy-Schwarz inequality,

by hypothesis,

T
X=y (A -crI)x + (o- O)y r

T=y (A-o’I)x +tz(o’-O)yT(A-o’I)y
=yr(A-o’I)x +/x (o’-O)(a-o’)

_->yV(A o’I)x

=II(A

This generalizes Kahan’s monotone residual theorem for the Rayleigh quotient iteration. See [2, p.
75].
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since x is parallel to (A-crI)y,

->[[(A
since the Rayleigh quotient minimizes the residual norm.

This proves the first result. To get the second we apply the Cauchy-Schwarz
inequality to the next to last line above to get

->y T(A -rI)y

By elementary linear algebra there is an eigenvalue in [0j+l, /’+1, Oj+l
/3.+ =8i+1 as shown above, 8j+1-<-6i by the lemma, 0+i by construction, and
0i i. Therefore

[, +] [, 0+1+

[0+, 6+, 0+ +6+]
and hence contains an eigenvalue.

Finally assume 0+ +. The new containment interval will be smaller than
[(i, 0i+1] and by the lemma, 0i+a -ii and 6i (i -(i)/2 by assumption (since the
first shift was less than a bisection shift. Therefore i+2--i+2(i--i)/2 and the
theorem is true.

This completes the proof.

4. Local convergence. The previous section showed that the BPRQS algorithm
converges globally with asymptotic rate of convergence no worse than linear with rate
constant SQRT(). With a careful analysis it is possible to improve the rate constant
to but impossible to prove that the asymptotic convergence rate is better than linear.
The reason for this is that the global convergence result only guarantees convergence
to the eigenvalue by the bisection process; it does not guarantee convergence to the
eigenvector. This convergence failure can happen only if the starting vector x0 is
orthogonal to the desired eigenvector. Furthermore during the algorithm it is very
likely that the current vector would be periodically discarded and a new random vector
generated. To prevent convergence to the desired eigenvector, each of these sub-
sequent vectors would also have to be orthogonal to the desired eigenvector. This
event has probability zero. We now assume that the vectors xi converge to the desired
eigenvector. With this assumption it is possible to prove that the convergence of the
BPRQS algorithm is asymptotically quadratic or cubic.
TzoM 3. Assume that the sequence o[ vectors x generated by the BPRQS

algorithm converges to the desired eigenvector z. Let be the eigenvalue associated with
z. I[ is a simple eigenvalue, then the convergence is asymptotically cubic. Otherwise
the convergence is asymptotically quadra6c.

Proo[. Assume that the projection of the vector xi onto the eigenspace associated
with A is the vector z and assume that

X PZ + 6W

where w and z are unit vectors, w is orthogonal to z, and u SQRT (1-e The
Rayleigh quotient of xi is

2(Oi=X +e wrAw
which is obviously A + O(e z).
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The residual norm of x. is

II(A -(A + O(ez))Z)xjll- ell(a -AI)wl[ + O(e 2).
If A is a multiple eigenvalue, then the next shift try. will be within O(e) of A and the
next vector will be

Yi+l (A -(A +O(e))I)-lxi.
Thus the z component of xi will be amplified by 1/e while the other components will
be amplified by at most 1/y where y is the gap between , and the distinct eigenvalue
closest to A. If e << y, then after normalization

Xj+I Z -Jr" O(e 2).
If A is a simple eigenvalue, then eventually the minimum error bound will be

6/yi and thus the next shift rj will be within O(e 2) of A. The next vector y.+l will
have its z component amplified by O(1/e 2) while the others remain bounded so that
after normalization

Xj+l Z d- 0(8 3)
and the theorem is proved.

5. Numerical results. The implementation of the algorithm used in this section
computes the desired eigenvalues sequentially from left to right. Containment intervals
for all the desired eigenvalues are updated after each factorization. Vectors discarded
in the course of computing one eigenvalue are saved if appropriate for computing
later eigenvalues.

This section gives the results of a few numerical experiments. In every test except
the last, the matrix A was of the form HDH where H= 1-2wwT/wT"w was a
Householder reflection matrix with a random vector w, and D was a diagonal matrix
containing the eigenvalues. This form allows the easy specification of the eigenvalues
without suffering from the special rounding error characteristics of using a diagonal
matrix directly. Of course the resulting matrix is not banded but (A-trI)- can be
computed as H(D-trI)-lH, which keeps the cost of the tests down. The tests were
run on a DEC-20 computer in double precision.

The first example had D =diag (1, 2, 3,..., 50). The smallest eigenvalue was
computed from an initial containment interval [-6, 55] and a random vector. The
behavior of the algorithm is given in Table 1.

As can be seen from Table 1, it takes a while for the shift to get nearer to 1 than
to any other eigenvalue, at which point the cubic rate of convergence of the algorithm
becomes apparent.

It is more efficient in terms of factorizations per eigenvalue to compute several
adjacent eigenvalues since the information gained while locating th_e first eigenvalue
gives a head start on finding the rest. Table 2 shows the number of factorizations
needed to compute the first ten eigenvalues of the same matrix A using the same
initial containment interval.

To test the effects of multiple eigenvalues on the algorithm, the second test matrix
had the same eigenvalues as the first except that five extra eigenvalues were added
to make the eigenvalues 1, 2, 3, 4, and 5 double. The behavior of the algorithm on
computing the smallest eigenvalue of the matrix, starting with the interval [-5, 56]
and a random vector, is shown in Table 3. The quadratic convergence can be seen
easily as well as the additional penalty for terminating due to interval width rather
than due to small residual.
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TABLE 5.1
Behavior of BPRQS algorithm.

Step RO Residual Error bound Shift

27.204 13.50 13.50 25.5000
2 25.715 2.09 2.09 10.2500"
3 10.096 1.87 1.87 8.2220
4 9.232 .837 .837 1.6611"
5 2.825 3.11 3.11 -1.6945
6 4.756 7.00 7.00 -.0417"
7 3.267 4.80 4.80 .7846*
8 3.964 5.78 5.78 1.1978"
9 1.319 1.24 1.24 .9912

10 1.000 .0555 .00505 1.00534
11 1.000 .515e- 4 .434e- 8 .999999972
12 1.000 .962e- 13 .304e- 15 terminate

* indicates a bisection shift and randomization of the eigenvector approximation

TABLE 5.2
Number of factorizations per eigenvalue.

Eigenvalue Number of factorizations

1. 11
2. 8
3. 6
4. 4
5. 7
6. 3
7. 4
8. 5
9. 4

10. 3

TABLE 5.3
Behavior of BPRQS algorithm on multiple eigenvalues.

Step RQ Residual Error bound Shift

1 19.957
2 25.098
3 21.048
4 20.998
5 8.264
6 1.685
7 3.972
8 3.464
9 1.201
10 1.000
11 1.000
12 1.000
13 1.000
14 1.000
15 1.000

14.9 14.9
4.03 4.03
.514 .514
.075 .075

4.73 4.73
1.96 1.96
6.05 6.05
4.68 4.68
1.39 1.39
.498e-2 .498e-2
.227e-4 .227e-4
.511e-9 .511e-9
.334e- 15 .334e- 15
.334e- 15 .334e- 15

termination due to interval width

25.500*
21.067
20.535
7.767*
1.384"

-1.808"
-2.12"
586*
985*

1.005
.999977

1.0000000005107
99999999999999666
1.00000000000000334

* indicates a bisection shift and randomization of the eigenvector approximation
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As before in the simple eigenvalue case, the number of factorizations per eigen-
value was reduced if several eigenvalues were computed at once. The number of
factorizations needed for each of the ten smallest eigenvalues for the second test
matrix are given in Table 4. Each second eigenvalue was already known to the desired
accuracy; the factorization was needed only in computing the corresponding eigenvec-
tor. The total number of factorizations needed to compute the ten eigenvalues was
54. This compares to the 55 factorizations needed to compute all the eigenvalues in
Table 2.

TABLE 5.4
Number of factorizations per eigenvalue.

Eigenvalue Number of factorizations

1.0 14
1.0
2.0 10
2.0
3.0 9
3.0
4.0 7
4.0
5.0 9
5.0

The behavior of the algorithm on close but not multiple eigenvalues is similar.
The third test matrix had eigenvalues -3, 1, 2,. ,50. The code took 60 factoriz-
ations to compute the ten smallest eigenvalues which are bunched closely together
near zero. When asked to compute the ten largest eigenvalues, the code needed 61
factorizations.

The final test matrix used was one of the tridiagonal matrices used to test the
tridiagonal bisection code [4, p. 255]. The off diagonal elements are all ones while
the diagonal is diag(100, 90, 80, , 10, 0, 10, , 100). All. twenty-one eigenvalues
were computed to fifteen figures of accuracy using 93 factorizations starting with
random vectors and the containment interval [-1,101], which is known to contain
all the eigenvalues by the Gerschgorin circle theorem. The bisection algorithm took
345 factorizations to compute the eigenvalues to seven figures of accuracy.

6. Generalized eigenvalue problems. Both the bisection algorithm and the Ray-
leigh quotient iteration can be applied to the generalized eigenvalue problem

(A-M)z =0

provided that both A and M are symmetric and M is positive definite. The only
problem is that given an approximate eigenvector x with x T"Mx 1 and its Rayleigh
quotient 0 x 7"Ax, the residual norm needed by the algorithm is the M-a norm of
(A OM)x. Computing anM-a norm requires the factorization of M. However neither
the time needed to compute this factorization nor the space needed to store it make
a significant increase in the time and space needed for the algorithm in the standard
case. Once the factorization of M is available the algorithm proceeds as described
above. Thus the algorithm is equally applicable to generalized eigenvalue problems.

7. Conclusions. This paper has described and analyzed a new combination of
the Rayleigh quotient iteration and the bisection algorithm and has shown that it is
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an effective way to compute a few eigenvalues and eigenvectors of a symmetric band
matrix or a symmetric definite banded generalized eigenvalue problem.

$. Acknowledgment. The author wishes to thank the referees for their many
helpful comments.
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A SIMPLIFIED MOVING FINITE DIFFERENCE SCHEME:
APPLICATION TO DENSE GAS DISPERSION*

E. J. KANSAt, D. L. MORGAN, JR.f, AND L. K. MORRIS?

Abstract. A simplified moving grid scheme has been developed and applied to a system of six partial
differential equations (PDEs) that describe the dispersion of a cloud of cold, dense gas resulting from a spill
of liquefied natural gas (LNG).

The grid velocity at each point is determined by the physics represented by the governing PDEs. By
a minimization process, a grid velocity is found that transforms the PDEs into a system of ordinary differential
equations (ODEs) in the least-squares sense. At a shock, the grid velocity is automatically the shock velocity
given by the Rankine-Hugoniot relations.

The ill-posed problems associated with moving grids are handled by three regularization schemes. No
constraints are placed upon gradients. In the event of a zero gradient, a special matrix regularization is
applied. Likewise, no constraints were placed on the grid velocity. Problems of grid tangling and/or violation
of minimum point separation were handled by a second regularization scheme. A third regularization is
also used to equally distribute the third-order spatial truncation errors. Results are presented using 21 grid
points. Shock structure is well resolved. A comparable spatial resolution in a fixed-frame calculation of
equally spaced grids would have required in excess of 670 grid points.

Key words, moving grids, grid regularization, adaptive grids, implicit finite scheme, Rankine-Hugoniot
relations, moving frame

1. Introduction. Modeling of two-phase fluid flow is hampered by strong non-
linearities, and by disparate temporal and spatial scales. Explicit numerical techniques
traditionally used for hydrodynamical problems are quite inefficient, especially when
three-dimensional problems are considered. This report discusses a scheme that gives
accurate and reliable results at a reasonable cost.

Because such systems of PDEs may admit solutions with propagating steep wave
fronts, several authors have proposed procedures that follow and resolve such fronts.
Dwyer et al. [5] and White [18] introduced coordinate transformations such that no
large derivatives appear in the transformed space. Hu and Schiesser 11 used a dynamic
mesh-refinement procedure in an Eulerian frame; successively finer meshes are added
to minimize spatial truncation error, and fine meshes are deleted where the solution
is smooth. Davis and Flaherty [4] used a fixed number of grid points and adapted the
grid to equipartition the spatial truncation errors.

The MFE (Moving Finite Element) approach [9], [16], [17] also uses a fixed
number of grid points. However, the MFE approach provides a mathematical
methodology for optimally moving grids. The dependent variables are discretized by
piecewise linear polynomials. The polynomial coefficients and grid positions are
assumed to be unknown functions of time whose solutions are found by minimizing
the least-squares residual. Grid motions are controlled by penalty functions that force
grid points away from regions of closest separation or prevent three or more dependent
variables from lying upon a straight line segment. More refined penalty functions also
prevent points from concentrating about a steep front and force them into other regions
of high curvature. The principal drawback to this approach is that the penalty functions
have many adjustable parameters that must be fine tuned for each problem. However,

* Received by the editors August 4, 1982, and in revised form May 6, 1983. This work was performed
under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory
under contract W-7405-ENG-48.

" Liquefied Gaseous Fuels Program, Lawrence Livermore National Laboratory, Livermore, California
94550.
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unlike some adaptive techniques, the MFE approach can be extended into two or
three dimensions.

The motivation for this paper was to find computationally simpler methods for
choosing grid velocities and controlling grid motion while retaining as much of the
power of MFE approach as possible. The criterion for choosing grid velocities is based
upon an intuitive approach, rather than on an equidistribution scheme.

This paper presents a moving-grid method for a finite difference scheme in R
involving six hyperbolic PDEs with nonlinear source terms. These PDEs arise from
the Zeman [19] and SLAB [6] models which treat the time-dependent dispersion of
a cloud of heavy gas.

This paper discusses the following topics: the criteria for the selection of grid
velocities including regularization, the time integration scheme, and numerical results
for a case in which the cloud is a time-dependent mixture of LNG vapor and air.

2. Criterion for selecting moving grid velocities. First-order parabolic conserva-
tion laws are used to model many unsteady systems whose behavior is determined by
both time and position. Because of the nonlinear nature of the PDEs, such effects as
convection and chemical reactions may cause steep fronts to evolve. The standard
numerical approach has been to spread out such fronts and to use unrealistically large
amounts of dissipation.

Following Bird et al. [2], the conservation laws in the laboratory frame may be
written as

(1)

where

(2)

()

(4)

+V.F=S

=[p, pu, e,{pi}]* (i=I, NS-1),

F= [pu, (puu+p/+ ’), (u(p+ e)+q+ ’: u), {(piu+ji)}]*,

S [0, pg, pg. u + Oc, {/i}]*,
where p is the total density, u is the convective velocity, e is the total energy density,
pi is the density of the ith species, - is the Newton stress tensor, I is the identity
tensor, q and ji are the flux vectors corresponding to Fourier’s and Fick’s laws,
respectively, p is the pressure determined from the ideal gas law, g is the gravitational
vector; 0c is the heat due to chemical reactions, /i is the rate of the ith chemical
reaction, NS is the number of chemical species, and ]* denote transpose of a vector.

The basic idea for grid velocity selection in this paper is that, rather than solving
the PDEs (1) in the fixed laboratory frame, we solve the PDEs in a moving frame,
v, in which the solutions may be easier to obtain. In this frame v, the conservation
equations become

()
ot

and

+V’ F-v. V’= S

dr
(6) --=v

dt

where r’ is the position vector, and the moving frame (denoted by primed variables)
is related to the fixed frame by means of the transformation tensor, F. It should be
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noted that (5) is not completely general because the Coriolis terms arising from local
grid rotations are missing. In our one-dimensional application there is no grid rotation.
(See Bird et al. [2] for the rules of transforming vectors and tensors.) For notational
simplicity, the primes are dropped, and it is understood (unless otherwise stated) that
we are in the moving coordinate system.

If we could choose the grid velocity so that

(7) v. V=V. F,

then in the moving frame v, (5) and (6) would become

(8) d-s
dt

and

dr
(9) --=v.

dt

At a shock, (7) is a restatement of the Rankine-Hugoniot jump conditions, and v is
the shock speed; see [3]. Similarly, jump conditions can be obtained for flames (see
Lewis and Von Elbe [13]). Defining a burning velocity and expansion ratio particular
to the chemical composition of the flame, a flame will appear steady in the Galilean
frame moving at the flame speed. Analogous jump conditions exist for the mass,
momentum and energy fluxes. Consequently, we choose v so (7) is satisfied in the
least-squares sense. Thus, we minimize

NEQ

(0) E (v-v,)
i=1

where

(V" Fi)V(I)i
(11) vi--

and NEQ is the number of PDEs in the system. We shall introduce a regularization
when [Vbi[ becomes too small.

In summary, the grid velocity is chosen so that a system of PDEs transforms into
ODEs in some least-squares sense. At a shock, however, this velocity automatically
is the shock velocity given by the Rankine-Hugoniot jump conditions. Like the MFE
scheme of Miller [16], [17], the scheme presented here is readily extended into higher
dimensions.

3. The finite difference scheme and determination of grid velocity. This section
is presented in two parts. The first outlines the numerical time-integration scheme
used to determine the dependent variables. The second part examines the difficulties
associated with determining the grid velocities as an ill-posed problem. Rather than
using the Tikhonov-type regularization, as in Miller [16], [17], we use a regularization
based on the LU decomposition.

The problem to be solved in one spatial dimension can be stated as follows:

cgcb(i) 0F(i) vega(i)
(12) S(i) 0, (i=1,..., NEQ),

Ot Ox Ox

(13)
dx
dt
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where
NEQ

(14) (/.) /.)i)2 minimum
i=1

and

F(i)/x
(15) vi

O(i)/x

and we will use regularization if la/Oxl becomes too small. It is convenient to adopt
the notation

(16) p( i) ( i, t", xT)

where refers to the ith dependent variable, n refers to the nth time step, and j refers
to the jth spatial node at time, n.

For convenience, we write

c3F(i) vrg(i)
(17) G, G(dp,, x) S(i).

Ox x
Then

(18) rg(i---) + (i 0
Ot

and

(19)
dx
dt

The time marching scheme used here is a two-level implicit scheme which is correct
to second order for the dependent variables:

(20) dP ’/+ dP ’ + A OG’+ + (1- O G"/} ( 2 0 -1) (A2

) { OX

and

(21)

(22)
x7+1 x7 + At{ Ov’+1 +(1 O)v’/),
1/2--<_0--<1.

The last term in brackets in (20) is the second-order temporal correction to the
trapezoidal rule; it behaves like a dissipative term (see [7]). This term is similar to the
dissipation terms deduced by Majda and Osher [15].

The dissipation term used in (20) is given a floor value equal to typical molecular
values in gases of the same viscosity, thermal conductivity and species diffusion.
Likewise, a ceiling on the numerical diffusion is controlled by the time step, At, and
the parameter 0. The code was run with 0 =0.51. The PDEs solved are the one-
dimensional, SLAB-averaged, Navier-Stokes equations presented in Appendix A.

Since the spatial points {x’+i} move at different velocities, fixed spacing difference
schemes are not appropriate. The first and second spatial partial derivatives were
obtained from a second-order accurate, three-point collocation polynomial. The deriva-
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tives in the interior regions at the point xj are written as

(23)
odp (Xj-- Xj_l)(fj+l--fj) + (Xj+ xj)(fI)j-(I)j_l)
0x x, (Xj+l- xj-1)(Xj+l- xj) (xj+ Xj_l)(X Xj_l)’

0:(I) 2((I)j+ (I)j)
(24) Ox:

xj (Xj+l- xj-1)(Xj+l xj) (xj+ Xj_l)(X Xj_l)

Substituting (23)-(24) into (20)-(21) yields a block tridiagonal system of nonlinear
finite difference equations. The equations were linearized about the current iterate
using the Powell’s modification of the Newton-Raphson scheme; see [12]. Typically
at most two iterations were required, during the highly transitory early phases. Davis
and Flaherty [4] also used a similar time-integration technique.

The grid velocity and dependent variables could be solved simultaneously or
sequentially. For this particular application of the SLAB PDEs, analysis of the Jacobian
matrix showed the coupling of the dependent variables and spatial positions at the
advanced time step to be weak. Because of this weak coupling, it is possible to solve
for the advanced time-dependent variables and spatial position sequentially rather
than simultaneously as in the generalized MFE method of Miller [16], [17]. Davis and
Flaherty [4] also use the sequential approach. The sequential solution method offers
computational advantages which will be elaborated later on in this section.

As stated in the previous section, the principle by which a common grid velocity
is selected is such that a moving frame is sought in which the PDEs behave in some
average sense as ODEs. The common grid velocity v is selected by requiring

NEQ

(25) Y (v vi) 2 minimum
i=1

where

3F(i)/Ox
(26) v =3(i)/Ox
and

dxj_ v.(27) d----
The minimization procedure gives rise to a simple tridiagonal matrix involving
vi, and v+l because of the use of the three-point collocation formulae for spatial
derivatives. Note that the off-diagonal elements are of order At.

The above scheme, (25)-(27), produces a nonsingular tridiagonal matrix as long
as the gradients are nonzero at each point. At straight line segments and maxima or
minima, the matrix is either singular or very ill-conditioned.

By solving for the grid velocities or advanced spatial positions sequentially, the
ill-posed problems associated with moving grids arise only in the grid-velocity determi-
nation. The ill-posed problems are found whenever gradients are zero or very close
to zero and whenever the zone size goes to zero. Furthermore, it is desirable to force
points to regions of high curvature and to equidistribute the truncation errors.

In order to handle singular or highly ill-conditioned matrices that arise in the
determination of grid velocities, regularization is used in several stages. The first
regularization scheme is used in determining grid velocities. A special routine for
tridiagonal matrices was developed that employs Gaussian elimination with row pivot-
ing. If after pivoting the jth diagonal matrix element is zero or almost zero, the
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Gaussian elimination is temporarily halted. The matrix is modified so that vj becomes
the weighted average of vj-1 and vi/l, and the elimination is continued. The code
permits an analogous modification for any number of consecutive rows of the matrix,
but this feature was not needed in the routine.

Further regularization is needed whenever points come within a specified distance
of one another. If the spatial separation becomes zero, the system of equations becomes
ill posed. Likewise, points are forbidden to cross.

In an earlier version we used penalty functions to prevent the spatial separation
from going to zero. A repulsive force penalty function was added to (20)-(22) to
decrease the grid velocity as grid separation decreased near the developing shock. This
has several drawbacks. On one hand, the minimization procedure forces the grid
velocity to become the shock velocity in the vicinity of the shock. But on the other
hand, the retarding force tends to decrease the grid velocity. In reality, slowing or
stopping the grid motion makes the solution near the shock behave much like an
Eulerian PDE calculation on a fine grid rather than like an ODE calculation. To
preserve stability, the time step had to be progressively decreased to an uneconomically
small level.

In the current version of the code, we use a second regularization which permits
larger time steps. If the minimium grid separation is violated at the end of a time step,
the dependent variables and grid velocities are mapped onto new points that satisfy
the minimum separation criterion. The mapping was done using a cubic spline routine
developed by Forsythe et al. [8]. As evidenced by the shock profiles to be presented,
this mapping procedure appears to introduce minimum smoothing. The advantage of
this procedure is that at a shock, the grid velocity is the shock speed and the Rankine-
Hugoniot relations are satisfied.

The third stage of regularization consists of forcing points to seek regions of high
curvature and preventing points from concentrating only about the shock. The
unmodified minimization procedure attracts grid points to a shock front, leaving the
remainder of the domain poorly resolved. The same mapping, scheme is also applied
to force points back to regions of high curvature and to distribute them more uniformly.

The criterion for redistributing points after unrestricted time advancement is a
modification of the methods of Dwyer et al. [5] and Davis and Flaherty [4]. Denote

as the Euclidian norm of the third derivative,

(28)
xxx(k), k=l,... ,6,

j" ]’rrr
(I2 1/2

=1 6

Following Davis and Flaherty [4], we demand that

(29) (Ax)IU’I ",constant (j 1,2,.. nx 1)

where nx is the number of grid points; following Dwyer et al. [5] it was demanded that

1
--<-Ax < C (C<l)(30) c-

where

(31) mx.j (Xj/l-- Xj) ,
where is a minimum separation distance. If a grid separation comes within the
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minimum separation distance, then it is translated back a distance Atvj. The sum of
the grid intervals is constrained to be the normalized length of unity.

After the new set of grid locations is determined by the above scheme, the six
dependent variables and grid velocities are calculated at these new locations by
interpolation. As an initialization procedure before the next time cycle, this regridding
procedure is performed after the dependent variables and grid velocities are deter-
mined. The grid velocities at the advanced time are determined by (23)-(26) rather
than by the methods of Dwyer et al. [5] or Davis and Flaherty [4]. A modification of
their methods is used only as part of the regularization at the end of a time step.

The numerical procedure for determining the advanced time-dependent variables
and grid velocities attempted to keep the number of adjustable constants to a minimum.
The first constant is 0, which weights the relative contributions of the old and new
time solutions and which controls the amount of stabilizing dissipation added to the
scheme. (0 was chosen to equal 0.51 in this application.)

Likewise, a floor value was placed upon the numerical dissipation added to the
scheme. Typical molecular values for gases were used. Other adjustable parameters
are the number of grid points, the minimum point separation, and the constants used
in forcing points to seek regions of high curvature, requiring three additional adjustable
constants, cf. (24)-(25).

With this regridding procedure, it was found that the time steps were not con-
strained by the grid motion. Rather, the time steps were chosen to keep the maximum
error of the third-order temporal truncation terms below 10-7. Typical iteration errors
for the dependent variables and the grid velocity calculations were of the order of
10-1 to 10-12. While Miller [16], [17] and Gelinas et al. [9] used higher-order time
integration schemes such as an implicit Runge-Kutta or the GEAR package, this paper
uses a second-order block implicit stiff integration scheme; see [12]. The advantage
of this lower-order scheme is that the Jacobian has a block tridiagonal structure which
saves storage and can be treated by fast existing packages. Although smaller time steps
are needed with the stiff block implicit scheme, as compared to higher-order implicit
schemes, the code developed here ran with time steps 23 to 52 times greater than the
explicit CFL condition, even with the steep profile at the leading edge. We believe
that a lower-order block implicit scheme becomes more advantageous in higher
dimensions where memory limitations are important.

4. Presentation of the results. A system of nonlinear hyperbolic equations can
develop a steepening front. In the absence of physical dissipation, this shock front is
infinitesimally thin, resulting in a true mathematical discontinuity. The SLAB PDEs
presented in Appendix A were solved.

Because the turbulent dissipation in the SLAB model has been accounted for by
the entrainment mechanism, molecular dissipation was added. Assuming that the
Schmidt and Prandtl numbers were unity, the diffusion coefficient was taken to be
2.2 10-5 m2/sec.

The results presented are a simulation of a 40-m3 spill of LNG at a spill rate of
0.13 kg/sec. The ambient wind speed was 5.7 m/sec. The primary purpose of this
computer simulation was to test the numerics of the simplified adaptive gridding
scheme. A detailed discussion of the physics will appear in a future paper.

The domain of existence of the SLAB PDEs is restricted to lie within the boundaries
of the dense vapor cloud. However, the cloud grows in time with the injection of
further mass, and it spreads out because of the gravity interaction and wind convection.
The computational domain was restricted to lie within the vapor cloud by means of a
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coordinate transformation that moves with the cloud boundaries (see Appendix B).
The results presented here were calculated in a transformed system, in which both
internal points and cloud boundaries moved in time.

The code was tested first using SLAB equations for a problem whose analytical
solution was known. If air is injected into air at the same temperature and density,
then the width, density, temperature and lateral momentum of the front should be
constant. After 10 seconds of simulation time the model results were within 3% of
the analytic answers.

Figures 1 and 2 depict the grid and the downwind particle velocities versus the
entire downwind distance at 5 and 60 seconds respectively. Figures 3 and 4 depict the
five points nearest the right-hand boundary for the grid and downwind particle velocities
at 5 and 60 seconds.

These figures show that the grid velocities are considerably larger than the
downwind particle velocity. Only near the left-hand boundary is the grid velocity
Lagrangian in any sense. The maximum grid velocity occurs near the formation of the
steep front.

At 0, all the dependent variables were centered symmetrically about x 0 m.
In 5 seconds, the maxima or minima of the variables had shifted to about 4.4 m
downwind with the source turned on. The inflection in v at 4.4 m corresponds to the
shift in the nearly coincident extrema. However, by 60 seconds, the extrema for the
dependent variables were no longer coincident. Consequently, the inflection was

considerably spread out and reduced.
Figures 3 and 4 show the combined effect from physical and second-order temporal

diffusion; see (23). The sharp front has broadened from 10 cm out of 83 m at 5 seconds
to 64 cm out of 397 m at 60 seconds. The steep front is broadening at an average rate
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FIG. 3. Detailed advection and grid velocities versus distance at 5.0 sec.
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of 0.98 cm/sec. Considering the length scales involved, both the width and the rate
of broadening of this front are negligible.

Figures 5 and 6 depict the SLAB-averaged natural gas concentrations versus
downstream distance at 5 and 60 seconds. Figures 7 and 8 depict the SLAB-averaged
height of the cloud versus downstream distance. Both the grid velocity and regridding
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phases of the calculation placed equal weights on the concentration of the various
dependent variables. Early into the spill, the extrema over the spill site, x =-27 m to
x 27 m, are well resolved. However, at 60 seconds into the spill, although the height
over the spill point is well resolved, the maximum in gas concentration needs more
resolution. Air entrainment is continuously diluting the LNG vapor cloud. This resol-
ution problem may indicate that more points are needed or that in a detailed kinetic
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scheme the best resolution will occur if each dependent variable carries its own grid.
Note that the plotting routine connects points linearly.

Figures 9 and 10 depict the five points nearest the right-hand boundary. Because
a very small amount of physical diffusion and second-order temporal diffusion were
incorporated to avoid true mathematical discontinuities, a parabolic set of PDEs require
boundary conditions at both the left- and right-hand boundary. From the compatibility
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equations, and using the method of characteristics (see Hedstrom 10]), five compatibil-
ity relations were derived. The sixth relation was obtained by specifying the concentra-
tion to be zero at the right-hand boundary. Because of a small amount of ground
friction and ground heating velocity through the source terms, a steepening front
develops at the right-hand boundary. In a previous paper using PDECOL [17], in a
fixed frame, it was necessary to use, on the average, a diffusion about 100,000 larger
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than used in this calculation in order to avoid destabilizing numerical oscillations.
However when the grids are permitted to move, the principal mechanism of diluting
the natural gas vapor cloud is air entrainment which is approximately 10,000 times
larger than the diffusive processes in the moving finite difference (MFD) scheme.
Typical values of first and second derivatives were 3,500 and 300,000 respectively.
From 5 to 60 seconds the steep front has broadened at a mean rate of 0.98 cm/sec
due to the small amount of physical and numerical diffusion in the MFD scheme.

5. Concluding remarks. The MFE scheme of Miller [16], [17] and Gelinas et al.
[9] have shown that very accurate solutions to difficult physical problems can be
achieved. This work has found some simplifications to the MFE approach and has
perhaps made it easier to implement.

The basic concept for determining grid velocities is that a moving frame is sought
which, in the least-squares sense, transforms a system of PDEs into ODEs. At a shock,
this frame is defined to move at the shock velocity which is determined by the
Rankine-Hugoniot conditions. Somewhat analogous jump relations can be used at
flame fronts (see Lewis and yon Elbe [13]).

As with the MFE scheme of Miller [16], [17] and Gelinas [9], regularization is
necessary for the problem of vanishing small gradients, grid points that come within
the minimum separation distance, and for preventing grid points from accumulating
at a shock. However, rather than using penalty functions that modified the grid velocity,
alternative methods of regularization were used.

Optimally, grids at a shock should move at the shock speed. A penalty function
that retards the grid motion to prevent points from coming within some minimum
separation distance forces the dependent-variable time-marching scheme to behave
more like an Eulerian calculation on a fine grid. To prevent the uncontrolled growth
of numerical instabilities, the time step must be severely cut.

Alternative methods of regularization were used, abandoning the penalty function
approach. First, if a vanishingly small gradient is encountered at the position xj, the
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Gaussian elimination procedure is stopped. The grid velocity vj is taken to be a weighted
average of its neighbors, the matrix equation is modified and the Gaussian elimination
process is permitted to continue.

Second, violations of the minimum grid separation criterion are handled in a
remapping procedure before the next time step loop. Because the shock spread by
only 2 parts per hundred thousand, in 60 seconds of simulation time, it was concluded
that mapping had a small impact in dissipating the shock.

Third, remapping was also used to prevent points from accumulating near a shock
by equipartitioning the third spatial derivative. In addition, for the application under
consideration, the dependent variable and the grid velocities need not be solved
simultaneously, but sequentially. Finally, the regridding procedure uses a minimal
number of adjustable constants. No fine tuning is used.

Using the grid selection criterion (10)-(11), shocks are adequately resolved within
a preselected minimum point separation. At the shock, grid points move at the shock
velocity. However, if the grid velocities are set to zero, instabilities quickly developed
if the time steps are not reduced and more numerical dissipation is not added.

The above mentioned observation at the shock front is not thoroughly understood.
It is speculated that because the PDEs are in a frame moving at the shock velocity
the PDEs behave as quasi-stationary ODEs with source terms that are solved to
sufficient accuracy even by the second-order time-marching scheme.

Extensions into higher dimensions are feasible. However, it is highly recommended
that one should have an additional degree of freedom by allowing the number of grid
points to vary. In two or three dimensions, Berger’s [1] adaptive mesh refinement
scheme, which permits successively finer grids to overlay coarser grids in both translated
and rotational degrees of freedom, can be merged with moving grid methods.

The authors concur with Miller [16], [17] and Gelinas et al. [9] that the extra
degree of freedom of grid motion and resolution of physical processes to their proper
length scales is definitely a very economical method for producing results determined
by the physics rather than by numerics.

Appendix A. The SLAB model. The SLAB model treats the dispersion of a
well-defined cloud of LNG vapor of height h and half-width B. Inside the cloud, the
properties are assumed to be uniform in the crosswind plane, so that they vary only
with time and in the downwind direction. This assumption allows the cloud to be
described in terms of SLAB or layer-averaged properties, such as

(A1) (x) =-- dy dz p(x, y, z)

for the cloud density. The variable x refers to the downwind distance, y refers to the
horizontal crosswind distance, and z refers to the height above the ground. The
assumption of uniformity justifies the use of the approximation that the average of
the product is equal to the product of the averages (i.e., pU-. U) in deriving the
conservation equations. Cloud dispersion is assumed to occur because of the entrain-
ment of air at the top and sides of the cloud and due to gravity spread, which is treated
using the hydrostatic approximation. At the cloud/ground interface, heat and momen-
tum exchange are also allowed to occur. The PDEs are properly defined for nonzero
h and B.

The above assumptions and approximations are used to derive the layer-averaged
conservation equations for mass, LNG vapor, momentum, and energy. These equations,
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along with a rate equation for the cloud half-width, are:

(A2) +--= S,
Ot Ox

where

(A3) [m, BB, ml, e, PX, PY]*,
(A4) F=[PX,{BB. PX/m},{PX. ml/m},{e. PX/m},{pX2/m+P},{PX PY/m}]*,
and

(A5) S--[Sm, SBB Sml Se, Spx Spy]
where

(A6) S,, S + S,

(A7) Ss pswsBs,

(A8) So p[ Veh + weBB/ m],

(A9) Sm (-B) Sm + 2 PY+ m Ve,

(A10) Sm Ss

(All) Se Cpar Sa -[- CpsTs Ss + Oj + (B--B- Bs),
(A12)

Spx= U" S’+ U" Ss-L" ( BB-Bs)m
BB

+ g. h. (p-p) sin a,
m

(A13)

/BB \
Spy Va" S+

1
+2 g h2 (p Pa)

where

(A14)

(A15) h
2

(BB. p)’

and

1 2BBP=-gh (P

where a the angle due to elevation change in the downwind distance,

(A16) (_) {l +(Cps/Cpa-1) ml/m}
Y ={I+(M/Ms-1) ml/m}’
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ml
(A17) e Cp m T; Cp Cpa + Cps Cpa "--.

m

The above equations, together with the ideal gas approximation for the equation of
state and specific heat form the SLAB model. The main cloud variables are: the total
mass (per unit length) m, and the product of mass and half-width BB, the thermal
energy (per unit length) e, mass of species ml (per unit length), momentum (per unit
length) in the direction of the wind PX, and the mean crosswind cloud momentum
(per unit length) PY. The bar over a quantity to designate a layer average has been
dropped, since it is understood that all quantities are averaged in this manner. Other
parameters are the acceleration due to gravity g, the vertical NG source velocity Ws,
the source half-width Bs, the specific heat Cpi, the molecular weight Mi (i= a or s),
the vertical and horizontal entrainment rates We, and Ve, and the surface momentum
and heat fluxes f, and OJ. Downwind, crosswind, and vertical velocities are denoted
by subscripted u’s. v’s, and w’s, respectively. The subscripts s and a designate an NG
source-related property, or an ambient air property, respectively.

The entrainment rate equations have been modified from those proposed by
Zeman [19]. For the present, the entrainment rates are taken to be constants whose
values are chosen to be average values of those calculated.

Appendix B. Limitation of the PDE domain. In a previous paper [6], the six
coupled, nonlinear, hyperbolic PDEs of the SLAB model were solved using PDECOL
[17] computer software package. PDECOL used finite element collocation methods
based on piecewise continuous polynomials for the spatial discretization, and stiff
implicit time integration techniques. Because the solutions can involve the occurrence
of steep fronts at the cloud edges, it was necessary to smooth out initial conditions
and to add a rather large diffusion term to each PDE. These procedures smoothed
the leading and trailing edges of the cloud, overcoming the numerical instabilities that
often occurred. Although the resultant degree of smoothing was physically reasonable
for the problems treated, it might be excessive for a wide range of problems where a
greater propensity to instabilities might exist. In addition, running times using PDECOL
were thought to be longer than could be achieved by the new method.

Another problem that would probably be present with any packaged integrator,
was that the grid domain had to extend to all relevant portions of the cloud for all
times of interest. Thus, at early times the ends of the grids extend well beyond the
edges of the cloud, with the end portions being pure air. This resulted in unnecessary
calculations at early times, and it was not clear that the true edges of the cloud were
being treated properly, since the PDEs are defined only within the cloud.

Therefore, it was decided to create an integrator specifically designed for the
problem. The only diffusion permitted is the "molecular" diffusion taken to be a
constant, D= 2.2 10-5 m2/sec, adding to each PDE, casting the purely hyperbolic set
of PDEs into a set of parabolic equations that are almost hyperbolic. Among other
features, the new code would be suitable for hyperbolic-like equations, not prone to
instabilities, and constructed to perform integration only within the cloud. It is also
intended as a model of an integrator for PDEs of higher dimensions. If XL(t) and
XR(t) represent the left- and right-hand edges of the LNG cloud, a new coordinate

" can be defined as

(B1) ’=
(x- x,(t))

(XR(t)--XL(t))’



SIMPLIFIED MOVING FINITE DIFFERENCE SCHEME 683

where the domain of dependence of the sytem of PDEs is 0 -< <= 1. For many problems,
XL is fixed during the spill, but XR (t) moves with particle velocity at the edge of the
cloud i.e.,

(B2) dXe_ U(Xe).
dt

Consequently, in the sr coordinate system the PDEs have the following forms

which is a system of six coupled stiff nonlinear PDEs.
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THE USE OF SINGULAR FUNCTIONS FOR THE APPROXIMATE
CONFORMAL MAPPING OF DOUBLY-CONNECTED DOMAINS*

N. PAPAMICHAEL" AND C. A. KOKKINOS?

Abstract. Let f be the function which maps conformally a given doubly-connected domain onto a
circular annulus. We consider the use of two closely related methods for determining approximations to f
of the form

f,(z)= z exp {i=l alum(z)},
where u} is a set of basis functions. The two methods are respectively a variational method, based on an
extremum property of the function

H(z) f’(z)/f(z)- 1/z,

and an orthonormalization method, based on approximating the function H by a finite Fourier series sum.
The main purpose of the paper is to consider the use of the two methods for the mapping of domains

having sharp corners, where corner singularities occur. We show, by means of numerical examples, that
both methods are capable of producing approximations of high accuracy for the mapping of such "difficult"
doubly-connected domains. The essential requirement for this is that the basis set {u} contains singular
functions that reflect the asymptotic behavior of the function H in the neighborhood of each "singular" corner.

Key words, conformal mapping, doubly-connected domains, Bergman kernel

1. Introduction. Let 12 be a finite doubly-connected domain with boundary 012
0fa t_J 0f2 in the complex z-plane, where Ofi, i= 1, 2, are closed Jordan curves. We
assume that OOi, 1, 2, are respectively the inner and outer components of gf, and
that the origin 0 lies in the "hole" of 12, i.e. 0 Int (12a).

Let " be a fixed point in f t_J 012, and let

(1.1) w f(z),

be the function which maps conformally f onto the circular annulus

(1.2) R { W: t" <lwl < r2},

so that Of, 1, 2, correspond respectively to wl r, 1, 2, and

(1.3) /(’) st.
As is well known, this mapping exists uniquely and the ratio of the two radii, i.e. the
number

(1.4) M r2/ rl > 1,

is the so-called conformal modulus of 12. This number determines completely the
conformal equivalence class of the domain 12.

The conformal map defined by (1.1) is of considerable practical interest and has
important applications in, for example, fluid mechanics, electrostatics and stress analy-
sis. Several such applications to specific physical problems are noted in the survey
article by Laura [8]. A more general application, concerns the computer generation
of orthogonal curvilinear coordinate systems for the finite difference solution of partial

* Received by the editors March 19, 1982, and in revised form May 3, 1983.
? Department of Mathematics, Brunel University, Uxbridge, England UB8 3PH.
$ On study leave from the National Technical University of Athens, Greece.
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differential equations. This important application of (1.1) has received much interest
recently; see e.g. the review paper by Thompson et al. [15].

In the present paper we consider the use of two closely related numerical methods
for determining approximations to the mapping function f of the form

(1.5) f,,(z)=z exp { a,uj(z)},
j=l

where {u(z)} is an appropriate set of basis functions. The two methods are respectively
a variational method (VM), based on an extremum property of the function

(1.6) H(z) f’(z)/f(z)- l/z,

and an orthonormalization method (ONM), based on approximating the function H
by a finite Fourier series sum. The VM is described with full theoretical details in
Gaier [4], whilst the ONM emerges easily from the theory contained in [1], [4] and
[11 ]. The two methods resemble respectively the well-known Ritz and Bergman kernel
methods for the mapping of a simply-connected domain onto the unit disc. In fact,
the two numerical techniques of the present paper can be regarded as generalizations,
to the mapping of the doubly-connected domains, of the Ritz and Bergman kernel
procedures studied recently in [12].

The general objectives of the present paper are as follows. To give a summary of
the theoretical results on which the VM and the ONM are based, to describe the two
numerical techniques and to present a number of illustrative numerical examples.
However, our main purpose is to consider the use of the two methods for the mapping
of domains involving sharp corners, where branch point singularities occur. For this
reason, most of the numerical examples considered in this paper concern the mapping
of such difficult domains.

The numerical results given in 5, as well as results of other numerical experiments
not presented in this paper, indicate that both the VM and the ONM are capable of
producing approximations of high accuracy. More precisely, our results show that high
accuracy is achieved when the domain under consideration is 2n-fold symmetric, with
n _>-2, provided that the basis set, used for approximating the function H, contains
singular functions that reflect the asymptotic behavior of H in the neighborhood of a
corner where a singularity occurs. Such a basis can always be constructed, in a manner
similar to that used for constructing the basis for the Ritz and the Bergman kernel
methods in [12], by introducing appropriate singular functions into the set

(1.7) {z }=_, j-l.

2. Preliminary results. We let _(12) be the Hilbert space of all square integrable
functions which are analytic and possess a single-valued indefinite integral in 12, and
denote the inner product of e(12) by (.,.), i.e.

(2.1) (gl, g2)=flcg(z)g2(z dxdy.

We also let

(2.2) A(z) log f(z)-log z,

where f is the function (1.1) mapping fl onto the circular annulus R. Then, the function
A is analytic and single-valued in 12, and its derivative

(2.3) H(z)=A’(z),
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is the function (1.6). Clearly, H(z) # 0, z 1), unless f is itself a circular annulus with
its centre at the origin.

In order to present the results on which the VM is based we let

,{.(1)() {U(Z): U G 2() and (u, H) 1},
(2.4)

Y{()(f) {v(z)" v 2(1))and (v, H) =0},

and, as in Gaier [4, p. 245], we consider the following variational problem.
Problem 2.1. To minimize

(2.5) [lull2 fI lu(z)12 dx dy,

over all u
The following results are proved in [4]:
R2.1. Problem 2.1 has a unique solution Uo.
R2.2. Uo is orthogonal to (0)(1)), i.e. Uo_t_Yt’)(fD.
R2.3. The function H is related to Uo by

(2.6) H(z) Uo(z)/lluoll 2.

It is of interest to note that the above results are all special cases of standard
results of the theory of Hilbert spaces. This follows from the observations that
and y{0)(1)) are respectively a closed convex subset and a closed subspace of w2(1));
see e.g. [14].

In addition to R2.1-R2.3, the following two results, which are proved in [4, p.
250], are needed for the description of both the VM and the ONM.

R2.4. For each function rl ,92(’) which is continuous on 01) 0 .J 02

(2.7) (rt, H) f r/(z) log Izl dz,

where H is defined by (2.2).
R2.5. The modulus M rz/ rl of 1) is related to the function H by

(2.8) log M= {+ f0 l
lg ,z, dz-

az
The result R2.4 is established easily after first expressing the inner product (rt, H)

as

"O(z) A(z) dz.(r/,H) - a

This is done by means of the Green’s formula

g(z)g(z) dz,(2.9) (g,g)
a

which is also needed for determining certain other inner products that occur in both
the VM and the ONM. As is shown in Bergman [1, p. 96], formula (2.9) is valid for
any functions g and g2 which are analytic in 1) and continuous on c1). The result R2.5
is established by integration by parts after first applying (2.8) to the norm IIH]] 2=
(H, H); see [4, pp. 250-251] for further details.

We point out that the assumptions concerning the continuity on 1) of the functions
g, g2 in (2.9) and 7 in (2.7) can be replaced by somewhat weaker requirements. For
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example, it can be shown that both (2.7) and (2.9) are applicable to "singular" functions
of the type considered in 4.

3. The numerical methods. As was previously remarked the VM is due to Gaier
[4, p. 249]. The method emerges by seeking the solution of the finite-dimensional
counterpart of Problem 2.1, and resembles closely the Ritz method for the mapping
of simply-connected domains. For this reason the VM details given below are similar
to those used for the description of the Ritz method in [12].

Let {r/i(z)} be a basis of ,2(") such that ’11 t y{(O)(-), and denote by Y’)(I)); l=
O, 1 the n-dimensional counterparts of :)’{<t)(12), O, 1, i.e.

(3.1) Y{’I)(I) ,, f) Y{(t)(l), /=0, 1,

where

(3.2) span (r/a, "02," ’n).

Then the set yt.,l)(f) is nonempty for any n => 1, and the n-dimensional variational
problem corresponding to Problem 2.1 can be stated as follows.

Problem 3.1. To minimize Ilull over all u y{.l(f).
The following results hold.
R3.1. Problem 3.1 has a unique solution un.
R3.2. The minimal function un is characterized by the property u_t_Y()(f).
R3.3. u, uo almost uniformly in lq. That is, from (2.6),

(3.3) u.(z)/llu.II 2 H(z),

almost uniformly in f. (By almost uniform convergence we mean convergence in every
compact subset of

The results R3.1-R3.2 are of course the finite dimensional counterparts of R2.1-
R2.2. Like R2.1 and R2.2, they are particular cases of standard results from the theory
of Hilbert spaces. R3.3 is a direct consequence of the fact that in 2(f) convergence
in the norm implies almost uniform convergence, and is established after first showing
that

lim u.- u011 0,

Let

(3.4) ’i (H, r/i), ]= 1, 2,. ,
and recall that Yl O. Then, since

Y{)(12) {u e $." (H, u) =0},

the set

(3.5) /lr/i(z) /irtl (z), ] 2, 3, , n,

is a basis of Y{’)(f). Therefore, if we let

(3.6) u,(z)= Y cirri(z),
1=1

the orthogonality property of R3.2 and the condition (H, un)= 1 lead immediately to
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the linear system

{l(’0j, "Oi)--i(j, ’II)}Cj’-0 i=2,3,""" ,n,
/=1

(3.7)

/c 1,
i=l

where the inner products yi, 1, 2,..., n are known by means of (2.7). Thus the
coefficients ci in (3.6) may be determined by solving the n n complex linear system
(3.7). Then, because of R3.3,

(3.8) Hn(z)- u (z)/llu ll
gives the nth VM approximation to the function H(z)= A’(z) and thus, from (2.2),

(3.9) fn(z) z exp H(t) dt

is the nth VM approximation to the mapping function f. Also, from (2.8).,

(3.10) M" exp {(" Izllglz’dz-t[H"ll2)/2r}
is the nth VM approximation to the modulus M of fl. In fact, it can be easily verified
that M, gives an upper bound to M.

In the ONM the approximation to the mapping function f is determined after
first approximating the function H by a finite Fourier series sum. The method emerges
easily from the theory contained in [11, p. 373], [1, p. 102] and [4, p. 249].

Let {r/(z)} be an orthonormal basis of ..92("). Then the function H has the
Fourier series expansion

(3.11) H(z)=
j=l

where the Fourier coefficients/3 (r/, H) are known by means of (2.7). The series
(3.11) certainly converges in the norm of 2() and, as in the case of R3.3, this norm
convergence implies almost uniform convergence in f.

Given a basis {r/(z)} of w2(f), the above results suggest the following procedure
for obtaining a numerical approximation to the mapping function f. The set
is orthonormalized by means of the Gram-Schmidt process to give the orthonormal
set {r/(z)}=,.* The series (3.11) is then truncated after n terms to give the approxi-
mation

(3.12) H,,(z) 2 .irl(z), (tiT, H), j= 1, 2,’", n
=1

to the function H. Finally, with this H,, the equations (3.9) and (3.10) give respectively
the nth ONM approximation to the mapping function f and to the modulus M of l).

We end this section by observing that Problem 2.1, with the function H defined
by (2.3), is a special case of a more general variational problem which is considered
fully in Gaier [4, Chap. V]. More specifically the results R2.1-R2.3, together with the
corresponding finite-dimensional results of this section, hold for any finitely-connected
domain and any function H 2(), such that H(z) 0, z f. An interesting example
of this is the case where fl is simply-connected and H is taken to be the Bergman
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kernel function of l). In this case, the results R2.1-R2.3 constitute the so-called
property of minimum area, and the variational method of the present section reduces
to the Ritz method for the mapping of simply-connected domains. Other choices of
H lead to other interesting results concerning the mapping of multiply-connected
domains; see Gaier [4, Chap. V] for further details.

4. Choice of basis. A serious drawback of both the VM and the ONM is that
severe loss of accuracy may occur during the computation, due to ill-conditioning of
the matrix in 3.7 or to numerical instability of the Gram-Schmidt process. For this
reason, the success of the methods depends strongly on the rate of convergence of the
approximating series, and this in turn depends on the choice of basis functions {r/j(z)}.

An obvious choice of basis is the set

(4.1) {z}_, j # -1.

This set is complete in 2() and provides a computationally convenient basis for
both the VM and the ONM. Unfortunately, the situation regarding the use of (4.1)
is exactly the same as that observed in [10], [12] and [13], in connection with the use
of the set {zj}0 for the mapping of simply-connected domains by means of the Ritz
and the Bergman kernel methods. That is, due to the presence of singularities of the
function H in the complement of f, the convergence of the resulting approximating
series is often extremely slow. Because of this, the use of (4.1) does not always lead
to approximations of acceptable accuracy. In order to overcome this difficulty, we
adopt the procedure first proposed in [10], in connection with the choice of basis for
the Bergman kernel method. This involves the use of an "augmented basis," formed
by introducing into the set (4.1) singular functions that reflect the main singular
behavior of H in compl

In [10], [12] and [13], the augmented basis for the mapping of simply-connected
domains is formed by considering two types of singularities of the mapping function.
These are either poles which lie close to the boundary or branch point singularities
on the boundary itself. For the problems considered in [10], [12] and [13], the dominant
poles of the mapping function can be determined, by using the symmetry principle,
whenever the boundary of the simply-connected domain consists of straight line
segments and circular arcs. Unfortunately, in the case of doubly-connected domains
we do not know of a systematic way for determining the "poles" of f and the
corresponding singularities of the function H, irrespective of the geometry of 01). For
this reason, in the present paper we construct the augmented basis by considering only
the branch point singularities of H.

Branch point singularities are corner singularities. They occur, when due to the
presence of a corner at a point z 0f, the asymptotic expansion of the mapping
function f in the neighborhood of z involves fractional powers of (z- z). The question
regarding the choice of suitable basis functions for dealing with such singularities can
be answered in exactly the same way as in [10], [12], and [13], by using the results of
Lehman [9]. For this reason, we state below the formulae which define the singular
functions, without repeating the details of their derivation.

Let part of the boundary 0f consists of two analytic arcs F1 and F2 which meet
at a point zj and form there a corner of interior angle aTr, where a p/q > 0 is a
fraction reduced to its lowest terms. (By interior angle we mean interior to the domain
f.) Then, the asymptotic expansion of H involves terms which can be written in the form

(4.2) f {(1/Z--1/zy)r-1}/Z2 if ZjO-I,
(4.3) ’rJ(Z)
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where

(4.4) r=k+l/a, k=0,1,2,..., l<-_l<-p.

Thus, if p 1 a branch point singularity occurs at zj. For this reason, the augmented
basis is formed by introducing into the set (4.1) the first few singular functions of the
sequences (4.2) or (4.3), corresponding to the first few fractional values of r.

We note that the singular functions defined by (4.3) are the same as those used
in [10] and [12], for dealing with the branch point singularities of the interior mapping
function for simply-connected domains. Similarly, the singular functions (4.2) are the
same as those used in [13], in connection with the exterior mapping problem for
simply-connected domains. This choice of singular functions ensures that the *70 always
have a single valued integral in f. We also note that a branch point singularity might
occur at the point zj even when p 1. This happens because the asymptotic expansion
of f might involve logarithmic terms; see [9] and [12, 4.2]. However, such logarithmic
singularities are never very serious and, for this reason, we do not consider them in
the present paper. Finally, we note that if z e 012 and the arms F1, F2 of the corner
are straight lines then the range (4.4) for the values of r in (4.3) may be replaced by

(4.5) r I a, 1, 2, 3,.

see [10, 2.2] and [12, 4.2].

5. Computational details and numerical examples. Both the VM and ONM
require the evaluation of inner products of the form (*7, .7) and (*7, H). These are
needed for determining the coefficients of the linear system (3.7) for orthonormalizing
the set {*7(z)} by means of the Gram-Schmidt process, and for evaluating the Fourier
coefficients in (3.12). Using Green’s formula (2.9), the inner products (*7, .7) are
expressed as

*Tr(Z)t.lbs(Z) dz, ]Ct’s(Z

and the integrals in (5.1) are then computed by Gaussian quadrature, in exactly the
same way as in [10], [12] and [13]. Similarly, each inner product (*7, H) is computed
by applying to the integral in (2.7) the Gaussian rule used for the evaluation of (5.1).
When performing the quadrature, care must be taken to deal with integrand singularities
that occur when, due to the presence of a corner at z, the basis set contains singular
functions of the form (4.2) or (4.3). In the examples considered below, the arms of
the corners are always straight line segments, and any integrand singularities are
removed, as explained in [10, 3], by choosing an appropriate parametric representa-
tion for 0f; see also [12, 5] and [13, 3].

In the VM, the complex linear system (3.7) is solved by using the NAG Library
routine FO4ADF, which is based on Crout’s factorization method. In the ONM, the
orthonormalization is performed by means of the procedure used in [10], [12] and
[13], in connection with the Bergman kernel method. This procedure is based on the
standard Gram-Schmidt algorithm.

The approximation M to the modulus M of 1) is computed from (3.10), by
applying to the integral the Gaussian rule used for the evaluation of the inner products
(*7r, .7) and (.7, H).

An estimate of the maximum error in If,,(z)] is given by the quantity E,,, which
is determined as follows. In each example, the fixed point " in (1.3) is taken to be a
convenient point on the outer boundary 01)2. Thus, in each case, the outer radius of
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the annulus is

(5.2) r-Iff[,

and r2/Mn gives an approximation to the inner radius rl. Hence, we may take the
error estimate to be

(5.3) En=max{rnax If(zl,)l-r2/M ,m.ax If(z2,)l-r. },
where {zl.} and {z2.} are two sets of "boundary test points" on c911 and t0"2 respectively.
We expect En to be a reasonable error estimate, because our numerical experiments
indicate strongly that, in general, the approximation Mn is much more accurate than
]f,(z)], z 0fl; see e.g. the numerical results of Example 5.2.

In each example, the ONM results presented correspond to the approximation
fNopt, where n Nopt is the "optimum number" of basis functions which gives maximum
accuracy in the sense explained in [10, 3]. That is, this number is determined by
computing a sequence of approximations {fn(z)}, where at each stage the number n
of basis functions is increased by one. If at the (n + 1)th stage the inequality

(5.4) E,/I < E
is satisfied, then the approximation fn+2(Z) is computed. When for a certain value of
n, due to numerical instability, (5.4) no longer holds then we terminate the process
and take n Nopt. Also, in order to safeguard against slow convergence, we do as in
[13] and after n 19 we begin to compute the ratios

qM Eo+M/Ea4, M 10, 20,. ..
If,.for some M, q4 >0.5 then we terminate the process at n 10+M and write
Nopt 10 + M.

For the presentation of the results we adopt a format similar to that used in [12].
That is, we denote the two methods respectively by VM/MB and ONM/MB or VM!AB
and ONM/AB to indicate whether the "monomial basis" (4.1) or an "augmented
basis" is used. For each example we list the singular functions, the boundary test points
and the order of the Gaussian quadrature, which are used respectively for augmenting
the set (4.1) for determining the error estimate (5.3) and for computing the inner
products. As was previously remarked, if the basis set contains singular functions of
the form (4.2) or (4.3) then the resulting integrand singularities in the inner products
are removed by using special parametric representations for cgfl. These representations
are similar to those used in [10, 3]. For this reason, we do no not list them here.

All computations were carried out on a CDC 7600 computer, using programs
written in Fortran with single precision working. Single length working on the
CDC 7600 is between 13 and 14 significant figures.

Example 5.1. Circle in square, Fig. 5.1.

ll {(x, y): Ixl < 1, lyl < 1} {z: Izl > a, a < 1}.

Basis. This example does not involve corner singularities. For this reason, we do
not need to use an augmented basis.

Because the domain has eightfold symmetry about the origin, the monomial basis
set is taken to be

(5.5) zkJ 2j+1), kj=(-1)+1, j=1,2,3,....
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"C--- x B= ae=X/4

FIG. 5.1

Quadrature. Gauss-Legendre formula with 48 points along each quarter of the
circle and each half side of the square.

Boundary test points. Because of the symmetry, we only consider points on AB
and CD. On AB the points are defined by z ae i,, r 0(Tr/16)Tr/4. On CD the points
are equally spaced, in steps of 0.25, starting from C.

Numerical results.

(i) a=0.2
ONM/MB: Nopt=20, U2o=9.5 10-12, M2o 5.393 525 710616.
VN/MB" E:zo =9.0x 10-12, *

(ii) a=0.4
ONM/MB" Nopt=22, E22 5.2 10-12, M22 2.696 724431 230.
VN/MB’ E22 3.1 x 10-12,

(iii) a=0.8
ONM/MB" Nopt 28, E28 1.8 x 10-1, M28 1.342 990 365 599.
VN/MB" E28 7.0 10-11, *

(* In each case the VM approximation to M agrees with the ONM approximation to the number of
figures quoted.)

The numerical results of this example illustrate the remarkable accuracy that can
be achieved by the VM/MB and the ONM/MB, when the domain under consideration
is highly symmetric and does not involve corner singularities.

Accurate VN/MB approximations for the cases a =0.4 and a =0.8 have also
been obtained by Gaier. His approximations to M are quoted to seven significant
figures in [5], and agree perfectly with the approximations listed above. The approxima-
tion M22, corresponding to the case a 0.4, should also be compared with the value
2.696 727 given in [12]. This value is obtained by a method based on approximating
the conformal map onto the unit disc, of the simply-connected domain bounded by
the arc AB and the straight lines BD, DC and CA; see [12, Example 6.3].

Example 5.2. Square frame, Fig. 5.2.
Let

G {(x, y)" Ixl < a, [y[ < a}.
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FIG. 5.2

Then

fl G1 f3 compl (Ga), with a < 1.

Augmented basis. Let zi, j 1, 2, 3, 4, be respectively the four corners of the inner
square. Then, the singular functions corresponding to the branch point singularities at
the corners zi, j 1, 2, 3, 4, are respectively the functions rt,i(z), j 1, 2, 3, 4, given by
(4.2) with

(5.6) r=k+21/3, k=0,1,..., 1<=1-<_3.

Because of the eightfold symmetry the function H(z) satisfies the property

ei/2H(ei’/2z) H(z).

For this reason, for each value of r, the four functions r/,i(z) can be combined into
the single function

4

(5.7) ’r(Z)"" rl(Z)’" ertr(Z),
i=2

where the arguments 0i, j 2, 3, 4 are chosen so that

(5.8) ei/:z l,( ei/:z) 7r( Z)"

It is important to observe that the constants 0 in (5.7) depend on the branches used
for defining the functions r/i(z). For this reason, great care must be taken when
constructing symmetric singular functions of the form (5.7).

In this example the augmented basis is formed by introducing into the monomial
set (5.5) the four singular functions (5.7) corresponding to the values r= 2/3, 4/3,
5/3, 7/3.

Quadrature. Gauss-Legendre formula with 48 points along each side of the outer
square and each half side of the inner square. In order to perform the integration
accurately, the parametric representation of the inner square is chosen to be that used
in [13, Example 3.2].
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Boundary test points. Five equally spaced points on each of AB and CD.
Numerical results.

ONM/MB" N;pt 30,
ONM/AB" Nopt 24,
VM/AB:

(i) a 0.2
E3o= 1.8 10-2, M3o 4.575 2
J24 1.1 10-8, M24 =4.570 859 677 117.

E24 1.1 10-8, M24 =4.570 859 677 116.
Exact value of M =4.570 859 677 215.

ONM/MB: N;pt 30,
ONM/AB: Nopt 24,
VM/AB:

(ii) a=0.5
/3o 4.3 10-z, M3o 1.856 9 .
JU24 5.0 10-8 M24 1.847 709 011 217.

E24 5.0 10-8 M24 1.847 709 011 216.
Exact value of M 1.847 709 011 236.

ONM/MB: Npt 30,
ONM/AB: Nopt 26,
VM/AB:

(iii) a 0.8
/3o 5.0 10-2, M3o 1.205 2
J26 3.7 10-7, M26 1.201 452 809 479.

E26 4.1 10-7, M26 1.201 452 809 478.
Exact value of M 1.201 452 809 469.

The exact values of M, listed above, were computed by using the exact formulae of
Bowman [2] and [3, p. 104].

VM approximations to M have also been computed by Gaier and his students
[6], who used as basis the set (5.5) augmented with the single singular function

1/{zll/3(Z4 qr 4a4) 1/3}.
For the case a =0.5, their approximation to M is 1.847 776. For the same case, by
using an approximation to the conformal map of the quadrilateral ABDC the method
of [12] gives the value 1.847 719; see [12, Example 6.1].

Example 5.3. Rectangle in circle, Fig. 5.3.
Let

Gab--{(X, y): [xl<a<l,[yl<b<l}.
Then

f {z" Izl < 1} (3 compl (Gat,).

FIG. 5.3
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Augmented basis. When a b, f/has eighffold symmetry about the origin and,
for this reason, the monomial basis is taken to be the set (5.5).

When a b, f/has fourfold symmetriy about 0. Because of this, the function H
satisfies

eiH(eiz)=H(z),

and the monomial basis is taken to be the set

(5.9) z, z=i=(2j+l) j 1 2 3,’."

Let zj, ] 1, 2, 3, 4, be respectively the corners A, B, C and D of the rectangle.
Then, the singular functions corresponding to the branch point singularities at zj,
] 1, 2, 3, 4, are respectively the functions r/rj(Z), ] 1, 2, 3, 4, defined by (4.2) with r
given by (5.6).

When a b, for each value of r, the four functions r/r(z) can be combined into
a single function of the form (5.7)-(5.8). Similarly, because of the fourfold symmetry,
when a b, for each value of r, the four functions r/r(z) can be combined into the
two functions

(5.10) rlr(z)=rlrj(Z)+e ’r/r.+2(z), j= 1,2,

where the arguments 0j, j 1, 2, are chosen so that

(5.11) eilri(eiz

In this example we form the augmented basis, for the cases a b and a b, by
introducing respectively into the monomial sets (5.5) and (5.9) the four functions (5.7)
and the eight functions (5.10) corresponding to the values r= 2/3, 4/3, 5/3, 7/3.

Quadrature. Gauss-Legendre formula with 48 points along each half side of the
rectangle and each quarter of the circle. In order to perform the integration accurately
the parametric representation of the rectangular boundary is chosen to be that used
in [13, Example 3.2].

Boundary test points. Five equally spaced points on each of EB, BF and PQ.
Numerical results.

(i) a=b=0.5
ONM/MB: Npt 30, E3o 5.1 10-2, M3o 1.702 0.
ONM/AB: Nopt=24, E24 7.0 x 10-8, M24 1.691 564 902 59.
VM/AB" E24 7.0 x 10-8,

(ii) a 0.4, b 0.2
ONM/AB: Nopt=18, E18=5.0 10-6, M18 2.849 771 072.
VM/AB: E18 5.0 10-6, *

(iii) a 0.6, b 0.2
ONM/AB: Nopt 26, E26 1.4 10-5, M26 2.133 835 1.
VM/AB: E26 1.2 10-5,

(iv) a 0.8, b 0.2
ONM/AB: Nopt 22, E22 2.3 10-4, M22 1.626 912 4.
VM/AB" E22 2.3 10-4, *

(* In each case the VM/AB approximation to M agrees with the ONM/AB approximation to the
number of figures quoted.)
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v;

FIG. 5.4

Example 5.4. Triangle in triangle, Fig. 5.4.
Let Gh denote an equilateral triangle of height h, oriented so that its centroid is

at the origin and one of its sides is parallel to the real axis.
Then,

G3 compl (Gh) with h < 3.

Augmented basis. Because the domain has sixfold symmetry about the origin, the
monomial basis is taken to be the set

(5.12) z(3i-1) ]= +1 +2, +3,...

Let zj, ] 1, 2, 3 be respectively the corners A, C, E of the inner triangle. Then,
the singular functions corresponding to the branch point singularities at zj; j 1, 2, 3
are respectively the functions r/ri(Z), j 1, 2, 3, given by (4.2) with

r=k+31/5, k=0, 1,2,..., 1-<I_-<5.

Because of the symmetry, for each value of r, the three functions rto(z) can be combined
into the single function

3

(5.13) ,(z) rtrl(z) +
i=2

where the arguments 0i, ] 2, 3, are chosen so that

(5.14) e2ri/3r( e2"n’i/3 Z) r( Z).

In this example the agumented basis is formed by introducing into the set (5.12)
the four functions (5.13) corresponding to the values r= 3/5, 6/5, 8/5, 9/5.

Quadrature. Gauss-Legendre formula with 48 points along each half side of the
inner and outer triangles. In order to perform the quadrature accurately the parametric
representation of the inner triangle is chosen to be that used in [13, Example 3.3].

Boundary test points. Eighteen points distributed along the half sides BC, CD of
the inner triangle and the corresponding half sides of the outer triangle.
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Numerical results.
(i) h 2.25

ONM/MB’ Nopt 30, E3o 1.3 x 10-1, M3o 1.227 0
ONM/AB" Nopt- 18, E18 7.8x 10-5, M18 1.208 168 761.
VM/AB: E8 7.8x 10-5,

(ii) h 1.50
ONM/AB" Nopt 22, E22 6.8 10-7, M22 1.657 038 875.
VM/AB: E22 =6.8 10-7,

(iii) h =0.75
ONM/AB" Nopt= 16, El6-- 7.0 10-6, M6 3.132 784 643.
VM/AB: El6 7.0 10-6, *

(* In each case the VM/AB approximation to M agrees with the ONM/AB approximation to the
number of figures quoted.)

:Example 5.5. Cross in square, Fig. 5.5.

M II P

Let

Then

FIG. 5.5

Gab {(X, y)" [xl < a, ly[ < b} U {(x, y)" Ix[ < b, [y[ < a}

a {(x, y). Ix[ < c, ly[ < c}.

Gc (3 compl (Gab) with a < c and b < c.

Augmented basis. Let zj, j 1, 2,..., 8 be respectively the corners A, C, :E, G,
/, K, M and P of the cross-shaped region Gab. Then the singular functions corresponding
to the branch point singularities at zj, j 1, 2,..., 8 are respectively the functions
Trj(z), j 1, 2,. , 8 defined by (4.2) with r given by (5.6). Because of the symmetry,
for each value of r, the eight singular functions Tri(z) can be combined into the two
functions

3

(5 16) ri(z) r(z)+ Y ei2.,+J,,.,.m+i(Z) j 1,2,
m=l
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where, as in (5.7), the arguments 02,,/j are chosen so that

ei/2rj(ei/-z) r(z), ]= 1, 2.

In this example the augmented basis is formed by introducing into the monomial
set (5.5) the six singular functions (5.16) corresponding to the values r 2/3, 4/3, 5/3.

Quadrature. Gauss-Legendre formula with 48 points along each of the segments
AB, BC, CD,..., OA, of the inner boundary, and each side of the square. In order
to perform the quadrature accurately the parametric representation of the inner
boundary is chosen to be that used in [13, Example 3.5].

Boundary test points. Seventeen points on the inner boundary segment BCDEF
and seventeen points on the side RS of the square.

Numerical results. The upper and lower bounds for the modulus M, listed below,
are due to Jauer [7], and were obtained by using a finite-element method. The
comparison values hT/were computed, as in [12, Example 6.4], by using an approxima-
tion to the conformal map of the pentagonal domain bounded by the straight lines
BR, RS, SD, DC and CB.

ONM/MB:
ONM/AB:
VM/AB:

(i) a 0.5., b 1.2 c 1.5
Nopt=14, E14=9.5x10-2, M14=1.3490
Nopt 21, E:z 3.8 x 10-5, M21 1.331 473 449.

EEl 3.8 X 10-5, *
Comparison value" //= 1.331 463
Bound: 1.331 003 <M < 1.331 944.

ONM/AB:
VM/AB:

(ii) a =0.5, b 1.0, c 1.5
Nopt 27, E27 8.3 x 10-6, Mz7 1.566 289 179.

E27 8.3 x 10-6, *
Comparison value" //= 1.566 274.
Bound: 1.565 602 <M < 1.566 978.

ONM/AB:
VM/AB:

[iii) a 0.2, b 0.7, c 1.2
Nopt=25, E25 3.0x 10-5, M25 1.981 644 1.

E25 2.8 x 10-5, *
Comparison value" //-- 1.981 774.
Bound: 1.979 574 < M < 1.983 722.

ONM/AB:
VM/AB:

(iv) a =0.1, b =0.8, c 1.1
Nopt=23, E23=3.6x10-4, M23=1.7474925.

E23 4.0 10-4, *
Comparison value" hT/= 1.747 677.
Bound: 1.745 050 < M < 1.749 940.

(* In each case the VM/AB approximation to M agrees with the ONM/AB approximation to the
number of figures quoted.)

Example 5.6. Circle in cross, Fig. 5.6.
As in Example 5.5, let Gab denote the cross-shaped region defined by (5.15). Then

G, {z: Izl > c}.

Augmented basis. Let z, j 1, 2, 3, 4, be respectively the corners A, B, C and D
of the outer boundary. Then, the singular functions corresponding to the branch point
singularities at zi, j 1, 2, 3, 4, are respectively the functions r/r(Z), j 1, 2, 3 given by
(4.3) with

r=21/3, /=1,2,3,....
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B A

C D

FIG. 5.6

Because of the symmetry, for each value of r, the four functions r/rj(z) can be combined,
as in Examples 5.2 and 5.3, into a single function r(z) of the form (5.7)-(5.8). The
augmented basis is formed by introducing into the monomial set (5.5) the four functions
r(z) corresponding to the values r 2/3, 4/3, 8/3, 10/3.

Quadrature. Gauss-Legendre formula with 48 points along each side of the outer
boundary and each quarter of the circle.

Boundary test points. Thirteen equally spaced points on the straight lines EF and
FA of the outer boundary, and six points on the circle. The test points on the circle
are defined by ceil; z=O(r/20)Tr/4.

Numerical results.

(i) c 0.8
ONM/MB: Npt=30, E3o=6.1 10-, M3o=2.3560
ONM/AB: Nopt 22, E22 1.5 x 10-5, M22 2.246 094 81.
VM/AB" E2 1.3 10-5,

(ii) c 0.5
ONM/AB: Nopt 24, E24 7.8 x 10-6, M24 3.595 639 19.
VM/AB: E24 8.9 x 10-6,

(iii) c 0.2
ONM/AB: Nopt=24, E24 8.0 10-6 M24 8.989 209 95.
VM/AB: E24 =8.9x 10-6, *

(* In each case the VM/AB approximation agrees with the ONM/AB approximation to the number
of figures quoted.)

6. Discussion. The results of 5, as well as results of other numerical experiments
not presented here, indicate that both the VM and the ONM are capable of computing
approximations of high accuracy. In particular, our results show that the two methods
can produce accurate approximations for the mapping of difficult domains, involving
sharp corners. The essential requirement for this is that the basis set contains functions
that reflect the asymptotic behavior of the function H, in the neighborhood of a corner
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where a singularity occurs. Regarding computational efficiency, our experiments show
that the two methods require approximately the same computational effort for produc-
ing approximations of comparable accuracy.

The above remarks apply only to the mapping of domains with 2n-fold symmetry,
n => 2, of the type considered in 5. For such symmetrical domains the number of basis
functions used in the numerical process can be reduced considerably and, in general,
the two methods are extremely accurate. Unfortunately, in the absence of 2n-fold
symmetry, n => 2, the performance of both the VM and the ONM is rather disappointing.
If the domain involves "singular" corners then the use of functions of the form (4.2)
or (4.3) always leads to some improvement in accuracy. However, if fl is a nonsym-
metrical domain then dealing with corner singularities alone is not sufficient for the
methods to produce accurate approximations. The difficulty in this case might be due
to the presence of poles of the function H in compl (I). Unfortunately, as we remarked
earlier, we do not know of a way for dealing with such singularities.

Acknowledgments. We are grateful to Professor D. Gaier, who first suggested to
us the use of the VM with singular basis functions, for the mapping of doubly-connected
domains containing corners. We are also grateful to him for reading the original draft
of the manuscript. His detailed comments improved the presentation of this paper.
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TECHNIQUES FOR SOLVING BLOCK TRIDIAGONAL SYSTEMS
ON RECONFIGURABLE ARRAY COMPUTERS*
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Abstract. This paper illustrates the concept of multiphase parallel structuring of algorithms on recon-
figurabl computers. Reconfigurable network architectured computers are described and a paradigm for
programming them is defined. The execution behavior of two linear system solving techniques is determined
and compared. This paper does not attempt a traditional analysis of linear system solvers: instead it presents
a study of the scheduling and data flow requirements of a selected pair of algorithms.

Key words, parallel algorithms, reconfigurable computers

1. Introduction. This paper gives illustrations of the concept of multitype, multi-
phase parallel structuring of algorithms. Most previous work on parallel structuring
of numerical algorithms has been concerned with mapping of algorithms to a fixed
parallel architecture which has a single mode of parallel execution and a single fixed
interconnection geometry between the processors. This paper describes reconfigurable
network architectured computer systems which can implement multiple types and
degrees of parallelism and multiple communication geometries. A paradigm for map-
ping parallel computation structures to these architectures is developed. We then
determine and describe the natural computational structure (degree and type of
parallelism and geometry of communication) for odd-even elimination (OEE) and
odd-even reduction (OER) algorithms for the solution of block tridiagonal linear
systems. The computational structures derived are then mapped upon a reconfigurable
network architectured multiprocessor, and the total execution cost in such an environ-
ment is determined. The principal results of the work are:

1. Block odd-even elimination and odd-even reduction algorithms require multi-
type multiphase structuring in order to realize optimal or near optimal total execution
costs.

2. It is possible to obtain an execution speed-up linear in the number of processors
as long as the number of processors is less than the number of blocks.

3. The overhead cost of data movement, synchronization delays and reconfigur-
ation time can be kept to about 10% of the actual computation costs of the natural
geometry of data movement can be realized in the architecture of the host computer.

4. Odd-even elimination becomes the algorithm of choice for parallel architectures
for system sizes exceeding approximately 512 x 512.

There has been historical difficulty in effectively mapping any extensive set of
problems or any complex algorithm to execute efficiently on any given parallel architec-
ture. The factors which lead to inefficient execution include the following:

1. Mapping of complex computations to a single architecture often leads to
significant portions of the computation being based on high operation count algorithms.

2. It is often awkward to map the several types of data movements required by
significant algorithms onto a single interconnection geometry.

* Received by the editors, July 28, 1982, and in final form June 2, 1983. This research was sponsored
in part by the National Science Foundation under grant MCS77-20698 and in part by the Department of
Energy, Office of Basic Energy Sciences under grant DE-ASOS-81ER10987.

" Bell Laboratories, Murray Hill, New Jersey 07974. The research of this author was performed while
he was with the Electrical Engineering Department at the University of Texas at Austin.

t Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712.
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3. Mapping to a fixed number of processors often leads to multiple passes through
the processing elements for some data unless the number of processors available
exceeds the dimensionality of the problem.

4. It is often the case that a computation will pass through several phases, each
of which may need a different parallel structure or different degrees of parallelism for
efficient realization.

Agerwala and Lint [Age81] have analyzed the communication geometries of a
number of significant algorithms. The importance of problem specific interconnection
geometry has been described by Gentlemen [Gen78]. He has demonstrated that for
the specific case of matrix inversion and matrix multiplication data movement time on
the ILLIAC IV mesh-connected communication geometry can easily dominate execu-
tion time. Recent investigations of the interconnection geometries required for the
efficient execution of such significant tasks as solution of Poisson’s equation [Gro79],
[Gro80], [Gan81] (which uses the algorithms described in the current work) have
shown that no single type of network is suitable for these problems.

There are hardware architectures which implement a complete spectrum of compu-
tational geometries. A full cross-bar network between processors and memories
removes all restrictions on algorithm formulation, but will be prohibitively expensive
even for a moderately large number of processing elements. A common memory
architecture with a limited number of paths between memory and processors suffers
performance degradation from memory access interference as the number of processors
seeking access to the memory becomes large. One solution to this dilemma of require-
ments for complex interconnection geometries without excessive cost or performance
degradation is being sought with development of reconfigurable interconnection
networks to link together arrays of processing elements.

2. Reconfigurable network architectured computers. A reconfigurable network
architectured computer is a collection of processor, memory and I/O resources and a
network. The network configures sets of resources to form computer architectures
with specified parallel structure and interconnection geometry. A configuration may
be established at job initiation time and may vary during the course of the execution.
The architectures dynamically created by configuration of the network are resource
partitions which execute independently except at specified points of interaction.

There are a number of university projects either building or proposing to build
reconfigurable architectures [Lip71], [Vic79], [Kar82], [Sie79], [Sny81].

The availability of such architectures opens new dimensions for the formulation
of parallel algorithms. The arrangement of the computations can now be based upon
the structure of the algorithm rather than upon a specific available architecture or
upon an effectively unrealizable architecture. Resource partitions can be tailored to
the computation and the data movement requirements of the algorithm. The computing
power of partitions can be varied to minimize synchronization delays.

The Texas Reconfigurable Array Computer (TRAC) is a representative example
of such an architecture [Sej80], [Pre80], [Kap80]. TRAC is in this paper used as the
target of reconfigurable multiprocessor architecture for the mapping and performance
analysis of parallel versions of block OEE and OER algorithms.

The network for TRAC is a banyan network [Lip73] with each node having a
fanout of 2 and a spread of 3. Figure 2.1 shows a 4 processor-9 memory configuration
of TRAC. Each processor has 8-bit-wide data paths but can execute with precision of
up to 256 bytes. The memories are byte addressable and the address space is virtualized.
Specific computer architectures are constructed by establishing circuits through the
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BASE SET

FIG. 2.1. 4 processor-9 memory configuration of TRAC.

network, connecting processors to memories and processors to processors. The con-
struction proceeds in four steps. (i) Circuits linking processors to memories are
established to generate computers. These circuits, once established, behave exactly as
conventional memory buses. (ii) Processors may be linked by carry-look-ahead paths
to more efficiently execute extended precision arithmetic. (iii) Processors may be
coupled by an instruction broadcast bus to give a single-instruction-multiple-data
stream configuration [Fly66]. (iv) Finally the individual computers constructed in steps
(i)-(iii) may be linked by circuits connecting many processors to a single memory
which can be switched between configurations. These steps are illustrated in Fig. 2.2
(formation of a two-configuration partition) where two physical processors are coupled
to form a pair of logical computers. Each computer does 32-bit arithmetic. The two
computers share a single memory. The heavy solid lines are the circuits connecting
processors to memories. The line is the carry linkage coupling physical processors

DATA AND INSTRUCTION FETCH

INSTRUCTION BROADCAST

CARRY LINKAGE

INACTIVE LINKS

SWITCHABLE MEMORY TREE

;" 2 APEX SET

BASE SET

FIG. 2.2. Formation of a two-configuration partition.
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to form logical processors. The lines are the instruction broadcast buses for each
logical computer. The lines gives the coupling of each logical computer to the
sharable memory. The configuration process for reconfigurable network architectures
is described more fully by Browne and Lipovski [Bro82].

3. A paradigm for organizing multitype multiphase parallel structuring. The
architecture described in the preceding section gives the algorithm designer the power
to define an execution architecture with a type and degree of parallelism and an
interaction geometry appropriate to the architecture of the algorithm under consider-
ation. Problems can be decomposed into phases, and suitable configurations consisting
of interconnected partitions can be constructed for each phase. Each phase consists
of partitions (SISD, single instruction single data, or SIMD, single instruction multiple
data) linked according to the required communication geometry. Problems are thus
formulated as a set of tasks or a sequence of sets of tasks (MIMD/SISD or
MIMD/SIMD mode of operation) rather than as just a sequence of tasks as is the
case for a uniprocessor. Each task set may have a different type and degree of parallelism
and/or a different interconnection geometry. The execution structure of an algorithm
will then consists of a number of partitions interconnected according to the data flow
of the job. Processors within a partition are under lock step control of one instruction
(SIMD mode) stream. Processors for different partitions are under the control of
different instruction (MIMD mode) streams. Algorithm structure will be specified in
terms of phases. Each phase consists of partitions (SISD or SIMD) linked according
to some data flow specifications. Partitions from phase to phase are also linked according
to interphase data flow specifications. This SIMD/MIMD organization of programs
has been independently suggested by Siegel [Sie79].

Two types of data transfer requirements can be observed in the SIMDmMIMD
organization. Data transfers between partitions are needed within a phase and between
phases. A synchronization mechanism is necessary for these transfers. Secondly, data
realignment transfers may be necessary within SIMD partitions.

The TRAC architecture, upon which the algorithm described subsequently will
be mapped, implements two different modes of interpartition data transfers. One is
through the use of switched memory [Pre79]. In this mode a physical memory cell is
switched from partition to partition. This type of sharing of switched memory in a
resource partitioning computer is not the same as common memory in a multiprocessor
such as, for example, C.mmp [Wu172]. A common memory organization shares on an
access by access basis with the possibility of interference of access to the entire memory
module when more than one processor simultaneously endeavors to access the same
memory module. Software level access to shared objects is commonly controlled by
synchronization mechanisms for implementing mutual exclusion. The execution of
these mechanisms consumes memory bandwidth and interferes with the performance
of the sharing resources [Ole78].

Sharing in a reconfigurable network architecture is combined with synchronization
by altering the interconnection network to move a physical memory module from one
task address space to a different task address space. The acquisition and arbitration
circuitry is independent of and parallel to the data path in the switch memory.
Acquisition attempts by one processor for a memory held by another processor
therefore affects only this one processor rather than blocking or interfering with the
operation of the other executing processors.

TRAC also contains a second communication mechanism with characteristics that
are quite different from switched memory. A packet switched network is providedmthis
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mechanism bypasses the tree structure described earlier. This is accomplished by
multiplexing the packet switched network onto the interconnection network. It is
important to note that this multiplexing uses the interconnection network without
interfering with the functions that have been described.

Packet switching uses the interconnection network as a store and forward medium.
Packets are transmitted by a source processor from a data memory to a target processor
which stores them in another data memory. It is possible for packet collisions to occur;
i.e., two or more packets may attempt to travel over a single link at the same
time. This is resolved by sequentializing the movement of these packets over the
appropriate links. Contention of this nature is dependent on the topology of the
network and the nature (source, distinction and intensity) of the packet traffic. Data
transfers are now possible without prior setup; however, the transfer times are no
longer deterministic.

A detailed description of the communication mechanism in TRAC is available in
[Pre79].

4. Block tridiagonal systems. We consider the solution of block tridiagonal linear
systems using OEE and OER. This paper concentrates entirely on mapping these
algorithms to reconfigurable computer architectures. The issues of numerical mathe-
matics such as stability are assumed to be solved and are not considered. It may be
noted, however, that the strong diagonal dominance characteristic of the equations
determined by Poisson’s equation tends to guarantee stability.

Block tridiagonal matrices occur commonly as linear system coefficient matrices
when partial differential equations are discretized [You72], [He177]. The solution of
Poisson’s equation [You72] is an example of a physical problem that yields a block
tridiagonal linear system.

This section describes techniques for the solution of properly conditioned block
tridiagonal linear systems on a reconfigurable array computer. The methods are
resolved into distinct phases, each of which uses a different degree of parallelism and
has a different interconnection geometry. This formulation displays advantages for the
use of reconfigurable array systems with independent partitions assigned to blocks.
These are’.

1. Each partition operates independently, therefore independent pivoting is
possible.

2. The processing power of each partition can be tailored to the size of the block
it is handling so that synchronization waits are minimized.

3. The synchronized nature of the shared data access is well suited to intercom-
munication mechanisms characteristic of reconfigurable computers.

This analysis assumes that it is always possible to set up configurations representative
of the executing phase of a program. The case where insufficient resources are present
to set up a requested configuration has not been studied.

Two types of odd-even solvers are described: odd-even elimination (OEE) and
odd-even reduction (OER). OER is considered to be a compact version of OEE on
uniprocessor architectures. On reconfigurable parallel computers, however, OEE will
be seen to be superior to OER in terms of total execution time; the overall computa-
tional effort remains greater for OEE (but many more operations can be done in
parallel) than for OER, as with uniprocessors [He177].

The organization of the rest of this section is as follows. Section 4.1 provides the
notation used to represent block tridiagonal systems. OEE is synthesized and analyzed
for reconfigurable computers in 4.2. OER is derived from OEE in 4.3; it is
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synthesized and analyzed for reconfigurable computers and its performance is compared
with OEE.

4.1. Notation. The matrix A can be represented as

A (a(]), b(]), c(]))N

where b(i) is a n.in.i matrix and a(1)=0 and c(N) =0.

b(I) c(I)

a(2) b(2) (2)

0(:5) b(3) c(3)

0

a(N-2) b(N-2) c(N-2)

a(N-I) b(N-I) c(N-I)

o(N) b(N)

A- (o(i), b(i), c(i)) N

a(I) O, c(N) 0

FIG. 4.1. Block tridiagonal matrix.

Odd-even methods are regarded as efficient direct methods for the case where
the constituent blocks (submatrices) are small enough to be stored explicitly [He177].

4,2, Odd-even elimination. Consider odd-even elimination as described in Heller
[He177, 4]: pick three consecutive block equations

Ax v, A (a(j), b(j), c(j))N,

a(k- 1)x(k-2) + b(k- 1)x(k- 1)+ c(k- 1)x(k)= v(k- 1)... (k- 1),

a(k)x(k- 1)+ b(k)x(k)+c(k)x(k + 1)= v(k) (k),

a(k + l)x(k)+ b(k + l)x(k + l)+ c(k + l)x(k + 2) v(k + l) (k+l).

If we multiply equation k-1 by

equation k + 1 by

and add, the result is:

-a(k)b-’(k-1),

-c(k)b-l(k+l),

(-a(k)b-(k 1)a(k- 1))x(k- 2)

+ (b-l(k) a(k)b-’(k- 1)c(k- 1)- c(k)b-’(k + 1)a(k + 1))x(k)

/(-c(k)b-l(k + 1)c(k + 1))x(k + 2)

(v(k)- a(k)b-l(k 1) v(k- 1)- c(k)b-l(k / 1)v(k + 1)).

For k 1 or N there are only two equations involved and the modifications should
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be obvious. This operation eliminates the odd unknowns for k even and the even
unknowns for k odd. By collecting the new equations into the block pentadiagonal
system H. 2x v. 2 (with A defined as H. 1), it is seen that row elimination has preserved
the fact that the matrix has only three nonzero block diagonals, but they are further
apart. A similar set of operations is applied combining equations k 2, k and k + 2 in
H.2 to produce the H. 3x v.3 system. This process is repeated until only one block
diagonal remains (or in the case of semidirect methods, until some accuracy criteria
are fulfilled). The initial coefficients matrix H. 1 contains 3N-2 nonzero blocks, while
the final matrix consists of N nonzero blocks along the main diagonal.

Solving the N blocks independently gives the required solution.
Figure 4.2 shows the effect of 5 steps of elimination on a 16 16 block tridiagonal

system.

H1 H 2 H 3

H4 H5

FIG. 4.2. Five elimination steps (from [He177, pp. 39]).

4.2.1. I)ata tlow and implementation. Sections 4.2.1 and 4.2.2 are derived from
an earlier paper [Kap81]. The material is extended to include additional modes of
parallelism and to include packet based data movement in addition to switched memory
based data movement.

In this subsection we will look at the data flow characteristics of odd-even
elimination. The computational aspects such as operation counts are well understood;
the communication geometry is studied herein and is found to be regular and simple.

Computationally, instead of determining the inverse of b(i) explicitly, LU factoriz-
ation [You72] of b(i) is generally used:

solve b(k)[_a(k)_c(k)v_ (k)]=[a(k)c(k)v(k)], 1 <= k <=N,

b(k).2-b(k).l-a(k).l_c(k-1)-c(k).la(k+l), l <=k<-N,

v(k).2v(k).l-a(k).lv_(k-1)-c(k).lv_(k+l), l<-k<=N,

a(k). --a(k).l_a(k-1), 3<-_k<-_N,

c(k).2--c(k).l_c(k+ 1), 1 _-< k<=N-2.

4.2.1.1. Intertask data flow. The sequence of actions that results in the computa-
tion of H. + 1 from H. is referred to as a stage: in this case each stage is shown to
consist of three steps and the steps further consist of substeps.

Consider the input data flow for computing H. 2 and v. 2. In the first step, the
first substep results in the LU factorization of b(k); this is then used in the next
substep for computing _a(k), _c(k) and _v(k). N-way parallelism is displayed in this step.
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In the second step the computation of a(k). + 1 and c(k). + 1 requires a(k). i,
_a(k-1).i and c(k).i, _c(k+l).i respectively; b(k).i+l and v(k).i+l require data
from the (k-1), (k) and (k + 1)th row equations. Binary operations are performed
on the blocksmpairwise access to blocks is sufficient, giving rise to up to (N/2)-way
parallelism.

Figure 4.3a shows the interconnection geometry needed for the second step for
a 16 16 system. The blocks are stored in separately accessible switched memories,
one block row per switched memory. The diagram to the right of the 16 16 tridiagonal
system is the interconnection pattern with circles representing processors and rec-
tangles, switched memories. The edges represent potential links that are activated in
4 separate patterns, as shown further to the right. The new blocks computed at the
end of substep 2 are shown in curly brackets between the patterns of substeps 2 and
3; the remaining new blocks are completed at the end of substep 4.

FIG. 4.3a. Interconnection for Stage 1, Step 2 of 16 x 16 tridiagonal system.

The crucial observation here is that while the data sets are shared across processors,
the sharing is conflict free within a substep. The connection pattern cycles through the
states of a 2-pole, 3-position switch.

H. 2 is a pentadiagonal matrixuthe application of an inverse perfect shuffle [Sto71
partitions this matrix into two tridiagonal matrices, one consisting of the odd-numbered
coefficient blocks and the other of the even-numbered ones (Fig. 4.3b).

FIG. 4.3b. Inverse perfect shuffle to form tridiagonal system.



BLOCK TRIDIAGONAL SYSTEMS ON ARRAY COMPUTERS 709

If the matrix A contains N 2., m blocks, then the data flow geometry for the
next step 2 is represented by a graph that is a proper subset of the graph used in the
earlier step 2 (Fig. 4.4). This inclusion property is seen in every step 2 until the block
diagonal is computed.

5

b5

05 b 9

o7 b 9

(]9

Cll

C]11

Ct3

bz C4

a b4

04 bs e

a b Co

o8 blo clz

ao bz

(]12 b14 c16

o4 b16

FIG. 4.4. Interconnection for stage 2 of Step 2 of OEE of 16 x 16 system.

Thus we use precisely the same data flow template in the generation of every
H. i+ 1 from H. i; three steps with different connection geometries are needed--a
direct connection, a 2-pole 3-position switch based connection, followed by an inverse
perfect shuffle.

Two modes of parallel operation are now possible--the newly instantiated sub-
streams consisting of uncoupled tridiagonal systems can be permitted to proceed
independently; alternately, all substreams can be resynchronized at the end of a stage.
The first mode is more efficient, while the second is easier to control. This is discussed
further, below.

Most of the reconfigurable machines mentioned earlier can implement these and
other communication behaviors quite efficiently. Note that if we were to hard-wire
the interconnection pattern, we would be using a special purpose machine of limited
applicability to other problems (e.g., the shuffle exchange network in high performance
FFT boxes). Instead, reconfigurable computers provide a general framework for
implementing a large class of problems with widely varying communication behavior
[Sej80].

Two implementations of odd-even elimination on TRAC are now sketched briefly.
The first one uses switched memory and the second is based entirely on the use of
packets.
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The processors are scheduled as partitions with width commensurate with the
block size under consideration. The shared datasets are stored in switched memory
modules--each rectangle of Fig. 4.3a is realized as an array of switched memories of
width conforming with the processor width. The time to throw the 2-pole and 3-position
based switch is a critical parameter in the performance of the algorithm. In the current
implementation of TRAC, this hardware operation requires between 1 and 8 micro-
seconds. An assembly language instruction for executing this operation requires almost
50 microseconds because of the overhead associated with invoking the operation.

In the packet based implementation, data sets are shared by having a holding
partition physically transmit its data to a buffer in a receiving partition. When more
than one partition transmits at the same time, the best throughput is obtained if all
packet movements occur without collisions. In general, however, the transmissions are
affected both by the nature of the traffic (in terms of the physical locations of the
sources and targets of data) and by the intensity of the traffic (in terms of number of
simultaneous sources).

4.2.1.2. Intratask data flow. The use of an SISD partition for each block avoids
the problem of alternate row/column addressing. Alternate row and column access is
necessary because the block matrices, a(k) and c(k), are involved alternatively in
premultiplication and postmultiplication. The use of SIMD partitions would introduce
efficiencies in the computational part of the formulation. Data distribution would,
however, become more complex. Packet movement would be necessary to realign data
between pre- and postmultiplication stages. This aspect is not considered any further.

4.2.2. Performance estimation. The mode of operation described in the previous
subsection consists of asynchronously executing processes which synchronize periodi-
cally to transfer data. Operations on different blocks may require different computation
times. There may be, for example, different search times for the choice of pivot rows.
Additionally, in the case where packets are used, a further dimension of nondeterminacy
is introduced. Thus for a performance model to accurately represent this kind of
behavior, it must be based on nondeterministic time parameters.

Two modes of operation based on different synchronization requirements were
described in the previous subsection. The mode with explicit synchronization at the
end of every stage is easier to control" here all streams of control must wait until
the longest stream in the stage is done. The entire elimination, then, is the sum of the
lengths of the longest stream in every stage. Figure 4.5a is an estimation of such a
scenario. The second approach allows streams to proceed independently; synchroniz-
ation is required only at points of data dependency. Here the total execution time is
the length of the longest stream chain; this is usually less than the time in the first
case (Fig. 4.5b).

START

l,

(CI) SYNCHRONIZATION
WAIT AT END OF
EVERY STAGE

START

DIFFERENCE IN ELAPSED TIME

(b) SYNCHRONIZATION WAIT AT
END OF FINAL STAGE

FIG. 4.5. Synchronization waits.
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We will now present a naive analysis of the first mode as a step towards developing
a performance model of reconfigurable computer operation. This analysis will first be
given for the switched memory implementation and then for the packet implementation.

The time for data movement depends upon the precision of the processors and
the precision of the arithmetic. A definite configuration is chosen to illustrate the
magnitude of the communication costs. A 16-bit-wide SISD partition will be assigned
to each block. (A 16-bit-wide SISD partition is equivalent to a conventional computer
with a 16-bit word.) A partition or logical computer will be denoted by Pa, Pb,
Pc, etc. If blocks are of uneven size a wider partition can be assigned to larger
blocks. Arithmetic will be on floating point numbers with 64-bit mantissas and 8-bit
exponents.

Let the system be 16 x 16 blocks and each block be 8 x 8 (total matrix dimension
128 x 128). Each 8 8 block requires about 600 bytes (8 x 8 x (8 byte mantissa + 1
byte exponent)) of storage. A block row consisting of three 8 x 8 nonzero blocks and
an 8 x 1 vector requires about 2000 words of storage.

The following notation is used for representing operation times:
T.fpa" floating point addition,
T. fpm" floating point multiply/divide,
T. xfre: memory to memory transfer time for one word,
T. swi" acquisition and setup time to obtain shared memory,
T.pkt: minimum byte transfer time using packets.
The evaluation of H. 5 from H. 1 proceeds in four stages with each stage evaluating

H. + 1 from H. i. The first step of a stage consists of the LU factorization of b which
is used to calculate _a, _c and _v. The second step consists of three substeps that correspond
to the three positions of the 2-pole 3-position switch. The final step performs the
inverse perfect shuffle to position data for the next stage. From the discussion of the
previous subsection it is evident that the first and last steps display 16-way parallelism
and the second step, 8-way parallelism.

H. 5 is finally solved as 16 uncoupled linear systems to obtain the required solution.
We will use the notation Pi(k, l, m,...) to represent the state where partition Pi

is connected to datasets k, l, m,... and dataset k contains a(k), b(k), c(k) and v(k).
For example, Pa(1) states that partition Pa is executing on data set 1.

The timing for the implementation using switched memories is now presented.

STAGE 1" Compute H.2 from H. 1
Step 1"
Configuration: Pa(1),Pb(2),..., Pp(16)
Setup time--- T. swi
Substep 1.1"
Computation: Pa" b(1)

Pb" b(2)

Pp" b(16)
Compute time 200 T. fpm / 200. T. fpa
Substep 1.2:
Computation: Pa" a(1), c(1), v(1)

Pb" _a (2), _c(2), _v(2)

Pp" a (16), c(16), v(16)
Compute time 1200 T. fpm / 1200 T. fpa

(LU decomposition)
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Step 2:
Substep 2.1:
Configuration: Pa(1), Pc(2, 3), Pe(4, 5),

Po(14, 15)
Setup time- 2 T. swi
Substep 2.2:
Configuration: Pa(1, 2), Pc(3, 4), Pe(5, 6),

Po(15, 16)
Setup time--- 2 T. swi
Computation: Pa b(1).2, a(1).2,

c(1).2, v(1).2
b(3). 2, a(3).2,
c(3).2, v(3).2

Compute time ---’2000 T. fpm + 2000, T. fpa
Substep 2.3:
Configuration: Pa(1,2),Pc(3,4),Pe(5, 6)

Po(15, 16)
Setup time 0 T. swi
Substep 2.4:
Configuration: Pa(2, 3), Pc(4, 5), Pe(6, 7),

Po(16)
Setup time--- 2 T. swi
Computation: Pa b(2). 2, a(2). 2,

c(2).2, v(2).2
b(4). 2, a(4). 2,
c(4). 2, v(4).2

Compute time 2000 T. fpm + 2000 T. fpa
Step 3:
Substep 3.1:
Configuration: Pa(1), Pb(2),

Pe(5), Pf(6),
Pi(9), P](10),
Pro(13), Pn(14),

Setup time--- T. swi
Computation: Transfer source data set contents to local buffer.
Compute time 2000 T. xfer
Substep 3.2:
Configuration: Pa(l), Pb(9),

Pe(3), Pf(11),
Pi(5), Pj(13),
Pro(7), Pn(15),

Setup time--- T. swi
Computation: Copy local buffer contents to target data set.
Compute time 2000 T. xfer

Pc(3), Pd(4),
Pg(7), Ph(8),
Pk(11), P/(12),
Po(15), Pp(16)

Pc(2), Pd( lO),
Pg(4), Ph(12),
Pk(6), P/(14),
Po(8), Pp(16)

The implementation using packets avoids a large fraction of the configuration
setup time; instead, large volumes of data must be moved within steps (specifically in
step 2), between steps and between stages. The following timing calculations are based



BLOCK TRIDIAGONAL SYSTEMS ON ARRAY COMPUTERS 713

on the assumption that the average packet transfer time is 2, T.pkt (T.pkt is the
minimum packet transfer timeuthis is seen when no collisions occur. Actual transfer
times are related to parameters such as the nature of the background traffic, the actual
source, destination traffic pattern in the program and the physical placement of the
source memories and the target processors). The computation times remain precisely
the same as before.

The following are the setup and data transfer times for the packet implementation:

Step 1:
Setup time--, T. swi
Transfer 4000 T. pkt
Step 2:
Setup time- 2 T. swi
Transfer 8000 T. pkt
Step 2.1:
Transfer 4000 T. pkt
Step 2.2:
Transfer 4000 T. pkt
Step 2.3:
Transfer 0 T. pkt
Step 2.4:
Transfer 4000 T. pkt
Step 3:
Setup time--- T. swi
Transfer 8000 T. pkt

The important concern is the ratio of direct computation time to the sum of the
total noncomputation time (this consists of the various T. swi, T. xfer, T. pkt, synchroniz-
ation times, etc.). Let us make a reasonable assumption that the ratio of execution
time for T. xferlT.pktlT.fpalT.fpmlT, swi are 11311010011000 and let T. xfer be one
microsecond. Estimate the setup time for T.fpa, T. fpm and T. xfer to be equal to the
arithmetic execution time.

For the shared memory implementation, the per-stage direct computation time
is 1188 milliseconds (ms) per stage, reconfiguration time is 9 ms and data transfer time
is 8 ms. The total runtime for OEE is then comprised of approximately 5000 ms of
direct computation time and 70 ms of data transfer time. Thus, if synchronization time
is zero, then the overhead associated with mapping the odd-even elimination to a
parallel basis is about 70/5000 or less than 2%. Synchronization delays result solely
from the differences in processing time for each block. For uniform size blocks,
processing time differences between blocks will result from differing efforts for pivot
selection. This should not exceed 1%. Reconfigurable architectures can assign process-
ing partitions with power proportional to block size. (SISD partitions with a factor of
8 variation in power for 64-bit floating point numbers can be constructed on TRAC.)
Thus synchronization delays should not be more than 10% of direct execution time.
Using this as an upper bound, the total overhead cost in this formulation is approxi-
mately 12%.

For the packet implementation, the per-stage compute time remains 1188 ms.
The reconfiguration time is 4 ms and the data transfer time is 100 ms. In this case the
data transfer and synchronization delays amount to approximately 20% of the direct
computation costs. The speedup over a comparable uniprocessor implementation of
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OEE is approximately N/2 for the circuit switching, as well as the packet switching,
implementations.

4.3. Odd-even reduction. OER can now be derived from the groundwork estab-
lished in the previous section. Consider an elimination step in the previous section.
Suppose we collect even-numbered equations into a linear system (A. 2)(x. 2) (w.2),
where

A.2= (-a(2j), b-’(2j- 1), a(2j- 1),

b(2j)- a(2j) b-(2j 1) c(2j- 1)- c(2j) b-(2j + 1) a(2j + 1),

c(2j), b(2j+ 1), c(2j+ 1))N.2,

x.2 x(2j)1.2,

w.2= (v(Zj))-a(Zj), b-’(Zj- 1), v(Zj- 1)-c(2j), b-l(Zj+ 1), v(Zj+ 1)).2

v. 2(2j).2,

N. 2 =floor (N/2).

This is a reduction step: it is a reduction step because A. 2 is half the size of the
original coefficient matrix A. Once this new system is solved, we can compute the
remaining components of x. 1 x by back substitution"

x(Zj- 1)= b-(Zj 1)*(v(2j- 1)- a(Zj- 1). x(Zj-2)- c(2j- 1). x(Zj)),

where j 1, 2,. , ceiling (N/2).
Since A. 2 itself is block tridiagonal, we can apply this procedure recursively to

obtain a sequence of systems (A.i)(x.i)= w.i, where A.1 =A and w. 1 v. It is
convenient to restrict N=2**m-1 because the reduction then stops with
(A. m)(x. m) w. m where m =ceiling(log (N+ 1)) when the original A. 1 is reduced
to a single block in A. m. The single block is solved and the back substitution begins,
culminating in x. 1 x.

4.3.1. Elimination versus reduction. It will be fruitful at this point to contrast
OEE with OER in a parallel environment. In a sequential computing environment,
OER is regarded as a compact form of OEE [He177]. The main differences between
OER and OEE are that the natural degree of parallelism at different steps is not the
same, and that OER requires a back substitution sequence that is not needed in OEE.

In this comparison we will consider a linear system with N 2.. m for OEE and
N 2.. m-1 for OER. In the elimination sequence for OEE (Fig. 4.6), a doubling
of the number of tasks occurs at the end of every step; each task, however, is half as
large as the tasks in the previous step, and so the net parallelism remains constant.
At the end of the last elimination step, N linear systems are solved independently
(where N is the block dimensionality of the original coefficient matrix).

In the case of OER (Fig. 4.7), the number of tasks remains constant from reduction
step to step; furthermore, the task size in a given step is half the task size of the
previous step. Under the assumption that the reduction step times are equal, the
average degree of parallelism is log N.

After the last reduction is performed, exactly one block matrix is left--the solution
of this matrix forms the basis for the back substitution sequence. This sequence grows
from a parallelism of 2 to N/4 (Fig. 4.8). This back substitution sequence also shows
an average degree of parallelism of log N.
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234
(N/2)

5678

1357 2468

15 37 26 48

3 6 4 8

SOLVE

FIG. 4.6. Elimination steps and solution for OEE, N 8.

254
(N/2_)

567

2 4 6 (N/4)

6 4 (N/8)

SOLVE

FIG. 4.7. Reduction steps for OER, N 7.

The elimination sequence in OEE (for N 2.. m, Fig. 4.6) requires one more
step than the reduction sequence in OER (for N 2** m-1, Fig. 4.7) as indicated
by the tree heights in the two figures. OEE does require extraneous operations within
each step, but these are performed in parallel and so do not contribute to the execution
time. After the solution step, OER requires an additional back substitution sequence
(Fig. 4.8) that is not needed in OEE. If the back substitution sequence runtime is less
than one elimination/reduction stage runtime, OEE is superior to OER. In the example
shown later in this section, this is the case for reasonably sized coefficient matrices.
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4.3.2. OER back substitution data flow. From the back substitution equation of
3.4, it is evident that each solved block is used in the solution of two unsolved blocks

in each stage of the back substitution sequence. Figure 4.9 shows a configuration
suitable for implementing one such stage. Each stage then requires a step with no
switched memory access for computing block diagonal inverses; thereafter, switched
memory access is necessary in two stepsmonce for each of the unsolved blocks where
the solved blocks are needed.

INVERSION STEP: NO ACCESS TO SWITCHED MEMORY

FIRST SWITCHED MEMORY ACCESS

SECOND SWITCHED MEMORY ACCESS

I’ SWITCHED MEMORY WITH SOLVED BLOCK

SWITCHED WITH UNSOLVED BLOCKMEMORY

ACTIVE CHAIN,

POTENTIAL LINK

DATA TREE

FIG. 4.9. Step from back substitution sequence of OER.

4.3.3. Performance estimation for OER. The computation and data movement
costs for OER can be estimated by a procedure similar to that used in 4.3.2 for
OEE. We consider only switched memory data movement for OER.

Continuing with the example of 4.3.2, for the reduction sequence the per-stage
computation time is 1188 ms and the data transfer time is 17 ms (this is identical to
the elimination sequence perstage times). In the back substitution sequence, the
per-stage computation time is 240 ms and the per-stage data transfer time is 2 ms.
The total computation time for OER is approximately 4500 ms and the data transfer
time is 60 ms, as opposed to 5000 ms and 70 ms for OEE. With 64 64 block and
larger systems, the back substitution sequence requires more time than an elimina-
tion/reduction stage. From this point on, OEE requires less time than OER. The
speedup for OER is approximately log N over a comparable uniprocessor implementa-
tion. Figure 4.10 shows the relative performance of OEE versus OER in the parallel
formulations described in this paper.

5. Summary and conclusions. This paper has defined, described and illustrated
the concept of multitype, multiphase parallel structuring on reconfigurable array
computers. The illustration using odd-even elimination and odd-even reduction has
established the following characteristics for multitype, multiphase parallel execution
of these algorithms:

1. Speed-up linear in the number of processors can be obtained.
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FIG. 4.10. OEE and OER runtime for N N block system (8 8 blocks).

2. The overhead cost of computation (data movement, synchronization delay and
reconfiguration time) can be kept to approximately 10% of instruction execution time
on such architectures.

3. Odd-even elimination becomes the algorithm of choice on reconfigurable array
architectures for linear system sizes above approximately 512 512. The relative
speed-up over comparable uniprocessor implementations is approximately n/2 for
OEE and log n for OER. Thus we have an instance of support for the conjecture that
good uniprocessor algorithms may be outperformed by relatively poor uniprocessor
algorithms on multiprocessor computers.

There are two cautions which must be observed. This study assumes that the
configurations required can always be set up to completely meet the resource require-
ments of an executing phase. We have not considered the problem of restructuring
the algorithm in the presence of insufficient resources. It is clear, however, that linear
speed-up can be retained, since the problem partitions with respect to the number of
blocks. The issue of the utility of packet switching versus circuit switching, memory
switching has not been addressed in detail. From a strict performance point of view,
circuit switching fits in naturally with algorithms that repeatedly require block transfers
over fixed geometries, as is the case for block OEE and block OER. The packet
switching implementation is only marginally inferior to the circuit switching
implementation of OEE. In cases where circuits cannot be established, packet switching
may offer a viable alternative with only a minor degree of performance degradation.

Acknowledgments. We wish to thank the two referees and the editor of this
journal for their suggestions for making this paper more readable.
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A VARIANT OF HUBER ROBUST REGRESSION*
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Abstract. In this paper, we develop a variant of Huber robust regression. Our approach is inspired by
Huber’s M estimates; however, we deal with the scale estimate differently. The class of estimators we
develop includes least squares and least absolute residuals as limiting cases and can be considered as a
generalization of the trimmed mean to regression. We exhibit an algorithm to compute these estimates and
prove its correctness. Also, we show how to extend our estimators to include weighting, equality and
inequality constraints, and the addition or deletion of data points.

Key words, linear regression, constrained regression, 11 estimation, robust regression, trimmed mean

1. Introduction. Linear regression is one of the most studied and important
problems in statistics. The following model is assumed:

(1) y Xfl + e,

where y is an n 1 vector of observations, X is an n m known matrix assumed to
be of rank m, and e is an n 1 vector of random errors. Classically, this problem is
solved by the method of least squares (LS). Letting x ith row of X, one obtains

(2) (Yi- x/3)2 min!.
i=1

The solution to this problem, denoted by ilLS, is easily found.

(3) Ls=(X’X)-’X’y.

As is well known, this estimate is the best linear unbiased estimate (BLUE) and is the
maximum-likelihood estimate (MLE) if the errors are Gaussian.

Unfortunately, the LS estimator is not robust and can be quite poor for heavy-tailed
noise distributions. (Throughout this paper, the word robust will be used loosely and
will represent the notions that the estimator’s efficiency remains acceptable even if the
noise is heavier-tailed than Gaussian and that the estimator is resistant to a suitably
small number of outliers, points whose error is comparatively large. These notions are
discussed in considerable detail and in full rigor in the monograph by Huber [1].) Most
robust procedures are based on Huber’s M-estimates.

(4) Z P(Yi- x/3) min!,
i=1

where p(x) is a robustifying loss function. Probably the most widely used of these is
the least absolute residuals (LAR) estimate where p(x)= Ixl. Algorithms to compute
the LAR estimate are discussed in Barrodale and Roberts [2] and Bloomfield and
Steiger [3].
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Science Foundation under grant ECS82-05772.
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The robust estimator we are most interested in was suggested by Huber [4] in
analogy to the location problem for which he was able to prove a min-max result [5].

PH

kx- k2/2, x >= k,
x2/2, -k<=x<=k,
-kx- k2/2, x <=-k.

k is chosen so that the estimator has suitable efficiency at the normal model. Substituting
this loss function into (4) and differentiating with respect to/3 enables one to character-
ize the solution, denoted /3H, as

(5) 0= Y Xqd/H(Yi--Xin), ]= 1, m,
i=1

where

din(X) =max (min (x, k),-k).

Unfortunately, this estimator is not scale invariant and the scale is usually not known
in advance. To alleviate this problem, the residuals ri Yi- xfl are replaced by suitably
scaled versions r/s where s is a robust estimate of scale. Equations (5) are usually
solved in an iterative manner. See Huber [1], Dutter [6], and Huber and Dutter [7]
for details. For the location problem, Huber [5] made three heuristic proposals to deal
with the computation of the estimate when the scale is unknown. He suggests that k
be picked beforehand (by past experience or by the statistician’s intuition) and that
two simultaneous equations be solved as exactly as possible for the scale and location
estimates. He argues that this approach is asymptotically equivalent to Winsorizing.

We propose that k be chosen so that the number of data points whose residual is
larger in magnitude than k be equal to a prespecified fraction of the data. We need the
following definitions. Let

A={i" ri<--k}, B {i: -k <- ri <= k}, C={i" ri>=k}.

Also, let nA number of elements in A, nB number in B, and nc =number in C.
Then choose k so that (nA+nc)=min(n--m, [2an]) where 0=<a=<1/2. In general,
nA + nc <- n--m and at the LAR estimate equals n-m. The second clause, [2an is
necessary because of the granularity of the integers. (This is precisely the same problem
faced in defining the trimmed mean for location. Usually some linear combination of
the nearest two order statistics is used. However, this reduces the robustness of the
estimator.) The LS estimate corresponds to a =0; the LAR estimate to a .

If we define a n 1 vector with ai 1 if A and =0 if not, B n n diagonal
matrix with bi 1 if B and =0 if not, and, similarly, c n 1 vector with c 1 if
i C and =0 if not, then we can rewrite (5) as

0 XijffJH (yi X lfl) j 1, m,
i=1

(6) Z xqk + xq(yi x13) + xqk j 1, m,
iA iB iC

=-(X’BX) +X’By+ kX’(c-a).

The solution to (6) for fixed k is obvious. (By assumption, X has rank m; it is shown
in Theorem 2 that this insures that X’BX has rank m and is therefore invertible.)

(7) /3 (X’BX)-IX’[By + k(c-a)].
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For location problems (m 1, Xil 1), (7) reduces to

(8)
nB nB

If nA nc an (which will frequently occur when the noise is symmetric), then (8)
reduces to the a-trimmed mean. Therefore this estimate can be considered to be a
generalization of the a-trimmed mean and will be denoted here as fl.

Unfortunately, k, as it is presently defined, is almost always not unique. This

n0nuniqueness will be dealt with shortly. First, some definitions and background are
needed. Let fl (X’BX)-X’By least squares estimate based on those data points
in B and let 8fl (X’BX)-IX’(c-a)=correction based on "large" deviation points.
Also let i Yi- x’/i and 6r x6fl. Then fl =/ + k6fl and r ’- k6r. Consider a data
point in A. We have

or, substituting,

ri<_-k

r’ kri <--k

or, trivially,

(9) r =<-k(1- r).
If 1- 6r > 0 then k<=-f/(1-6r); else, if 1- 6r <0 then k>=-f/(1-6ri).If 1-6r =0
then =< 0. Limiting relations for points in B and C are derived in the same manner
and are summarized in Table 1.

This suggests an algorithm to compute the estimate.
1. Guess a partition with nA + nc 2an.
2. Compute fl and 6fl and from them and tr.
3. Compute ki, ku. If kL <= ku accept fl + k15t, k [ki., ku] as the answer. If

not, return to step 1.
The problem with this algorithm is the absence of guidance for guessing the correct

partition given that the previous one was incorrect. Furthermore, there is an exponential
number of partitions with nA q- nc 2an. A better algorithm will be developed below,
but first some definitions are needed. If a point has r +/-k, then that point is at a
corner. If some partition (A, B, C) yields k <-ku, then that partition is valid. Let us
assume we have a valid partition for which nA h- nc 2an. Let k kL, then some point,
say l, is at a corner. For definiteness, let r k and B. Further assume that is the
only point at a corner. Then

0 (X’BX)fl -X’[k(c- a)+ By]

(10) (X’BX)fl X’[k(c- a)+ By]+ xl(y,- xfl k)

(X’BX- xlx)fl X’[k(c- a + el) h- By- elYl].

If i a, B B-ele}, and, c + el and the corresponding changes are made to A, B,
and, C, then this is a new partition which is valid and which yields the same value of
fl as the previous one, but one for which/ and t/3 are different. We will say that the
point has undergone a transition and will use the symbolic notation B--> 12. From Table
1, it is easy to see that initially (for e B) 15rl >-1. We prove in Theorem 3 that after
the transition rt >-1. Hence from Table 1, it can be seen that k. ku i.e., that the
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TABLE

Partition

>0

A <0

=0

>1

->1

<1

<1

>-1

>0 > -1

>1

<-1
n

=0

>0

C <0

=0

Not allowed.

>-1

<-1

>-1

k _>-0

k <-_ Fi r,

n.a.

k__>O

n.a.

k _>- /(l +

k <= F (1- Sr,

k /(1 + r)

n.a.

k=>O

n.a.

k i + 8r

k_>O

k i/(l + ri)

n.a.

k _->(}

n.a.

previous lower limit for k is now its upper limit. Furthermore, since point is the only
point at a corner, the new lower limit, kL, is strictly less than kL. Using the rules given
in Table 1, kL can be found and a new point, say l, is at a corner. This process can
continue until termination. Equation (10) and the argument following easily carry over
to the other transitions, B-> A, C-> B and A-> B. For brevity we omit these cases.

In general, there could be more than one partition with nA + nc 2an, each
corresponding to a different interval, [kD kv]. Let superscript j denote the different
partitions. Then we suggest that k be chosen equal to maxj k. This corresponds to the
first such partition obtained by our algorithm. The choice k kL affords the maximum
insensitivity to the outlying points.

Our experience suggests that this partition is almost always unique.
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The only remaining detail is to show how to start the algorithm. Let A C {q},
B { 1, 2,. , n}. Then (X’BX)-IX’By (X’X)-IX’ y ills. Further, 3/3
(X’BX)-IX’(c-a)=O. Let k k/ max [ril. This is a valid partition (kt +). The
algorithm, which we call the ABC algorithm, is summarized below.

THE ABC ALGORITHM

Input: X an n x m matrix of rank m, y an n x 1 vector, and a

Output: [3
Step 1: Set A (2 {0} and B {1, 2, , n}. Compute Least Squares estimate,

ilLS. Set fi=/3LS, 3/3=0. Compute r==y-Xfi and set 3r=0. Set
k k max Iril. Requires O(nm2) operations.

Step 2: At each stage do:
a) Make transition (bookkeeping). O(1) operations.

(X’BX)-1 x,x(X’BX)-1

b) Compute (X’BX q" XlXl) -1 (X’BX)-1

1 + x(X’BX)-lxt
O(m2) operations.

c) Compute 3fl=(X’BX+xtxl)-lX’(c-a), =fl-k3. O(m2) oper-
ations.

d) Compute 3r X6fl, r+ k&. O(nm) operations.
e) Find new k. using the rules in Table 1. O(n) operations.
) If nA + nc =min (n--m, [2an 1), stop and accept fl fl + k3fl as the

estimate. If not, go to step 2a.

Some comments on this algorithm are due.
1. In practice, X’BX will be kept in factored form, e.g. as LDL’. Step 2b will be

replaced by a modification of the factors. See Gill et al. [8] for details on updating
factorizations following rank 1 changes. At any rate, these updates can be done in
O(m2) operations.

2. For numerical reasons, especially in large problems, it may be necessary to

periodically recompute the solution for a given partition "from scratch" using the
definitions for /3 and 3/3 rather than the update formula. This is easily done. This
requires as much work as does computing the LS solution initially.

3. The principal open question regarding this algorithm is "Is it polynomial? ’’2

Since the initial least squares computation is polynomial and each stage can be done
in polynomial time, the question rests on the number of stages required. In general,
the LAR solution corresponds to nB m. Therefore, at least n-m stages may be
required to compute it. The largest problem (and the worst case) we have solved to

date with the ABC algorithm had n 224 and m 29 and required 203 stages as
compared with n-m 195. However, we have not tested this algorithm extensively
and cannot assert that the behavior is never worse than this or even that this behavior
is, in some sense, average. Nor can we prove that O(n) stages are sufficient.

4. If one assumes that O(n) stages are sufficient, then, since each stage is O(nm),
the whole algorithm is O(n2m). For large n, this growth may be unacceptable. However,
many large problems are sparse and for many sparse problems computing 3r X3/3
can be done in O(n) operations. In this case, O(n2+ nm2) will be sufficient. Of course,
/3a can be computed in approximately 2an stages.

This question is of some theoretical interest because an easy variant of the ABC algorithm solves the
linear inequalities (LI) problem: Does there exist a/3 such that X/3 _>- y? LI is equivalent to linear programming
(LP) for which there is a polynomial time algorithm, the Soviet ellipsoid algorithm (Khachian [9]).
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5. This algorithm can be used to compute the Huber estimate for fixed scale.
Replace Step 2f by: If kH [kL, kc], accept/3/4 =/3 + k/46 as the answer. If not, go
to 2a.

6. It is possible to envision a scheme where the stopping fraction is chosen
dynamically. More work needs to be done in this area.

2. Correctness of the ABC algorithm. In this section, we will show that the ABC
algorithm correctly finds the LAR estimate and that the algorithm works correctly.

The step in going from the minimization problem (4) to the "normal equations"
(5) is not valid when k =0 since 6(x)=sign (x) and is not continuous at x=0. In
the following theorem, it is shown that the ABC algorithm does converge to the correct
solution.

THEOREM 1. Let =/+ ka be the minimizing solution of (4) (i.e. solves (5))
with k (0, kc] and kc > O. Assume further that X and y are bounded. Then LAR .

Comment. Such a solution with kcr > 0 exists since originally kt +oo and always
kc >--kt. Take the first solution with kL 0.

Proof. By contradiction. Assume that there exists some/ #/ with

i=1 i=1

then, for k sufficiently small,/3 =/ + ka[3 will not be optimal in (4) which contradicts
the assumption. Let

i=1 i=1

Let 0(/3, k) be defined as below.

Q(fl, k)=i_B {lyi-xll-}-t--k
Then, for k sufficiently small (so that lyi-xIl k ==> yi--X’-O and lyi-xIl k==>
yi--Xl =0),

(/A -- C)iB 2

karl, k) X [Yi- X;( + karl)I- k
i:B

A +C+I E (Yi- X(+ ka/)) 2

2 2k

i=B 2 +2-% E (kxlafl) 2.
iB

Using the relation la- bl => lal-lbl gives

[ nlxia,t31 At-c 1 ]-+- E (xat)>- E ly, x;l/ k -,
i=B 2 2 iB

Letting r/= term in brackets and using 0 Yi- X/ for e B gives

X lYi- xll + kq.
i=1
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Therefore,

O(fi + kfl, k)- O(fi, k)>= E [Y,- xlfl]+ kl lY,- x,dl- k.
i=1 i=1

=e+k(
>0

(r + rc)

for k sufficiently small by the boundedness of r which follows from the boundedness
assumption on X and y, a contradiction, l-I

Since X is assumed to have rank m, the initial LS estimate is well-defined. However,
it is not necessary that X’DX will have rank rn for all choices of the diagonal matrix
D. In particular, it is not clear that X’BX will have full rank. In the next theorem,
we prove that it does.

THEOREM 2. The matrix X’BX has rank m.

Proof. It is clear that initially X’BX X’X has rank m. It is also clear that the
transitions, A B and C B cannot reduce the rank of X’BX. Therefore, it is sufficient
to consider only the transitions B A and B 12. If X’BX were to go singular, then
there must be a first time it does. Without loss of generality, the rows of X can be
permuted and a linear change of variables made in/3 so that X has the following form:

X= 0
u

with the first row corresponding to the transition element, the next riB--1 rows
corresponding to the other elements in B, and the last n-nn rows corresponding to
those elements in A and 12. G has rank m-1. Then

BX(X’BX)-X’B 0 G(G’G)-G
0 0

which implies that f--0 and from Table 1 it can be seen that point 1 cannot be the
limiting point for k. and, hence that it is not a transition element, l-I

It is conceivable that the ABC algorithm could get "stuck" if a point moved from,
say, B to A, then back again immediately. In the next theorem, we prove that this cannot
happen.

THEOREM 3. When a point undergoes a transition, it will remain in its new partition
for at least one stage.

Proof. Consider the B -> C(C -> B) transition, the other two being very similar. Let
be the index of the point undergoing the transition. Then 15rl >-1 (&l <-1). Let rl

denote the new value of &l after the transition. Then, it will be shown below that
;rt >-1 (<-1) which from Table 1 implies that the point cannot be a transition
element. Let the upper sign correspond to the B--> C transition and the lower to the
C- B transition.

6--ll x(X’BX xx)-lX’(c-a +
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Let hi--x(X’BX)-IxI and 1 > he>0 since it is a diagonal element of the rank m
idempotent matrix, BX(X’BX)-IX’B, and because the matrix X(X’X)-Ix’
also has rank m by Theorems 2 and 3. Then

hitr :l: he + (trl :k hi)l:h

So

6rl trlhl -I- hi- h + hltrl d- h 6re + hi

6rl +
6rl -l ht -i

l : hl
1: tr :t: hi -1 +/- hi

In the absence of tiesmtimes when two or more points reach a corner at the same
time--Theorem 3 is sufficient to guarantee that the ABC algorithm reaches the LAR
estimate in finite time. For then at each stage, kL decreases monotonically. This implies
that a partition is never repeated. Since there are only a finite number of partitions,
the algorithm is then finite. Ties, which in the "real world" will occur with zero
probability, can be dealt with by insuring that a partition is never repeated. For instance,
this can be done by using Breadth First Search (BFS) to trace out the partition "tree".
(See Aho et al. [10] for details on BFS.) In our experience, however, we have found
that ties can be ignored. They occur infrequently and when they do, they seldom cause
problems.3

3. Location problems. Since location problems are a special case of regression,
the ABC algorithm can be applied directly to them. However, since the location case
is so much simpler than regression, it is possible to prove much more. For instance,
we will prove that the location estimate can be found in O(n log n) time and that ties
are no problem. In Theorem 4, it is proved that a data point, once it leaves B, never
returns. Since there are only n data points, at most n 1 stages can occur. Furthermore,
if the data is presorted (which requires O(n log n) time in general), then each stage
can be done in O(1) time. The location estimate is

(8) fl =,in Yi+ k
(nc-rtA)

nB nB

Furthermore, for each data point, 6ri x6fl (nc- nA)/nB independent of i.
THEOREM 4. Let 6ri nc hA) nB. Let k > O. Then [3ril <- 1.
Comment. From Table 1, it can be seen that if 16rl _<- 1, then the transitions, A - Band C- B are forbidden.
Proof. Consider those points, i, contained in B.

Sum over e B.

-k <- Yi
ill Yi k nc nA <= k.

-knn <- Y Yi- Y. Yi- k(nc rtA) <- knn.
iB iB

None of our implementations of this algorithm deals with ties in a sophisticated way and never have
ties caused us any problems.
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Dividing by kna yields

nc nA-1<<1.
nB

The improved algorithm results from the observation that only two of the points
in B at any stage are candidates for transitionsuthe largest and "the smallest. For all
points in B

(11)

or, rewriting (1 1),

(12)

-k -<_ y,-- kt3 <_- k,

-k(1 /3) +/ <= y<_- k(1 + /3) +/.

In this form it is easy to see that only the maximum and minimum values of Yi can
determine kL. To adapt the ABC algorithm for location, the following steps are needed:

1. Sort the data. Requires O(n log n) operations.
2. Delete Step 2d. (There is no need to calculate the residuals at each stage.)
3. Replace Step 2e with: Find new kL using (12) and the rules of Table 1 using

only the maximum and minimum values of yi for e B.

4. Adding and deleting data points. In many applications it is desirable to have
a recursive implementation of the ABC algorithm. For instance, in "on-line" problems,
the data arrives sequentially. Given/3 "-1, the estimate with n-1 data points, can/3 n,
the updated estimate, be found easily? Conversely, in some problems, deletion of data
points is necessary. In "moving average" problems both needs arise.

Consider the addition of a data point, ($, 37), first. Assume that (A, B, 12) is a valid
partition for k e [kt, kcr]. Then our algorithm is a two-step procedure:

1. With k fixed, find a new valid partition (A, B, 12).
2. Increase or decrease k until the desired fraction of data points in A and 12 is

achieved.
Step 2 can be done using the standard ABC algorithm if k needs to be decreased

and with obvious changes if k needs to be increased. Hence we will concentrate only
on Step 1.

Consider the following:

(7) (X’BX)I X’[k(c- a) + By].

It is clear that if y-$’/3 0, then that point can be added or deleted trivially without
affecting/3. Put the new point in B and write

(13) (X’BX+ Y,’)( +A) X’[k(c- a) + By]+ $[Y,’l + d(y- X’/3)].

For d 0 and A/3 0, (13) reduces to (7). Solving for z/3 gives

(14)

Now increase d from 0 to 1. If a point reaches a corner for d d < 1, do:
1. Let =+(X’BX+$,’)-I(y-:’).
2. Make appropriate transition. If the new point is moving from B to A or from

B to 12, then stop. Else, let/ denote the new "B" matrix. Then

(15) (X’X+’) X’[k(c- a)+ By]+ $[$’/3 + d(37- ’/3)]
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as before, with

(16)
X’[k(c- a) + By]+ :[X’/3 + d(y- X’/3) + (d- d)(y- X’/3)].

Initially d d and zi/ 0. Solving for Aft yields

(17)

Continue in this manner until d 1.
Deletion of a point is essentially the reverse of adding a point. (We assume that

deleting the point does not reduce the rank of X’BX. By Theorem 2, the rank will
not decrease unless ?=0.) Let the point to be deleted be denoted (, y). Then the
approach is to modify y continuously until g 0. If (, y) is in A or C, change /9 so
that the point is at its respective corner. Move the point into B (while it is still at the
corner). This process leaves fl unchanged. Change the definition of B so that it excludes
the point in question, i.e., the appropriate diagonal element is 0, not 1. Then

(18)
with

(19)

(X’BX + ,Y’)fl X’[k(c- a) + By]+

Let y y + by and make the corresponding changes to/3 and . Then

(20) 4/3 (X’BX + ,X’)-’XA y,
(21) Af= (1 X’(X’BX + XX’)-aX)Ay.
The term in parentheses (1-’(X’BX+’)-) is between 0 and 1 since it is a
diagonal element of an idempotent matrix. Therefore if > 0 make A37 negative and
make it positive if > 0, /p can be changed until either of two things happens" (1)
reaches 0, in which case remove it, or (2) a data point reaches a corner. Then make
the appropriate transition and continue.

Both the addition and deletion algorithms adapt straightforwardly to the situation
where p data points are added or deleted at a time. The only facet to be resolved is
how to calculate (X’BX+.’)-. There are two possible solutions.

1. The well-known formula for the inverse of a sum of matrices (Henderson and
Searle [11]) gives

(X’BX+’)-’
(22)

(X’BX)-’-(X’BX)-’’(I +(X’BX)-’’)-’(X’BX)-’.
2. Since (X’BX +7’) (X’BX+P= XX), Step 2b of the ABC algorithm can

be iterated p times.
The first approach requires O(pm2+p2m+p3) operations while the second

requires O(pm) operations.

5. Constraints. In some applications, it is necessary to consider the following
constrained regression problem
(23) X y+ e

subject to

(24) G/3 => f,

(25) E= h.
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For instance, if the/3j have the interpretation of being multinomial probabilities, then
the following constraints would be appropriate"

(26) Y /3j 1,
/=1

(27) fli_->0, =l,m.

Then adding Lagrange multipliers, , for the inequality constraints and r/ for the
equality ones, (6) becomes

0 (X’BX)fl -X’[k(c- a) + By]- G’A E’rt,(28)

with

(29)

(25)

(30)

x’(f-Gt) =0,

Eft=h,

Let g represent the jth row of G. Let I={]" g/3-j>0}, the Inactive inequality
constraints, and Q={f: gfl-j=0}, the Active inequality constraints. Reorder the
constraints so that ,, G, and f can be partitioned as below:

Define/, /, and as

Then (28)-(30) become

(31)

(32)

(33a)

(33b)

G=
Go f= fo

0 (X’BX) -X’[k(c- a) + By]- E’,.

E h,

Ax =0,
Ao_->O.

Multiplying (31) by (X’BX)-1 and substituting (32) yields

(34) 0 =/- (X’BX)-lX’[k( c a)+ By]- X’BX)-I,’X.

Let H (X’BX)-I,’. Therefore for H invertible

(35) X=H-I-H-I(X’BX)-IX’[k(c-a)+By].
Substituting (35) into (31) and rearranging yields

(36) =(X’BX)-I(I-,’H-I(X’BX)-I)X’[k(c-a)+By]+(X’BX)-I’H-11.
The question remains, "How does one determine the initial partition?" Two

approaches are available"
1. Any of several well-known algorithms to compute the constrained LS solution

can be used in the first stage of the ABC algorithm. (See Lawson and Hanson [12,
Chaps. 20-23] for a discussion of this problem.) Then an obvious adaptation of the
ABC algorithm can be used to reduce k until the desired fraction of data points in A
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and C is achieved. However, the constraint partition must also be checked and changed
appropriately as the constraints reach their "corners".

2. Below we describe an algorithm which can impose the constraints at any time.
This algorithm can impose the constraints on the LS problem initially, but can also be
used to study the effects of adding the constraints to an otherwise solved problem.
For instance, one might be interested in how much the constrained/3 differs from the
unconstrained one.

First, it is sufficient to consider only the imposition of inequality constraints.
Replace each equality constraint, el/3 hi 0 by two inequality constraints, e/3 hi -> 0
and -e/3 + hi >= 0. Clearly if both are satisfied, then so is the equality constraint. At
the final step in the algorithm below all the inequality constraints will be satisfied (if
possible). Then the two inequality constraints can be replaced by the one equality
constraint.

Consider the imposition of one inequality constraint to an already solved problem.
(The generalization to more than one constraint is straightforward and complicates
only the notation.) Let the solution to the solved problem be denoted by/, and the
Lagrange multipliers associated with the active constraints by o. Let the new constraint
be denoted as g’fl f -> 0. The idea is to introduce a new variable q and a nonnegative
weight w and change the objective function as follows:

min p(yi-xlfl)+(f -Gfl)’A +(-g’fl + f-q)-q+ wq,
i=1

where " and are Lagrange multipliers. By the Karush-Kuhn-Tucker theorem
(Pourciau 13]), the solution to this constrained minimization problem is characterized
by

(37) O=(X’BX)fl-X’[k(c-a)+By]-G’A-,,

(38) 0=--r+w,

(39) 0 (G/3 -f)’A,

(40) O= (g’#- f + q),

(41) 0 srq,
(42) r__>O,

(43) ->0,

(44) Gfl f >- O,

(45) g’- f +q>=O,
(46) q=>0.

If q 0, the problem is trivial. Else, let 4 f-g’/. For q > 0, (41)==>" 0, and in
turn, with (38):=>sc w, and further, :=>q =-g’/3 + f. One can assume without loss of
generality that X’BX L Furthermore for w 0, this problem reduces to the former.
Make the same partition of the constraints into Q and I. Then (37), (39), and (40)
become

Go 0 fo + w
g’ 0 f
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Assuming the matrix on the left has an inverse (in general, it will and, if not, it can
be modified to have one by taking one or more of the constraints and moving them
into I) and multiplying by it yields:

-(GoG’o)-Go
-g’(I- Gb(GoGb)-Go)

Gb(GoGb)- 0]GoG’o)-1 0

-g’Gb(GoGb)- 1

(I- Gb(GoGb)-Go)X’[k(c- a) + By]+ Gb(GoG’o)-lfo-!
-(GoG’o)-lGoX’[k(c-a)+By]+(GoG,o)-fo

+ w -(GoGb)-lGo
-g’(I- ab(Goab)-1Go)g

+ w 8Aoj/Sw].
q/w 1

For w=0, these equations reduce to (31), (32), and (45). Now increase w. Any of
five things can happen:

1. q 0. Stop. The problem is solved.
2. Some constraint in I reaches equality. Then move it into Q making the appropri-

ate changes in the matrices and continue.
3. For some constraint in Q, A 0. Move it into I and continue.
4. Some data point reaches a corner. Make the appropriate transition and continue.
5. /3 and q become independent of w and Ao is nondecreasing in w i.e. for all

j e Q, Aoj/w -> 0. Then the constraints are infeasible.
This algorithm can also be used to determine if the constraints are feasible. Let

n m, X’BX L and y 0. Then one finds the feasible point of minimum square norm.

6. Weighting. There are at least three different types of weighting which can be
applied. Let W be an n x n diagonal matrix with each wii > O.

1. "Inside" weighting: Replace p(yi-x) by p(wi(Yi--Xl)) in the objective
function. Equation (6) becomes

(X’W:BX) X’W[k(c-a)+ WBy].

This type of weighting could be used to "correct" for differences in scale in the error
associated with each data point.

2. "Outside" weighting: Replace p(.) by w,o(’). Then (6) becomes

(X’ WBX) X’ W[k( c a) + By].

This type of weighting could be used to more closely fit certain data points than others.
Such a need might arise in time series analysis. Another reason might be to provide
some robustness against outliers in X. (See Maronna et al. [14], for details.)
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3. "Robust" weighting: Replace p(.) by pi(’) where pi(’) differs from p(.) in
that k is replaced by w,k. Equation (6) becomes

(X’BX) X’[Wk(c-a)+ By].

This type of weighting could reflect that idea that certain data points are less likely to
be outliers than others. If some w, goes to +oe, then that data point cannot be an outlier.

7. Conclusion. In this paper, we have presented a new variant of Huber’s classic
M-estimator. Perhaps the most important facet of our estimator is its intuitive appeal.
Intuitively, least squares is good for small errors and least absolute residuals is good
for large errors. Our estimator should perform acceptably well in either environment.
Various tradeoffs between efficiency at the Gaussian and robustness can be made by
the choice of a. We made the point that our estimator can be considered to be a
generalization of the trimmed mean. Although it was not stressed in this paper, for
asymmetric contamination our estimator should perform better than the trimmed mean.

We also presented a series of algorithms to compute our estimator. These
algorithms all have a unifying structure:

We compute the solution to a problem that we know how to solve. Then we modify
that problem continuously via a one-dimensional parameter. Within a restricted range,
the solution varies linearly with the parameter. When the limit is reached, a partition is
changed and the process repeats.

This type of algorithm allows for exact calculations as opposed to most iterative
algorithms which terminate when the difference in the solution from one iteration to
the next is sufficiently small. More work needs to be done on the time requirements
of these algorithms, principally the ABC algorithm and the algorithm to include
constraints on an otherwise unconstrained problem. It is possible that the recursive
form of the ABC algorithm is faster than the nonrecursive form. Also, it is not known
whether the best time to impose the constraints is at the beginning, sometime in the
middle, or at the end. It is also not known how fast our algorithm for determining the
feasibility of constraints is compared with our algorithms, e.g. Simplex.
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THE COLLINEARITY PROBLEM IN LINEAR REGRESSION.
THE PARTIAL LEAST SQUARES (PLS) APPROACH

TO GENERALIZED INVERSES*

S. WOLD?, A. RUHE:I:, H. WOLD AND W. J. DUNN III

Abstract. The use of partial least squares (PLS) for handling collinearities among the independent
variables X in multiple regression is discussed. Consecutive estimates (rank 1, 2,...) are obtained using
the residuals from previous rank as a new dependent variable y. The PLS method is equivalent to the
conjugate gradient method used in Numerical Analysis for related problems.

To estimate the "optimal" rank, cross validation is used. Jackknife estimates of the standard errors are
thereby obtained with no extra computation.

The PLS method is compared with ridge regression and principal components regression on a chemical
example of modelling the relation between the measured biological activity and variables describing the
chemical structure of a set of substituted phenethylamines.

Key words, collinearity, linear regression, conjugate gradients, principal components, cross validation,
chemometrics

1. Introduction. In multiple regression, linear or nonlinear, collinearities among
the independent variables xj sometimes cause severe problems. (For notation, see
below equation (1)). The estimated coefficients/3, can be very unstable, and thereby
far from their target values. In particular, this makes predictions by the regression
model to be poor.

In many chemical applications of multiple regression, like the present example of
relationships between chemical structure and biological activity, the predictive proper-
ties of the models are of prime importance and the regression estimates therefore
often need to be stabilized. The present example can be seen as a special case of
response surface modelling, an area where the collinearity problem has been recognized
as a serious problem (Box and Draper (1971), Gorman and Toman (1966), Draper
and Smith (1966)).

In applied work, the collinearity problem is often handled by selecting a subset
of variables by a stepwise procedure. See Hocking (1976) for a review. We shall not
consider this subset strategy here, but shall limit ourselves to the data analysis with
all variables included in the model.

2. Existing methods. Three principal ways are described in the statistical literature
to accomplish a stabilization of the regression estimates/3j in a given regression model.
Adopting the usual notation (see e.g. Draper and Smith (1981, p. 72)), the linear
model is:

(1) y=Xb+e.

Here X is a n p matrix, containing the values of the p predictor variables at the n
data points, b=(/31,’" ,/3p)’ is a p-dimensional column vector containing the
regression coefficients, and e (el,. , en)’ is an n vector containing the errors which
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t Present address: Department of Computer Science, Chalmers University of Technology, S-41296
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are assumed to be uncorrelated, to be normal and to have the same variance. The
prime denotes the transpose of a vector or matrix.

The first way, usually called ridge regression (Hoerl and Kennard (1970)) is based
on adding a small number, k, to all elements in the diagonal of the moment matrix
X’X. Thus, instead of inverting X’X, one inverts (X’X+ k. I), which gives the
regression estimates

(2) bridg (X’X+ k I)- X’ y.

The "ridge parameter," k, is usually chosen between 0 and 1. The specific value of/
is often based on an inspection of a plot of the regression estimates against k (see Fig.
1 for an example). Golub, Heath and Wahba (1979) estimate k directly from the data
using generalized cross validation. Ridge regression has recently been reviewed by
Draper and Van Nostrand (1979) and by Hocking (1976) (see also Smith and Campbell
(1980)). The solution of nonlinear regression using ridge estimates in the iterative
updating is a well established numerical practice (see Marquardt (1970) where the
correspondence between the two situations is discussed).

The second approach to the stabilization of the regression estimates is based on
the contraction of X’X to a matrix of smaller rank. This is, for instance, accomplished
by expanding X’X in terms of its eigenvectors (principal components) and then
retaining only the first r of these p eigenvectors to represent X’X (r < p). This gives
the solution the form of a generalized inverse (Marquardt, 1970). A more elegant and
more numerically stable formulation of that approach is based on the singular value
decomposition (SVD, see Golub and Kahan (1965)) of X itself. The r first singular
vectors can then be regarded as new independent predictor variables, principal com-
ponents regression (see Hocking (1976) for a review).

Marquardt (1970) and others (Hawkins (1975), Mayer and Willke (1973) ), showed
the close similarity (but nonequivalence) between ridge and generalized inverse esti-
mates. A large literature on closely related problems in numerical analysis, so-called
ill-posed problems, addresses the collinearity problem in linear models along essentially
the same two lines (see Varah (1979), Bj6rck and Elden (1979), Wahba (1977)).

A third, less often used approach, is the so called James-Stein estimates. These
consist of the ordinary least squares estimates multiplied by a shrinking factor q
(0 < q < 1). The use of these shrunk estimates in multiple regression has recently been
reviewed by Draper and van Nostrand (1979) and Hocking (1976).

3. The PLS method. In the present article we investigate the properties of so
called PLS estimates (partial least squares) adapted to the multiple regression problem.
PLS was recently developed for modelling information-scarce situations in Social
Sciences (H. Wold, 1975, 1982). We show that the present PLS estimation is a variant
of the conjugate gradient method developed in numerical analysis for the calculation
of generalized inverses (Hestenes and Stiefel (1952), Golub and Kahan (1965), Paige
and Saunders (1982)). Each step of the conjugate gradient algorithm gives the PLS
estimate of the corresponding rank.

The predictive significance of each sequential estimate can be tested by cross
validation with only a small amount of additional computation. One simultaneously
obtains jackknife estimates of the regression coefficient standard errors. Thus an
efficient stopping rule is obtained; the rank is used which gives the model the best
predictive properties in the cross-validatory sense.

The method is particularly attractive because (1) only two vector-matrix multipli-
cations are needed for each successive rank estimate; and (2) the calculations are
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performed on the raw data y and X and the moment matrix needs not be calculated.
This makes the method suitable for large problems where the amount of computation
with standard methods of matrix inversion or diagonalization becomes prohibitive.
Examples of such large problems are found in protein X-ray crystallography (Konnert
(1976)) and geodesy (Kolata (1978)). With the proliferation of microcomputers, fast
and simple-to-program methods are of interest also for small and moderate problems.

4. Details of the estimation. The PLS algorithm, in its general, mode A formula-
tion, deals with variables blocked in q blocks, and forms a sequence of rank one
approximations to the combined data matrix. In this paper, we consider only the case
with two blocks, one of them furthermore restricted to consisting of only one variable.
Let the data matrices for the two blocks be X and y, and denote the combined matrix
by

z-[xly].

We then successively form a sequence of residual matrices Zs, using the following
algorithm:

ALGORITHM PLS.
1. Start Z [XI y], bo 0.
2. For s 1, 2,..., until IlZsll is sma

1. Us XsX’sys/[lX’sysll.
2. cs=Z’sus/U’sUs, Cs=(a’s, ps) ’.
3. Zs+ Zs- UsC’s.
4. Solve A.bs rs, rs (pl, ",ps) for

We first note that

Ur [Ul, Ur]

builds up an orthogonal basis of the range of X, since Xs/l is the projection of X
orthogonal to Us, (see step 2.3):

Xs+l=Xs---7 I- Xs I I- X
U Us bl bls U Us/ l,l l,l

making us/lUs 0. Noting that step 2.1 is a gradient step, we see then that the PLS
algorithm is actually equivalent to a conjugate gradient algorithm applied to the normal
equations of the system (1). The right vectors denoted by as are not orthogonal, so
in order to solve for the regression coefficients, we have to update the solution of an
underdetermined system in step (2.4).

The formulation in algorithm PLS is of interest since it shows the close connection
to the principal components regression and total least squares (Golub, van Loan
(1980)) algorithms, in that they all build up Z as a sum of rank one matrices. However
for actual computation, especially for large problems where the updating step (2.3)
becomes time-consuming, we suggest that a reliable implementation of conjugate
gradients be used. The algorithm LSQR (Paige and Saunders (1982)) is the preferred
choice.

ALGORITHM LSOR. (see Paige and Saunders (1982) for details).
1. Start 01 vl X’ y, 01Pl Xvl.
2. Fors-l,2,...

1. Os+l vs+l X’ps
2. Ps+1Ps+ X1)s+ Os+ 1Ps.
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The positive numbers 0s and ps are normalization coefficients chosen to give the vectors
vs and Ps unit length. We have given the algorithm bidiag 2 of Paige and Saunders
(1982), which is a simple transformation of the algorithm bidiag 1 that they have
actually implemented.

We see that the vectors Ps of algorithm LSQR are proportional to the vectors us
of algorithm PLS. In fact, the two algorithms are equivalent, and give the same sequence
of solutions. Convergence occurs when 0s+l or ps+l become negligible, and since the
vectors are orthogonal, this occurs for s--r, the rank of X, if not earlier. Often
sufficiently good numerical results are obtained much earlier.

5. Data scaling. The PLS estimates depend on the scaling of the variables xj as
do ridge and principal components regression estimates. Thus, a variable xj with large
variance will get a larger weight v, and hence give a larger influence on the latent
variable u than a variable x with a small variance.

When no prior information about the relative importance of the independent
variables is available, centering the variables xj to mean zero and scaling to unit length
is probably the best alternative. As noted by Draper and van Nostrand (1979): "This
at least forces everyone to do the same calculations in circumstances where compelling
prior information is lacking."

6. Cross validation and jackknife. Cross validation (Stone (1974) and Geisser
(1974)) is a technique which is very useful in estimating the optimal complexity of a
model for a given data set. The data set is divided into a number of groups. The model,
with a given complexity, is fitted to the data set reduced by one of the groups. Predictions
are calculated by the fitted model for the deleted data and the sum of squares of
predicted minus observed values for the deleted data is formed. Then, in a second
round, the same procedure is repeated but with the second group held out. Then a
third round is performed, etc., until each data point has been held out once and only
once. The total sum of squares of predictions minus observations then contains one
term from each point. This sum, abbreviated PRESS, is a measure of the predictive
power of the model with the given complexity for the given data set.

Cross validation has attractive theoretical properties (Wahba (1977)). Golub,
Heath and Wahba (1979) use it to estimate the optimal ridge factor in ridge regression.
It has been used as a criterion to select variables in multiple regression (Allen, 1971),
for selecting the smoothing factor in spline fitting (Wahba and Wold (1974), Craven
and Wahba (1979)), to select the best number of components in principal components
analysis (S. Wold, 1978), and for hypothesis testing in PLS modelling (H. Wold (1982)).
In the PLS estimation discussed here, we wish to estimate the optimal rank of the
estimate, i.e. when to stop the algorithm. We divide the cases into G groups. With
one of these groups deleted one still gets estimates for Vs+l in step (2.1) of algorithm
LSQR, which allows the "latent" variable Xvs+ in step (2.2) to be estimated for all
n data points, including those deleted. The residual Ps+l is then estimated based on
the retained points, and prediction errors computed for those deleted. The PRESS is
then calculated as the sum of squares of the predicted residuals for the deleted points.
A second part of the data set is then held out, squared prediction errors are added to
the PRESS and so on.

Note that in algorithm LSQR we have scaled Ps to unit length. When comparing
prediction errors in different steps, we use the unscaled residuals

An alternative way of performing cross validation, which is to be used when the
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successive PRESS. es are to be compared with ridge-PRESS and ordinary least squares
PRESS, is to make the total calculation up to the last significant PLS rank separately
for each subgroup deletion.

In large problems, repeated calculations with deletion of one group after another
may be too time-consuming. In such cases, however, there are usually so many data
points that one with little loss can make a small part, say 5 or 10%, of the data a "test
set." The estimation is then based on the remaining 90 or 95% of the data and the
validation is made by letting the model predict the values in the test set. Thus the test
set never enters the estimation; it is used only to estimate the "optimal rank" of the
model.

The jackknife method (see Duncan (1978) and Miller (1974) for reviews) is closely
related to cross validation in that it makes use of the data several times, each time
with a subset of the data deleted from the calculation. The scope of the jackknife is
to use the variation in the resulting parameter estimates fi to calculate standard errors
of these estimates. It is a "soft," data-oriented approach, in contrast to methods based
on "hard" models such as maximum-likelihood methods (see H. Wold (1982) for a
discussion). Denoting the value of fij obtained when subgroup (i 1, 2,..., I) is
deleted by/3ji, one first forms the pseudo-values Pii as:

(i=1,2,... ,I).

These values have the averages

and the estimated standard errors"

s. 1) (P]i- p])2

7. A chemical example. Dunn, Wold and Martin (1978) tried to relate the
biological activity, y (the stimulation of the/3-receptor measured by Lefkowitz et al.,
1976), of n 16 similar chemical compounds to a set of 8 variables xj. These variables
describe various morphological and physicochemical properties of these compounds,
such as electronic and steric properties of the substituent in a certain position and the
lipophilic character and receptor-binding strength of thee whole molecule. The data
are shown in Table 1.

In their analysis, Dunn, Wold and Martin (1978) use principal components
regression, contracting the matrix X to its first two singular vectors.

Here we reanalyze the same data using partial least squares, PLS. For comparison
we have used ordinary least squares (OLS), principal component regression (PCR),
James Stein shrunk estimate (JS), ridge regression (RR), and finally total least squares
(TLS).

To evaluate the goodness of fit of the various models, we use the predictive sums
of squares (PRESS) as described above in 6. The data were divided into 3 groups
(no. 1 points 1, 4, 7, , no. 2 points 2, 5, 8, , no. 3 points 3, 6, 9, .). Thus,
the jackknife standard errors were also obtained for the PLS estimates.

Figure 1 shows the variation of the ridge estimates, PRESS and the residual sum
of squares with the ridge parameter k. PRESS has a minimum around k 2.0, which
is larger than the maximal recommended value of 1.0 (Hoerl and Kennard (1970)).
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TABLE
Observed B-receptor agonist activity (y) for 15 compounds of the formulae

XCH--CH--NH--R
--’/R R
Y

The structural descriptors xl to x8 are, in order: xl log equilibrium constant for the binding of the molecule
to a receptor model, x2 log acidity constant, x3 lipophilicity (tendency to prefer fatty tissues compared to
aqueous phase, e.g. blood) of the phenyl part (X, Y--C6H in the formulae above) as measured on the model
system octanol-water (see Hansch et al. (1973)), x4 and x,s are lipophilicities ofgroups R1 and R2, respectively,
defined in the same way as x3, x6 and x7 are Taft’s r* and Es of the group R which measure the electronic
and steric properties of the group (see Hansch et al. (1973)) and x8 is an indicator variable equal to when
R--OH and 0 when

y X X X X X X X X

4.39 4.55 8.93 1.14 0.70 0.19 0.49 1.24
2 4.42 4.74 8.93 1.14 1.23 0.19 0.49 1.24
3 5.00 5.07 9.29 1.14 0.19 0.70 0.00 0.00
4 5.85 5.77 9.90 1.14 0.19 1.64 -0.10 -0.47
5 4.35 4.62 9.90 1.14 1.23 1.64 -0.10 -0.47
6 4.51 4.41 9.93 1.14 1.23 2.35 -0.20 -0.51
7 6.33 6.17 9.19 1.14 0.19 2.83 -0.13 -0.93
8 6.37 6.17 9.19 1.14 0.19 2.56 -0.13 -0.93
9 4.68 4.33 10.03 1.14 0.19 2.42 -0.08 -0.38 0
10 5.04 4.62 10.29 1.14 0.19 3.36 -0.13 -0.93 0
11 7.10 7.22 9.29 1.14 0.19 2.43 -0.30 -1.60
12 5.04 4.64 10.22 1.14 0.19 2.95 -0.08 -0.38 0
13 6.00 5.62 9.94 -0.07 0.19 1.64 -0.19 -0.47
14 5.48 6.19 9.77 -0.07 0.19 1.64 -0.19 -0.47
15 7.10 7.85 9.29 -0.07 0.19 3.80 -0.30 -1.60

The OLS PRESS is 3.16 which is considerably higher than the best ridge value
of 2.11. The PLS PRESS is 2.06, very close to the ridge optimum. The PCR value of
2.56 (with two components) is somewhat larger. The James-Stein estimates give a
minimal PRESS 2.57 for the shrinking factor of 0.82. The PCR PRESS for three
components equals 2.12. TLS (minimum norm) gave PRESS 2.02 for rank 3, and
behaved very similarly to PCR for low ranks. When full rank is approached, it behaved
differently. Note that in order to get a minimum norm TLS solution, the complete
singular value decomposition is needed (see Golub and Van Loan 1980, formula (2.7)).

We also tested cross validation with 5 and 15 groups, i.e. only one point deleted.
The results are not significantly different; in some cases we got a sharper minimum
for PRESS with 5 groups. Generally, few groups are expected to give a conservative
estimate of complexity, since the risk of overfitting is smaller.

Table 2 shows the estimated values of the regression coefficients/j for the various
methods. It is seen that the Ridge, PLS and PCR values are shrunk compared with
the OLS values, the PLS and PCR values being the most shrunk. The ridge, PCR (2)
and the PLS (2) agree within about 2 standard errors of the latter.

8. Discussion. The PLS method gives a solution to the multiple regression prob-
lem which is stabilized in comparison with the OLS solution and which has, at least
in the examples investigated, a comparable prediction error to ridge regression. The
very simple computations involved makes the method suitable for large problems and
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TLS(3)

PCR 3)

kRIDGE
FIG. 1. Estimated values for regression coefficients through 8 as functions of the ridge parameter k.

Also plotted are the estimates corresponding to the TLS, JS, PLS and PCR solutions (see Table 2). The sum

of squared residuals and the cross validation variance are plotted in relative scales.

TABLE 2
Resulting estimates ofthe regression coefficients (data in Table *) for the different methods ofestimation.

SS is the residual sum of squares obtained when the model is fitted to all data. PRESS is the corresponding
predictive sum of squares obtained by cross validation with the data divided into three groups. OLS is ordinary
least squares, JS is James-Stein estimate with shrinking factor 0.82, RR ridge regression with k 2.0, PCR
principal components regression with 2 and 3 components, TLS is total least squares and PLS is partial least
squares rank and 2, respectively. The PLS(2) standard errors (s.err) were calculated by the jackknife method.

Var. no 2 3 4 5 6 7 8 SS PRESS

OLS .636 .080 .095 -.308
JS (.82) .522 .066 .078 -.252
RR (2.0) .432 -.143 .011 -.267
PCR (2) .325 -.121 -.210 -.144
PCR (3) .354 -.235 .018 -.162
TLS (3) .379 -.274 .030 -.260
PLS (I) .284 -.069 -.122 -.192
PLS (2) .372 -.205 -.090 -.226
s.err .058 .081 .103 .046

169 .241 -.278
138 .197 -.228
133 -.049 -.200
111 -.184 -.210
168 -.164 -.262
161 -.125 -.244
161 -.184 -.223
119 -.128 -.211
.009 .047 .016

238
195
133
194
172
132
.O85
.166
.045

0.61 3.156
1.04 2.569
0.82 2.114
1.99 2.557
1.15 2.117
0.88 2.015
2.15 3.030
1.06 2.062

* All variables including y scaled to mean zero and unit variance.



742 S. WOLD, A. RUHE, H. WOLD AND W. J. DUNN, III

for the implementation on micro-computers and desk calculators. Cross validation
provides a simple and straightforward stopping rule; it also makes it simple to compare
the estimates of different methods and to calculate jackknife standard errors.

The situation treated in the present article is a simple special case of the general
PLS modelling and estimation. The favorable predictive properties of the PLS estimates
found in this case is encouraging for the utility of more extended PLS models (cf. H.
Wold, 1982).

We have been using the principal components of X as a means of discriminating
between different classes of "objects" (cases, compounds), each object being character-
ized by values of the variables x- (Albano et al. (1978), Dunn et al. (1978), (1979),
S. Wold et al. (1976), (1977), (1978)). The extra information provided by the variable
y in the present case might make the corresponding vectors bs superior to the ordinary
principal components in the context of discriminant analysis and pattern recognition,
a subject which we are currently investigating.

In a forthcoming report we will also investigate statistical and numerical aspects
on the PLS method, and show how the 8 theorems given by Marquardt (1970) for
ridge and principal component regression translate into this situation. We will also
investigate computational aspects, especially for large problems. For large sparse
problems, e.g., the geodesy problem, a reformulation as a multiple block PLS problem
might prove advantageous.
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Abstract. A new method is described to compute the solutions of linear BVP in an efficient and stable
way. The stability is achieved by decoupling the multiple shooting recursion; this means that the choice of

output points can be made virtually without regard to restrictions. By fixing the number of integration steps
per "shooting" interval and assembling as many of them as is needed to fit the user’s requirements, high
efficiency is gained. Apart from a mathematical description, we also give a stability analysis of the method.
A large number of numerical examples confirm this analysis and illustrate the possibilities of the algorithm.
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1. Introduction. There exists an ever growing literature on two-point-boundary-
value problems that has produced a large number of methods for solving them, see
e.g. [1], [2], [4], [5], [6], [8], [9], [17], [18]. Still, even for linear problems there is
room for improvements. These are related to questions regarding the efficiency of the
method, in particular, for more general boundary conditions (BC), the flexibility with
respect to the choice of output points (whether user requested or code determined)
and last but not least the problem of how to control the stability. In this paper we
shall describe a multiple shooting algorithm which grew out of a number of ideas,
developed in part in previous work cf. [11], [12], [13], [15] and matured while
attempting to write a general purpose FORTRAN code MUTS. We consider the linear
ODE

dx
(1.1) dt-L(t)x+f(t) a<x<fl,

where L is an n x n matrix function and f an n vector function, and assume that the
solution x satisfies the BC

(1.2) Max(a) +Mx( b,

where M,, and Ms are n x n matrices and b is an n vector. We consider mildly stiff
ODE only (i.e. ILl has no very large eigenvalues). Since our method employs
orthogonalization at the shooting points it is a remote cousin of the Godunov-Conte
algorithm [3] (see also the implementation in [18]). We like to emphasize, however,
that our motivation is different. While orthogonalization in [3], [18] is used to maintain
(or rather "restore") independence of a number of basic solutions, we feel that
decoupling of solution spaces into increasing and decreasing modes is the key to get
around the inherent (initial value) instability. Therefore, in our opinion, it is the
triangularization (at least block triangularization) of the incremental matrices, that is
crucial for this technique and we shall give some remarkable examples that underline
this. Triangularization of the multiple shooting recursion makes the use of (special)
sparse matrix solvers, like in [2], or (perhaps not always stable) initial value recursion
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techniques, like in [5], [20], superfluous. Like most codes we employ an adaptive
integrator. Another novelty is that we use efficiency arguments to select the so-called
minor shooting intervals (cf. [15]). The so-called major shooting points (where the
solution will be given as output) are a subset of the previous set and can be specified
by the user, either directly or indirectly. Using the decoupling it can be shown that
assembly of minor into major intervals does not affect the global errors, thus insuring
stability and reasonable flexibility in the choice of output points.

In 2 we first give a description of the triangularization technique. The actual
algorithm is given in 3. The stability of the method is considered in 4 and we
conclude with a number of numerical examples in 5.

2. Triangularization of multiple shooting recursions. In a multiple shooting
algorithm, the interval [a,/3] is divided into a number, say N, of subintervals, [ti, ti/l],
i=0,... ,N-1. On each interval Its, t/l] a fundamental solution, say F, and a
particular solution, say wi, is computed. Hence for each there exists a vector Yi such
that

(2.1) x(t)=F(t)yi+ w(t), i=0,... ,N.

(N.B. the relation for N is added to make the formulae later on look nicer.) By
matching the relations (2.1) at ti/l for 0,. , N- 1 we obtain the recurrence relation

(2.2) F+,(ti+,)y+, F(ti+a)y + wi(t+a)- Wi+l(ti+l).

Suppose we choose the fundamental solutions F such that V F(t)=/, then

(2.3) A, := F(t+I)

is the incremental matrix (Wronskian) on [ti, ti+l]. If we let

(2.4) gi ’-" Wi(ti+l)-- Wi+l(ti+l)

then (2.2) reads

(2.5) Yi+l AiYi + gi, 0," N- 1.

From (1.2) and (2.1) we therefore see that the sequence {Y}/--0 must satisfy the BC

(2.6) Myo+MyN=c: b-M,,wo(to)-MWl(tl).
The relations (2.5) and (2.6) together constitute the multiple shooting equations, cf.
[5], [8], [12], [16], [17], [20]. Rather than solving them by some linear system solver,
cf. [2], [8], [21], we use the recursion (2.5), in a way different from the approaches in
[5], [20].

In order to understand the basic idea of our algorithm it is useful to assume that
the homogeneous solution space of (1.1) is dichotomic, i.e. such that for some k there
exists a k dimensional subspace of increasing solutions and an (n- k) dimensional
subspace of nonincreasing solutions. This implies that forward recursion of (2.5) is
unstable (recall that A was the incremental matrix). We therefore apply the decoupling
method of [10], [11] in order to compute growing and nongrowing components
separately. This goes as follows: let Q0 be a given orthogonal matrix (see 3). Then
compute recursively a sequence of orthogonal matrices {O.}=a and upper triangular
matrices { U}= such that

(2.7) AiQi Qi+a U/, 0," N- 1.
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Writing
-1(2.8)

we obtain the triangular recursion

(2.9) ;,+x U7 +, 0,..., N- 1.

It has been shown in [10], [11] that this decoupling gives U of which the k x k left
upper block represents the increments of the (transformed) increasing solutions and
the (n- k)x (n- k) right lower block the increments of the nonincreasing solutions,
if Oo is chosen appropriately. (Observe that the rounding error in U is O(]Ail[eM),
where eM denotes the machine epsilon.) We now partition matrices and vectors as

(2.10) U E /’
is a k vector) and employ the following decoupled(where B is a

recursions

(2.1)
-2(b) Ui ,+-Cy,- i=N-1,... O.

On account of the growth behaviour of the E and B, we expect E ll,
II[H-1B]-III=O(1), i.e. the recursions (2.11) are expected to be stable. This
decoupled form is now employed to compute some particular solution of (2.9) and
also a fundamental solution of the homogeneous part of (2.9). The desired particular
solution {} then follows by superposition using the BC. The computation of these
solutions goes as follows" Let the particular solution {}=o satisfy

2.12 g=0, g=0.

Then {}=o can be found in a stable way using (2.11)(a) and { o}= using (2.11)(b)
(note that the C terms are known now). Let the fundamental solution {}=o satisfy

(2.13) =[ I,_], =[I ].

Then {}=o can be computed from the homogeneous part of (2.11)(a) (i.e. with
V=0) and {a oi}=N from the homogeneous part of 2.11(b) (i.e. with Vffl =0).

Clearly, for some fixed vector a we must have

(2.14) y, ,+,a, i=0,... ,.
If we substitute this for i= 0, N in the BC, we obtain a simple equation for a, viz

(2.15) Ra c MQoo-MQn,
where

(2.16) R := MQoo+MO.
Hence the solution to the recursion (2.5), satisfying (2.6) is given by

(2.17) y,=Q,[+,a], i=0,... ,N.

The stability of this method will be discussed in 4.

Hj=p Ej is defined as E,Eq_I... Ep if q => p and as I otherwise.
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3. The multiple shooting algorithm. In this section we describe a multiple shooting
algorithm that is designed to obtain flexibility with respect to output points and
reliability with respect to the stability of all computations involved. It employs the
ideas described in [15] and 2. In 3.1 we show how the orthogonalization and
triangularization is actually implemented. In 3.2 we indicate how the integration of
the ODEs is performed and how this is related to selecting the shooting points. In
3.3 we consider the question how the output points may be chosen. In 3.4 we show

how an appropriate matrix Q0 and the proper partitioning of the matrices U (which
was an important prerequisite for the stability of the recursions (2.11)) can be found.
Finally, in 3.5 we give a special strategy for choosing the particular solutions w in
order to obtain higher efficiency, in cases where the desired solution is very smooth.

3.1. Computation of the upper triangular recursion. In an actual implementation,
the matrices A (cf. (2.3), (2.5)) do not appear explicitly as we directly use the
orthogonal matrices to define initial values of suitable fundamental solutions. This goes
as follows" On [to, fi] we compute a fundamental solution/30 say with

(3.1) /3o(to) := Oo.
At tl, decompose ff’o(tl) as

(3.2) o(fi) O Uo, Q1 orthogonal, Uo upper triangular.

On [h, t] we proceed with the fundamental solution J61, satisfying

(3.3) [l(tl) :-- Ol.
In general, we compute on [h, h+l] the fundamental solution F with

(3.4)

and decompose

(3.5) P,(t+l) Q+IU.

Obviously the F are nothing but the transformed F of 2, i.e. there holds

(3.6) (t) QF,( t).

As for the particular solution, we choose

(3.7) wi(ti):=O, i=0,... ,N.

This means that

(3.8) y’ Q71x(ti).

The transformed matching recursion then reads
-1(3.9) 7/1 U+0+w(t/).

3.2. Adaptive integration and optimal complexity. A basic part of the algorithm
is the integration of the particular and the fundamental solutions by some adaptive
method. At present there are no codes available that are specially designed for
integration both of increasing solutions and of nonincreasing solutions. Nevertheless,
if the problem is not too stiff (in forward and backward direction) most currently
available methods perform quite well. On account of its simplicity a fourth-fifth-order
Runge-Kutta-Fehlberg method [7] is used in MUTS. A more detailed discussion of
the use of this method for a nearly optimal shooting strategy can be found in [15]; we
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use the results obtained there. First, the adaptivity feature is only employed to compute
the particular solutions wi on some grid on which the number of points is fixed (say
5). Then the fundamental solution is integrated by the fourth order method on the
same grid. The matrix at the last grid point is decomposed into an orthogonal and an
upper triangular matrix as described in 2.

In order to understand why this strategy makes sense, we first remark that each
solution (homogeneous or inhomogeneous) is likely to contain a multiple of the most
dominant mode. Since this mode essentially dictates the steplength, there is no need
to use the adaptivity feature for more than one solution. Second, the QU-decomposition
is relatively cheap compared to an integration step (about a factor 1/5) and therefore
the complexity is mainly governed by the costs of integration. On account of the
presence of increasing modes, larger intervals tend to make the integration less efficient;
small intervals can make the overhead due to initialization etc. too high. Therefore a
small (fixed) number of integration steps per shooting interval is preferred. This has
two additional advantages. In the first place the shooting points are equidistributed
(regarding the growth of the dominant mode) and in the second place we can choose
our output points from a fairly dense grid. We remark that usually this strategy leads
to a larger number of points than one may be interested in. In the next subsection we
return to the latter question.

3.3. Assembly of minor shooting intervals. The strategy of 3.2 not only gives
us more points than desired, usually, but also more than desirable from a storage point
of view. Indeed, in principle we have to store the matrices Qi, Ui and the vectors
at each shooting point. We propose two criteria for picking a subset suitable as output
points. The first one is to choose points that correspond to an interval on which the
most dominant mode does not grow more than a preset value; this results in a global
equidistribution of these (major) shooting points. The second criterion is to take just
a prescribed number of points. Both criteria can be used while marching from to to
by checking either the increments or the interval length. In composing such a major
shooting interval we compute an updated incremental matrix and an inhomogeneous
term at each step. Hence the number of incremental matrices to be stored is equal to
the (smaller) number of major shooting intervals.

Suppose we want the incremental growth to be bounded by M. This assembly of
(minor) shooting intervals then goes as follows. Let t be the initial point of a major
shooting interval. Define

(3.10) W0 := U/j, tj := ffj.

If Woll->-M, then tij+l := tii+1, i.e. the minor interval is a major interval. Suppose this
is not the case. Then for s 1, 2,... we compute

(3.11) Ws: Uij+sWs_l, s := Uij+s(Js_l-Jt-gij+s,
until IIWsll>-M. As a major interval we take (tij, tj+s+l) and define

(3.12) V := W, := (s (also if s 0).

The global (major) recursion for the sequence {)7ij}, then reads

(3.13) y’j/l-- Vj)i] --/j.

At this point one might be suspicious whether we destroyed the advantages of
our algorithm, as the updating in (3.11) is nothing but forward recursion! However,
there is not a real threat for two reasons. First, we may choose M such that Me (e
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the machine accuracy) is still smaller than the required tolerance (cf. [15]). Second,
since the recursions are decoupled the error propagation is very special and we show
in 4.3 that no significant error build-up, due to this assembly, is felt in the final
solution approximant, however large M may be chosen.

3.4. Choosing an appropriate Qo and the proper partitioning. As we remarked
in 2 we need to choose Q0 properly in order to make sure that the induced upper
triangular matrices Ui have the desired ordering, i.e. such that the left upper blocks
represent the incremental values of the increasing modes. Before we show how this is
achieved in our algorithm it is useful to investigate how different choices of the initial
value matrix Qo induce different sequences of orthogonal and upper triangular matrices
and how these are related. So let Q0 be another initial value matrix and {(i}_-0 and
{ Di} be the induced orthogonal and upper triangular matrices (cf. (2.7)), i.e.

(3.14) AiQi-- Qi+I Ui.

Write (cf. (2.8))

(3.15) yi := 0-ly, g :=

Then {i} satisfies

(3.16) Yi/l UiYi + gi.

The recursions (2.9) and (3.16) may be called equivalent since we can define an
equivalence relation by introducing
(3.17) Si:=Q:,Oi.

It is easy to see that the following equalities hold

(a) UiS S +1 f/,
(3.18) (b) i --1Si+lgi,

(C) i--sTli
In our algorithm, we like O0 to be chosen such that the Bi reflect the growth of

the increasing solutions. This may be measured by inspecting the diagonal elements
(=eigenvalues); in particular if the (major) shooting interval is not too small, this
seems a suitable strategy. Assuming there is a global dichotomy (i.e. on the entire
interval [to, tN]) it suffices to make sure that the first assembled matrix V0 (see 3.3)
has a properly ordered diagonal. This is done as follows. We start at to with Oo L
Due to the tendency of the triangularization to give ordered diagonals in the upper
triangular matrices (cf. power method arguments, see also [10], [11]), this will quite
often be a satisfactory choice to achieve our goal. Anyway, at tl we check whether
diag (U0) is ordered. If this is not the case, the columns of Uo are reordered according
to the absolute magnitude of the diagonal elements. This can be described by a
permutation matrix P(1) say (the one between parentheses indicates that the checking
has been performed at h and the superscript one that it is the first permutation
trial). The permuted matrix is again decomposed into an orthogonal and an upper
triangular matrix, say
(3.19) Uo(0)P(1) P(1) U(1),
where Uo(O):= Uo.

If the matrix U(1) is not yet ordered, this procedure has to be repeated. One
should realize, however, that disordering is caused by the fact that the subspace spanned
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by the first k column vectors of O0 makes an extremely small angle with an initial
value of a nonincreasing mode (cf. [11, 5.1]); therefore in the (quite unlikelyI) case
of a disordered U0 we expect such a permutation process to give a desired result after
a few steps only, in which we have performed, for j 1,. , p say,

(3.20) U-I(1)P(1) e(1) U(1).
Writing

(3.21) S0(1) := P(1) P(1); sa(a):= P’(a) P(1); Uo(1):= u(a),

we thus have

(3.22) U0(0)So(1) S(1) U0(1).

If we indicate the original sequences {O} and { U} by {O(0)} and {U(0)}, then
using Oo(1):= S0(1) as an initial matrix induces sequences of orthogonal matrices
{O(1)} and upper triangular matrices {U(1)}. Obviously we thereby obtain an
equivalent upper triangular recursion of which the transformation matrices are related
by (el. (3.17))

(3.23) S(1) := [Oi (0)]-10i(1).

(Note that 0o(0)=/.) Since we are building a major shooting step (cf. 3.3), we next
check whether

(3.24) Wa(1) := UI(1) Uo(1)

is ordered. If this is not the case we permute columns of Wa(1) and decompose, as
we did before with Uo(1),

(3.25) W1(1)So(2) $2(2) Wl(2)

where $2(2) is orthogonal and Wl(2) is upper triangular. Now So(2) induces another
equivalent recursion which would follow from the transformations (Q(2)) with Qo(2) :=
So(1)So(2) and for which

(3.26) S(2) := [Q(1)]-1Q(2).

At this step the inhomogeneous term is updated like

(3.27) (1 (2) := [$2(2)]-a{ UI(1) (0(1) + 1(1)},

where t(1):= O-(1)i (cf. also (3.18)(b)). Typically at this point we have to store
the most recently found initial matrix Oo(2), and also O2(2), W(2) and (a(2). These
four arrays are overwritten at each consecutive step by the new initial transformation
matrix Oo(" (only if reordering of diagonal elements is needed), the most recent
orthogonal factorization matrix O+(" ), the most recent assembled upper triangular
matrix W(. and the most recent assembled forcing G(. respectively. This updating
is continued until the endpoint of the first major shooting interval is reached. At
subsequent points no reordering is performed; if the solution space is dichotomic this
seems quite reasonable. However, if there is no global dichotomy the ordering found
at the beginning may not be the appropriate one globally. Therefore, the algorithm
finally checks the product of the diagonals of the upper triangular matrices. If this
turns out not to be ordered, a new round of permutations is performed giving new
transformation matrices at the major shooting points and new upper triangular matrices
describing increments between them (carried out as described in (2.7)).
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Two remarks must be made. First, due to the tendency of larger increments to
be in the left upper block if not by rounding errors then at least by (usually larger)
discretization errors, there is a "natural" self-restoring effect (though not always
appropriate, see Example 5.2). Second, if the problem is not dichotomic, it cannot be
expected to be a very well conditioned one, as follows from [14, Thm. 3.17]; in other
words, it is the problem, rather than the algorithm that is to be blamed for possible
instabilities! In 4.1 we indicate how we may monitor this instability. After the global
ordering has been found to be satisfactory, a value of k, the dimension of the dominant
subspace, is determined from inspection of the diagonal elements.

3.5. Special choice ot the w, when the solution is very smooth. One of the main
problems in multiple shooting is that the efficiency of the integration is almost always
dictated by the most rapidly increasing modes. This is unsatisfactory if the solution x
is very smooth (and most multiple shooting codes suffer from this problem). In looking
for ways to make our code as efficient as possible, we have experimented with a version
that chooses particular solutions wi in which the dominant mode component is much
less influential. The idea is conceptually very simple and is another evidence of the
usefulness of decoupling the recursion while marching from a to/3. First we define
some i(ti), equal to Wi-l(ti) except for components that may belong to the dominant
modes, by projection of wi-l(ti) on the dominant solution space. Specifically,

[OlWi-l(ti)]2

Because of the smoothness we now expect

(3.29) i Y--I,
SO

(3.30)

If we are optimistic enough, we may hope that = i_l(ti), apart from dominated
modes. Therefore we propose to use as initial value of w at t"

(3.31) wi(ti)

For a numerical justification, see Example 5.6.

4. The stability of the algorithm. In this section we consider the numerical stability
of the different parts of the algorithm. Although the solution of the linear system
(2.15) describes the final stage of the method, we analyze this first in 4.1 which deals
with the important notion of well conditioning. Then in 4.2 we investigate the stability
of the recursions (2.11)(a) and (b). Finally in 4.3 we analyze the effect of assembling
the recursion as was described in 3.3.

4.1. Well conditioning and stability. As was shown in [12], [13] a useful quantity
for studying the inherent stability of a BVP with respect to the BC is given by the
condition number

(4.1) cff := max IIF(t)[MF()+MF()]-II,

where F is any fundamental solution. In particular, if we neglect discretization and
rounding errors, we have for the fundamental solution of the recursion (2.5), where
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As was shown in [13], the condition number enables us to give fairly straightforward
estimates for the global error if the solution space is dichotomic. We can also prove
that this condition number is a good measure for the stability of the equation (2.15),
see the following theorem.

THEOREM 4.3. Let I1" II- I1" I1.. Then IIg-’ll <- 2N.
Proof. Denote K :=max II%g-ll. Then it follows that 116g-’ll_-<l14og-111-

II,0R-ll _-< , and similarly II,IR-II <_- . Hence

R-111 ,g ] \ ,g ]
-< IIR-’ + IIoR-’

i.e.

R- 111 _-< 2r.

If we can compute and z7 stably, then the problem of computing the vector a from
(2.15) is as well conditioned as the BVP itself!

4.2. The stability of the recurrence relation (2.11). In order to analyze the stability
of (2.11), we examine the effects of additive perturbations {z2} and {z} in (2.11)(a)
and (b) respectively, like was done in [11, 4]. So let {gi} satisfy the perturbed recursion

(4.4)
(a) g/+l Eigi + Z+l, go Zo,
(b) g BT’{g i+ Cig2i } 4- z g=z,

where one may think of IIzll, z,ll to be of the order of IIAille (cf. 2). We then obtain

(4.5)
l=O j=l

{ (ifil)} NI ((/ill)--1 } {(/ill )--12(b) gi= -i,N F_,j z + Bj l,NZl 4- Bj
/=0 j=l /=i+1 j=i l=i \j=i

where ’p,q is a shorter notation for

(4.6)

Now if the partitioning is chosen correc.tly and if there is a dichotomic solution space,
then it follows that III-I_-/Ell and I1(1-I_- B)-’II are of order one. Moreover, if the
solutions are directionally well separated, Ilfp,qll will not be large (cf. [10, Rem. 6.13].
Hence contamination of errors will not produce large errors.

It was shown in [11] that a wrong choice for Q0 (i.e. the span of the first k column
vectors being close to an initial value of a decreasing mode) produces large IIEll and
large IIB;II initially and therefore usually large lip,q, for p small. This led us to the
permutation updating of 3.4; in Example 5.2 we shall show how important this
"optimal" choice for Qo may be. If there is no dichotomic solution space, one should
hope that max/,/ [[Hj=/EII and max/,/I1(1-I=, Bj)-lll are not so large as to produce
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global rounding errors that threaten the desired discretization error. However because
of a result given in [14, Thm. 3.17] we are inclined to believe that this can only happen
for problems that are inherently unstable.

4.3. The effect of assembling on the global error. The last and perhaps most
intriguing part of this stability analysis is to show that the assembly does not influence
(at least not significantly) the global rounding error. This can be proven using an
adapted version of the error analysis of [13], which we shall give below.

As before, let eu denote the machine epsilon. Then a realistic description of the
rounding error in a major shooting incremental matrix V, assembled going from tij_l
to tij, is given by eMii[Pii_I]-aDj where D is some matrix with IID II- O(.1). ,Similarly

ii-1] J,the inhomogeneous terms at ti are perturbed by something like eui[ -ld
where O(1).

For simplicity we only investigate the global error caused by the latter perturba-
tions. Therefore we introduce discrete Green’s functions Zj(s) defined by

(4.7)
(a) Z(s)= VjZ]_I(S)+.A]s

(b) MOoZo(s) +MQlvZN(s) O,

and where

(4.8) Ais
j[_1]-1 if j= s,

if js.

Similarly to [13, (3.5)(a)] we get

(4.9) Zj(s) --Pi(R-1Mi3QNPN)P -1 j<= S,

the only distinction with the analogous formulae in [13] being that the Green’s functions
here are a "factor" [i_]-1 bigger. Using these Zi(s) we obtain for the global error
due to the above indicated perturbations

(4.10) e= eM E Z(s)ds,

which is analogous to [13, Prop. 4.5].
Property 4.11. Assume that the solution space satisfies similar splitting properties

as in [13], viz. there exist positive v and/, such that the increasing solutions grow at
least like exp [(/z(tij- tij_l)] and the decreasing solutions at most like exp [-v(ti- ti_)].
Then the global error (4.10) is estimated by

eM max dsllIle11<2(+1)
1-e-h +l-e-’h

(N.B. h =min (t,-t,_), for see (4.1); ql and q2 are just constants appearing in
estimating the basis solutions.)

Remark 4.12. Using the notation p,q (see (4.6)) we can write
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Hence, by definition of T in [13], the so-called "direction matrix", we see that

I O NKiTi=( ’Ki /

for some Ki with IIKFII-< 1. Hence we see that

I1( Ig max T-II --< max D-]
-<- 1 + max IIX, II.

Therefore, if the solutions are directionally well separated, implying that IlIi,N is not
large (cf. 4.2), we have )? O(1).

The importance of the result in (4.11) is that it shows that the global effect of
assembling is more or less independent of the length of the major shooting interval.

is--1Of course, one should realize that Ildsll is of order Y-=i,_l IIAII and hence about linear
in the number of minor shooting intervals; however, this is not at all the exponential
error growth that would occur in assembling coupled recursions! The crucial point is
that, though the absolute errors in the computed VII may be large, they get smaller
the lower the row index, i.e. relative to the increment of a certain mode as is given
by a sequence of a certain column of the j; hence, we have stability (thanks to our
special computation by forward and backward recursion).

The problem that remains is: What happens when there is no dichotomy? This is
a difficult question and certainly needs a more extensive study than we have made.
Although one may be able to show that there exist a solution that does not increase
and another that changes behaviour somewhere (like in turning point problems), a
suitable linear combination of these may still exhibit dichotomy. In any case, assuming
well conditioning, the dichotomy is assured, cf. [14]. Moreover, it is not difficult to
give examples where lack of dichotomy leads to severe error growth, see Example 5.3.

In MUTS we have implemented a safety check in order to warn that global
(rounding) errors may threaten the required accuracy. The best check would be to
determine

p,q j,i
IEl and ma.x IBj
=j l,t =j

and use this to get hold of the expression in (4.5). The next best check (as this is at

least practically performable and easy to implement) is to compute

p=ma.x I] diag(E)
1, =]

max

Indeed, the maximal diagonal elements of the matrices IB-ll and IE, are often a good
estimate of their respective norms (cf. [11, see 6]). Hence if p is not large we can
expect that both IlI-I Exll and II(II n )-lll are O(1). Since IIB;Xfxll usually, is O(1), we
therefore may also use p as an estimate for maXp,q IIp,q II. This estimate/9 is now used
as follows. Suppose tee user wants an accuracy tol. If the code detects that peM > tol,
a warning error is given indicating that rounding errors may be blurring the result.
However, in all test problems we noted that p also gave a fairly good estimate for the
global discretization error amplification, see Examples 5.3 and 5.4.

5. Examples. In this section we give a number of numerical examples in order
to illustrate the remarks and analyses above. All solutions of the following problems
have been computed using the double precision code for the inhomogeneous problems,
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DMUTSG, as was developed at Nijmegen cf. 19]. The computations were performed
on an IBM 4341/MVS computer.

We did not make explicit comparisons with other existing codes, like PASVAR
[9], COLSYS [1] or SUPORT [18]. The main reason is that a simple comparison of
cpu time is not very meaningful, as the number of examples is too small to draw
significant conclusions and/or the way each code is implemented may blur any relative
theoretical efficiency predictions. For SUPORT there was the additional argument
that this code is designed for separated BC only. As far as memory requirements are
concerned it might be obvious that any reasonable multiple shooting code is superior
to methods that necessarily need to store information at all grid points. However, if
a user wants a lot of output points, the storage requirements of our code and so-called
global methods become comparable again. We finally note that the triangularization
of the recursion and the solution o resulting BVP has a similar complexity as solving
a (sparse) multiple shooting system by some decomposition method (cf. [15]); an
LU-decomposition method might, however, require a complicated pivoting strategy
and additional memory space, whereas our method only needs N(n2+ n) numbers
(N--the number of major shooting intervals) to store and is straightforward.

Example 5.1. Consider the ODE

(5.1)
dx // 1-19cos2t 0

0 19
dt

-l+19sin2t 0

1 + 19 sin 2t\
0 }x+f(t),

1 + 19 cos 2t]

where f(t) et(-1 + 19(cos 2t-sin 2t), -18, 1-19(cos 2t+sin 2t)) T and the BC

(5.2) x(0) + x(7r) 1 + e=, 1 + e=, 1 + e=) .
The exact solution to this problem is x =(e t, e t, et) . The homogeneous part has
solutions growing like -eTM, -eTM, e-18t, cf. [12, Example 6.2]. As requirements to
have our solution approximated, we asked for an absolute tolerance of 1.0 -6 (= 10-6)
and a maximal increment of homogeneous solutions M= 1.0 +3. (N.B. the code
considers values between .5M and 2.0M to be acceptable.) In Table 5.1 we give the
result (up to two decimals). Note that the last major shooting interval is smaller than
the rest. In Table 5.2 we give the result with tolerance 1.0-7 (as before) but now
with a maximal increment M= 1.0 +30. Note that this increment means that the
recursion is solved by single shooting! The fact that the errors are so much smaller
than was asked for is a typical vice of multiple shooting; indeed, as we let the integrator
determine a fairly general solution (which most likely contains a component of increas-
ing modes) within the required tolerance, the resulting grid usually gives a significantly
smaller error for a smooth solution. Finally we remark that the cpu time for both cases
was almost the same, as we noted in [15].

Example 5.2. Consider the same BVP as in Example 5.1. We used DMUTSG,
now asking for output on 15 equally spaced points (hence the increment M per interval
equals 100). Moreover we deliberately skipped that part where an optimal Qo is to
be determined, so Qo was taken to be/. Since a fundamental solution of (5.1) is given
by (cf. [12, Ex. 6.2])

sint 0 -cos

ll(5.3) Fo(t) 0 1 0 diag (eTM, e TM, e-lSt),
cos 0 sin
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10

0.00

0.34

0.70

1.05

2.83

3.14

TABLE 5.1

1.1 +3 0 2.5 -3
0 8.2 +2 0
0 0 1.7 -3

7.0 +2 0 8.5 -4
0 5.0 +2 0
0 0 2.8 -3

5.7 +2 0 5.0 -4
0 4.2 +2 0
0 0 3.2 -3

1.7 +3 0 6.2 -5
0 1.2 +3 0
0 0 1.2 -3

1.6 +1 0 3.8 -7
0 1.4 +1 0
0 0 8.1 -2

1.9

1.2

1.8

1.7

1.9

1.9

-9

-9

-9

-9

-9

-9

3.14

TABLE 5.2

1.9 +27 0 4.2 +21
0 8.4 +25 0
0 0 2.8 -25

1.9 -9

1.9 -9

the 1st column of Qo generates a decreasing mode, if the computations were exact.
In particular we can no longer hope that the Bi represent the increments of the
increasing modes. However, due to discretization errors the discrete fundamental
solution will most likely deviate from "the" exact solution; specifically, we can expect
a discrete dominant solution to exist which has as initial value (el, e2, 1)T, where el, e2
are of the order of the discretization error e. Therefore, in practice this first column
of Qo still contains a small component of the most unstable mode. After some time
this mode has grown by a factor 1! e and will become dominant; this can be seen from
the U which will then have left upper blocks representing the increments of the
dominant modes again. The consequence of this temporary "disorder" is that for
smaller /both IIEII =0 Bj]-a[I and Ill-I E ll may be O(1/e)thus making the
(cf. (4.6)) larger. It can be shown that maXp,q IIp,qll- o(1/) is achievable (cf. [11,
Ex. 5.2]). From the error analysis in 4.2, cf. (4.5), it follows that we therefore may
expect global errors of the order eM/e. This is a funny result, since it means that for
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e smaller than (eM) 1/2, a smaller tolerance will give a larger global error (being a
result of rounding errors!). Since we are working with a e4 1.0-16 we expect this
to happen if e 1.0-8. (Bearing in mind the "over-killing" effect, noted in Example
5.1, the threshold value of tol is =1.0-6.) This is nicely demonstrated in Table 5.3.
It is also instructive to see how the "errors" restore the proper ordering in the diagonal
of the Ui after a few steps and how this has its impact on the error (see Table 5.4),
where we only give the (1, 1), (1, 3) and (3, 3) element of the Ui, for a tolerance
tol 1.0-10.

TABLE 5.3

tol

1.0 -4

1.0 -6

1.0 -8

1.0 -10

2.2 -7

5.0 -9

6.6 -7

1.1 -4

min Ilerrorllo

1.5 -7

1.5 -9

1.5 -11

2.0 -13

1.0 -6

1.0 -8

1.0 -10

1.0 -12

1.5 -2
0

2 1.5 -2
0

TABLE 5.4

2.1 -2 1.2 +2
0 7.7 +1

1.1 +2 6.5 +1
0 1.6 -2

1.1 +2 1.1 -6
0 1.5 -2

1.1

2.3

3.9

-4

-6

-8

7.0 -10

9.5 -12

2.3 -13

Example 5.3. Consider the following ODE

(5.4)
dx ((t) 0 ) ((l-(t))et)d-- 20(t) -q(t)

x +
2 e’

where q(t)= 20 sin + 20t cos t. Let the BC be given by

1 +er
(5.5) x(O)+x(T)=

2(1 + e.)], T>0.
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As one may check, a fundamental solution for (5.7) is given by

(1 ) diag (e,(5.6/ F0(t)
1

0, e 01,

where b(t) 20t sin t. Apparently x (12) e’ satisfies (5.5) and (5.4). For larger values
of T it can be seen that there does not exist a dichotomic solution space. In fact we
have a kind of turning point problem. In Table 5.5 we show the dramatic effect of this
lack of dichotomy on the global error by giving some results for T 2, 2.5 and 3. We
gave a tolerance of 1.0-6 and asked for output at equally spaced points with distance
0.1. The quantity K is an estimate for (cf. [12], [13]); p is defined in 4.3, being
an estimate for the skewness 12. In order to understand this result, one should realize

TABLE 5.5

2.5

4.2 --8

2.4 --3

5.0 +4

min Ilerrorllo

4.0 -10

5.2 -10

1.8 -2

1.5

4.0 +5

2.8 +11

2.4

2.4

3.9 +9

that for 0 and 2.029 we have a turning point, at which the increasing mode in

F0 becomes decreasing and the decreasing one increasing. Hence, even though there
may be a globally dominant mode, we can no longer expect the diagonal of the upper
triangular matrices Ui to be ordered for all i; the effect of this disordering is shown
by the large p for T 2.5 and the very large p for T 3. For T 2.5 this instability
has a limited effect on the accuracy of the solutions (although we lose 3 digits compared
to T 2); also the conditioning of the system (2.15) (cf. also (4.1)) is still reasonable
for T 2.5. However, for T 3, we may expect error amplification of the order of
1.0 +11 which nicely agrees with the result in the second column (note that we may
expect local errors of the order of 1.0-8 in this example, cf. the result for T 2). It
was interesting to see that direct use of a Crout routine to solve the multiple shooting
system either gave slightly worse results or no result at all (e.g. for T 3 the system
was found to be numerically singular).

Example 5.4. Consider the ODE

dx_(t(1-cos2t) l+tsin2t)(5.7)
dt -1+ sin 2t t(l+cos 2t)

x + f(t)

and a BC where M,, Ms I. The function f(t) and the vector b (in (1.2)) are chosen
such that

x=
1-sin

A fundamental solution of (5.7) is given by

(5.8) F0(t) (_sinCStt cosSin:) diag (1’ e)"

Hence, we see that the second basis solution changes at 0 from a decreasing solution
to an increasing solution. Therefore we have a kind of dichotomy (i.e. a splitting
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between nondecreasing and nonincreasing solutions) if either [a,/3] c [0, ] or [a,/3] c
[-c, 0]. In Table 5.6 below we have given errors and condition numbers for computa-
tions on the intervals [0, 4], [-2, 2] and [-4, 4] respectively. The tolerance was set to
1.0-8 and we asked for output on equally spaced points (distance =0.4); p and K are
defined as in Example 5.3. Once again we see that p quite accurately predicts the loss

TABLE 5.6

[0,4]

[-2,2]

[-4, 4]

5.8 -9

3.9 -7

4.2 -2

min Ilerrorl[oo

2.0 -9

2.5 -7

2.2 -2

1.1 +1 4.1

2.2 +2 1.6

2.5 +7 1.1

of significant digits. Like in the previous example, linear algebraic methods to compute
solutions of the multiple shooting system did not perform any better.

Example 5.5. As the last of a series of "turning point" problems consider the
scalar problem

d:d2: - 40t (1 + 40t) e’(5.9) at--y-

with BC :(a) e, :(/3) e. Hence (t) e’. Written in vector form this corresponds
to the BVP

(a) - -40t (1+40t) e’
(5.10)

(b) (10 00)x(c)+(01
A fundamental solution is given by

e-20s2 ds
(5.11) Fo(t) e_EOt2

For << 0 we see that the first column is =() whereas for >> 0 this column almost has
the same direction as (). This indicates that some appropriate linear combination of
the columns in Fo(t) might give a better conditioned representation (in the sense of
directional independence). Indeed computations reveal that we have a basis solution
that does not increase and one that does not decrease, at least not significantly, and
which are almost orthogonal at each point. We have computed the solutions on [-1, 1]
for several tolerances. First we give in Table 5.7 the infinity norms of the first and the
second basis solution as they are found from using the decoupled recursion (cf. 2).
It is no surprise that we obtain stable results for the desired solution x. In Table 5.8
we give the maximal error in the computed result on [-1, 1] at equally spaced output
points for several tolerances. We remark that in this example the use of incremental
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TABLE 5.7

--1.0

--.8

--.6

--.4

--.2

1.0

Ilfirst column of c(t)lloo

5.2 -9

7.0 -6

1.9 -3

1.0 -1

1.1

2.6

1.4

1.0

1.0

1.0

1.0

[Isecond column of (t)[[oo

1.0

1.0

1.0

1.0

1.0

9.8 -1

7.8 -1

1.0 -1

1.9 -3

7.0 -6

5.2 -9

TABLE 5.8

tolerance

1.0 -4

1.0 -6

1.0 -8

2.0 -6

2.0 -8

4.7 -10

1.6 +1 1.0

1.6 +1 1.0

1.6 +1 1.0

values M (the more "standard implementation") would not give a satisfactory distribu-
tion of output points for negative (both basis solutions have low activity for large
negative t!) and in this way one certainly would not "detect the turning point".

Example 5.6. Finally we would like to illustrate our remark in 3.5 about smooth
problems. Consider the ODE

(5.12) 0 19 x+ -19
dt

0 0 -1 18

and x(0) + x(r) (2, 2, 2) . Apparently x(t) (1, 1, 1) r. We computed this solution
in four ways. First we asked for output at 10 equally spaced nodes, both with the
choices wi(ti)=0 (cf. (3.7)) at each of the minor shooting points and with the choice
of wi(6) as in (3.31). Then we did the same computations now with a prescribed
amplification M 1.0 +3. As a tolerance we had 1.0-3. It is not surprising that the
obtained accuracy was essentially on the order of the machine precision. The results
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are given in Table 5.9 (the cpu time is in milliseconds). Since we have such a low
tolerance, our efficiency strategy could not work optimally (note the doubling of grid
points and shooting points in the second experiment as compared to the last one). On
the other hand we see that in the last row the number of minor shooting points is
equal to the number of major shooting points, indicating that for larger values of M
there even may be more room for efficiency. Indeed, if we take M 1.0 +6 the cpu
time drops to 20 milliseconds.

TABLE 5.9

OUTPUT required

10 equal pts.

10 equal pts.

M= 1.0 +3

M= 1.0 +3

(3.7)

(3.31)

(3.7)

(3.31)

grid pts.

130

76

131

38

minor s.p.

30

21

27

major s.p.

10

10

cpu time

108

7O

116

33

REFERENCES

[1] U. ASCHER, J. CHRISTIANSEN AND R. D. RUSSELL, COLSYSma collocation code for boundary
value problems, in Lecture Notes in Computer Science 76, Springer-Verlag, Berlin, 1979, pp. 164-
165.

[2] C. DEBOOR AND R. WEISS, SOLVEBLOCK: A package for solving almost block diagonal linear
systems, ACM Trans. Math. Software, 6 (1980), pp. 80-87.

[3] S. D. CONTE, The numerical solution of linear boundary value problems, SIAM Rev., 8 (1966),
pp. 309-321.

[4] P. DEUFLHARD, A modified Newton method for the solution of ill-conditioned systems of nonlinear
equations, with application to multiple shooting, Numer. Math., 22 (1974), pp. 289-315.

[5], Recent advances in multiple shooting techniques, in Computational Techniques for Ordinary
Differential Equations, Academic Press, New York, London, 1980, Section 10, pp. 217-272.

[6] R. ENGLAND, A program for the solution of boundary value problems for systems of ordinary differential
equations, Culham Lab., Abingdon, Techn. Rep. CLM-PDN 3/73, 1976.

[7] G. E. FORSYTHE, M. A. MALCOLM AND C. B. MOLER, Computer Methods for Mathematical
Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[8] H. B. KELLER, Numerical solution of two point boundary value problems, CBMS Regional Conference
Series in Applied Mathematics 24, Society for Industrial and Applied Mathematics, Philadelphia,
1976.

[9] M. LENTINI AND V. PEREYRA, An adaptive finite difference solver for nonlinear two-point boundary
problems with mild boundary layers, SIAM J. Numer. Anal., 14 (1977), pp. 91-111.

[10] R. M. M. MATTHEIJ, Characterization ofdominant and dominated solutions of linear recursions, Numer.
Math., 35 (1980), pp. 421-442.

[11], Stable computation of solutions of unstable linear initial value recursions, BIT, 22 (1982),
pp.. 79-93. See also Report 8108, Mathematisch Instituut, Nijmegen, which is somewhat more
elaborate.

[12], The conditioning of linear boundary value problems, SIAM J. Numer. Anal., 19 (1982),
pp. 963-978.

[13], Estimates for the errors in the solution of linear boundary value problems, due to perturbations,
Computing, 27 (1981), pp. 299-318.

[14], The stability of LU-decompositions of block tridiagonal matrices, Rep. Dept. Mathematical
Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12181, 1982. Math. Comp. to appear.

[15] R. M. M. MATTHEIJ AND G. W. M. STAARINK, On optimal shooting intervals, Report 8123,
Mathematisch Instituut, Katholieke Universiteit, Nijmegen, the Netherlands, 1981.



GENERAL LINEAR TWO-POINT BVP 763

[16] M. R. OSBORNE, The stabilized march is stable, SIAM J. Numer. Anal., 16 (1979), pp. 923-933.
17] S. M. ROBERTS AND J. S. SHIPMAN, Two Point Boundary Value Problems: Shooting Methods, Elsevier,

New York, 1972.
[18] M. R. SCOTT AND H. A. WATTS, Computational solution of linear two point boundary value problems

via orthonormalization, SIAM J. Numer. Anal., 14 (1977), pp. 40-70.
[19] G. W. M. STAARINK AND R. M. M. MATTHEIJ, BOUNDPACK: A package ]:or solving boundary

value problems, Mathematisch Instituut, Katholieke Universiteit, Toernooiveld, Nijmegen, the
Netherlands, 1982.

[20] J. R. STOER AND R. BULIRSCH, Einfiihrung in die Numerische Mathematik II, HTB 114, Springer,
Berlin, 1973.

[21] J. M. VARAH, Alternate row and column elimination for solving certain linear systems, SIAM J. Numer.
Anal., 13 (1976), pp. 71-75.



SIAM J. SCI. STAT. COMPUT.
Vol. 5, No. 4, December 1984

(C) 1984 Society for Industrial and Applied Mathematics
002

OBLIQUE PROCRUSTES ROTATIONS IN FACTOR ANALYSIS*

FRANKLIN T. LUKe"

Abstract. This paper concerns the oblique rotation of a factor matrix so as to be a least squares fit to
a target matrix. An iterative computing procedure is presented.

Key words, oblique rotations, Procrustes problem, factor analysis, least squares

1. Introduction. An important problem in factor analysis is the so-called Pro-
crustes problem (cf. Harman [7, 15.5]). It addresses the extent to which a given body
of data can be described in terms of a prescribed factor pattern. Let A be the given
p m factor matrix and B the prescribed p m factor pattern. Suppose that X is a
nonsingular rn rn transformation matrix and that Z AX. We want to find X so as
to minimize the least squares criterion

(1.1) . E Wij(’Zij-- bij) 2
j=l i=1

where Z (zq), B (bq) and wq are some fixed arbitrary nonnegative weights (usually
equal to one or zero). The case where X is orthogonal and all weights equal unity,
i.e., when the target B is fully specified, has been solved by Sch6nemann [10]. His
solution involves the computation of the singular value decomposition of the matrix
ArB. The Procrustes problem is more difficult when only some of the weights are one
and the rest are zero, i.e., when the target B is only partially specified. Browne [2]
shows how one may approximate X by a sequence of plane rotations, and Luk [9]
presents an efficient numerical procedure for computing these rotations. The case of
an oblique transformation, i.e., X must satisfy the condition (cf. [8, p. 315])

(1.2) diag {(xTx)-1} L
remains unsolved for both a fully and a partially specified target B. There are in the
literature procedures for finding an approximate solution. Gruvaeus [6] adopts a penalty
function approach, using a series of Fletcher and Powell [4] minimizations. His method
is very expensive because it involves an inversion of an rn rn matrix at each minimiz-
ation step. Browne [3] suggests that one approximate X by a sequence of elementary
oblique rotations (see [8]). He reports numerical results [3, p. 210] that compare
favorably with those given by Gruvaeus’ method. Due to its simplicity (hence lower
execution cost) and geometrical elegance, Browne’s procedure is usually preferred
over Gruvaeus’ approach.

Browne [3] proposes that one apply Newton’s method to compute the elementary
oblique rotations. The purpose of this paper is to show how these rotations can be
determined in an easier manner using Lagrange multipliers.

2. The algorithm. Let I(j) represent the set of row indices corresponding to
specified elements of column j of B, for j 1, 2,..., m. The minimization criterion
(1.1) simplifies to

(. 2 2 (z-b
* Received by the editors February 1, 1982, and in revised form February 15, 1983. This research was

supported in part by the U.S. Army Research Office under grant DAAG 29-79-C0124.
t Department of Computer Science, Cornell University, Ithaca, New York 14853.
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Browne [3] approximates X by a product of elementary oblique rotations. An
elementary oblique rotation of the ith factor (primary factor) over the plane defined
by the ith and jth (say i< ]) factors is of the form [8, p. 316]:

. 0
1

1

i.e., the identity matrix with the (i, i)th and (i, ])th elements altered. The parameters
satisfy the relation [8, p. 317]"

(2.3) / :+ 2cq + 1,

where cq (-1 < cq < 1) represents the correlation coeNcient between the ith and ]th
factors before rotation.

Designate by F the current rotated factor matrix at an intermediate stage, and
let F ()=(f,,...,). Let us consider a rotation of the ith factor over the
plane defined by the ith and ]th factors. Such a rotation will affect only the ith and
]th columns of F and may be represented as

The criterion (2.1) thus simplifies to [3, p. 208]

(2.5) g() a +a+a.+ a0,

where

rI(i) sI(j)

a {f f
rI(i) sI(j)

a,=-- fribri,
r[(i)

and ao is an unimportant constant. Browne forces the coefficient a, to be nonpositive
(by reflecting if necessary) so that always requires a positive square root (cf. (2.3)
and (2.5)). He proposes that one use Newton’s method to solve the equation

(2.6) g’() 2a +a + a,( + ci)- =0,

and describes how one may determine an interval containing one minimum (the global
one) of g().

Browne carries out successive rotations of a single factor over each of the (m- 1)
planes defined by the factor and every remaining factor, provided that the angle of
rotation is sufficiently large. Iteration is continued until no rotations are carried out



766 FRANKLIN T. LUK

during one complete cycle of all m(m-1) possible rotations. He also suggests that
one interchange the factors before each rotation in accordance with the criterion in
[2, p. 119]. The following example shows that Browne’s method does not always
minimize the criterion (2.1). Let

3 -2 -2
-2
2

3 -2
-2 3
2

and

1 0 0

B= 0 0

0 0

Browne’s procedure terminates because only null rotations are generated. But the
transformation

1
1 -2 -2

-2 1 -2
-2 -2 1

will decrease the value of (2.1).
We propose here an alternate scheme for the subproblem of finding an oblique

transformation. Suppose that  =1I(i)1 and t =lI(DI. Let i(1),i(2),... ,i(a) and
j(1), j(2),..., j(/3) denote the row indices of the specified elements of columns and
j, respectively, of the target B. Our goal is therefore thedetermination of the parameters
/and 6 so as to minimize the Euclidean length of the vector

/fi(1),iO t /bi(1),i tfi(2),i 0 bi(2),i

In other words, we want to solve the constrained least squares problem"

(2.8) IIKx-q minimum,

where I1" denotes the Euclidean vector norm, subject to the constraint:

(2.9)

with -1 < c < 1. It follows that

(2.10) x#O.
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Using Lagrange multipliers, we obtain the matrix equation

(KrK + AE)x= Krq+ cAe2,(2.11)

where

and A is a Lagrange parameter. But

(2.12) KTK ( dO
with

o)

d E f(,, and d2 E 2fi(k),i.
k=l k=l

We may assume that dl + de is positive, else the solution is x (+ 1, 0)r. Letting

(hi)(2 13) h -= Krq,
h2

we can rewrite (2.11) as

0 d2- A x2 h2 + c, or
(h2 + cd2) c(d2- A

We now show how the proper value of A can be determined.
LFMMA 1. Let both vectors x and y satisfy (2.9). Then

(2.15) Ix1 YI->-I(x+ c)(y+ c)+ (1 c) l,

where the inequality is strict if X2 Y2, and

(2.16) (X2 q- c)(y2 + C) + 1- C2) Xl Yl 1/2[(Xl yl)2 (X2 y2)2].

Pro@ Using (2.9) to substitute for xl and Yl, we get

xy [(x2 + c)(y2 + c) + (1 c2)]2 + (1 c2) (x2 y2) 2

--> [(x2 + c)(y2 + c) + (1 c2)]2.

We prove (2.16) by expanding its right-hand side and applying (2.9). rq

LEMMA 2. If (X, Ax) and (y, At) are solutionsto the equations (2.9) and (2.14), then

(2.17) Ilgy-q [[z-Ilgx-q 2 ( r)[(x2 + c)(y= + c) + (1 c2) X1 yl].

Proof. Applying the same technique as Gander [5, Thm. 1], we can show that

IIKy-q - IIKx-q (Ax Ar)E(x yl)2- (x2- y2)2].

Equation (2.16) thus completes the proof.
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THEOREM 1. Let (x, Ax) and (y, Ay) be solutions to the equations (2.9) and (2.14).
Suppose that either (i) Ax > -dl and Ar < -dl, or (ii) Ar > Ax > -d. Then

Ilgy-q - Ilgx-q = > 0.

Proof. Since Ax Ay, we get x y and thus a strict inequality in (2.15). The proof
follows from considering the sign of xy in (2.17).

Let us first assume that h(h+cd2)O. From (2.9) and (2.14)we obtain

(2.18, (h)2 (,e+(1-c),
d2-A /

which can be transformed into a quartic equation in A. It is easy to see graphically
that the equation has one real root in the open interval (-,-d), one real root in
(-d d2), and two distinct real or complex conjugate roots in (d2, ). Theorem 1 says
that we need the smallest root of A that is greater than -d, i.e., that unique root in
the open interval (-d, d2). To find the root we may apply either the standard technique
for solving quartic equations, or any zero-finding procedure with assured convergence,
e.g., Brent [1, Chap. 4].

Now we give explicit solutions to two simpler special cases: (i) h =0, and (ii)
h2+cd2=O. For case (i) we get from x0 that A =-d. We then use (2.14) to
compute x2 and (2.9) to determine Xl (either sign is acceptable). Case (ii)implies that
either x =-c or A d. From Theorem 1 we get

1=min -d + i_c] d

We then use equations (2.9) and (2.14) to determine the solution vector . This special
case is not observed by Browne [3]. Two other advantages of our procedure over
Browne’s approach are that (2.18) is easier to solve than (2.6), and that no column
reflections are required.

After the parameters and for the elementary oblique rotation have been
found, the factor matrix is updated in accordance to (2.4). The angle 0 of rotation is
given by

(2.19) 0 cos-[(1 + c)/T].
Details of the complete algorithm are given in [3].

3. Numerical example. We were able to find only one example (Gruvaeus [6, p.
500]) for which the target matrix B is partially prescribed and some specified elements
are nonzero. The given factor matrix is

.90
83
.87
.55

A .56
.63
.28
.38
.:38

-09 -03
.09 04

-.01 .07
.79 -.07
.65 .04
.60 .03
.27 .45
.20 .63
.19 .77
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and the partially prescribed matrix is

.98

.76
X

X

B
X

X

0

\o

0!1X

X X

X X

X X

X X

0 .76
0 .93/

If the rotation angle 0 of (2.19) is so small that cos 0>-.9999995, we regard the
rotation as null and forgo the transformation. The fourth cycle consists wholly of null
rotations, resulting in the final rotated matrix:

.94 -.09

.79 .10

.83 -.04

.17 .84
AX .20 .66

.30 .61
-.04 .15
.02 .02

-.03 -03

The criterion of (2.1) decreases as follows:

-.02/
.02
.11
.15
.24
.22
.57
.75 /
.90/

Cycle Criterion

0 .437400
.055413

2 .024703
3 .024691
4 .024691

Acknowledgments. The author is grateful to the three referees for their valuable
suggestions.
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A NUMERICAL METHOD FOR CONFORMAL MAPPING OF
DOUBLY CONNECTED REGIONS*

BENGT FORNBERG"

Abstract. A linearly converging iteration scheme has been found which yields the conformal mapping
from the annulus between two concentric circles to any given doubly connected region with smooth
boundaries. Each iteration costs O(N log N) operations where N is the number of points used to discretize
the boundaries. Failure of convergence was never observed when the initial guess was sufficiently accurate.

Key words, conformal mapping, doubly connected regions, fast Fourier transform

1. Introduction. The mapping theorem by Riemann states that there are three
degrees of freedom in a conformal mapping between any simply connected region and
the unit circle. For example we can specify the positions of three boundary points (in
the same order on the two peripheries) or of one interior and one boundary point. In
the case of doubly connected regions, a mapping is always possible to the annulus
between the unit circle and a concentric smaller circle with radius/9. In this case, a
rotation is the only available freedom. The radius/9 is uniquely determined.

Table 1 gives a very brief list of some major methods which we hope can serve
as a first guide to the literature in the field. The cost per iteration of the methods
(measured in number of arithmetic operations where N is the number of free para-
meters to be determined) has been given but we should note that this alone is a very
incomplete measure of the usefulness of a method in a specific application. An extensive
(but by now somewhat outdated) survey of methods was given by Gaier in 1964 [2].

Several of the numerical methods for simply connected regions are possible to
generalize to the doubly connected case. So far, the best demonstrated procedure
seems to be a generalization of Theodorsen’s method (Garrick [3], Gaier [2], Ires [9],
Henrici [7]). However, linear convergence will occur only for regions which have
"near-circular" inner and outer boundaries. Since this method is the fastest one known
for such regions and the operation count per iteration is nearly the same as that for
the method we introduce here, these two methods will be compared extensively in the
last section of this work. Another especially interesting method is proposed by Reichel
[15]. His version of Symm’s method converges to a final answer in a total of
O(N2 log N) operations. There is no need for the regions to be of simple shape or
for a close initial guess to be available. In cases where the methods costing O(N log N)
operations per iteration converge slowly, Reichel’s method may prove faster.

Reference [1 describes a Newton-conjugate gradient scheme for simply connected
regions which converges quadratically. Each iteration costs O(N log N) operations.
The present work is a first attempt to exploit the formulation used in [1] for doubly
connected cases. We have not been able to find an equally powerful numerical algorithm
this time and the convergence rate is reduced to linear. However, the ability to converge
for all smooth regions is maintained. This is a major advantage in comparison with
Theodorsen’s method.

Conformal mappings provide a powerful approach to many problems governed
by Laplace’s equation. This includes electrical and magnetical fields, potential fluid

* Received by the editors July 20, 1981, and in final revised form July 21, 1983. This research was

performed at California Institute of Technology and supported by Control Data Corporation, the U.S.
Department of Energy (Office of Basic Energy Sciences) and the John Simon Guggenheim Memorial
Foundation.

" Exxon Research and Engineering Company, Clinton Township, Route 22 East, Annandale, New
Jersey 08801.
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TABLE
Brief survey o.f numerical methods for conformal mappings.

Name
Method

Comments

Cost per iteration,
Different connectivities

Simply C Doubly C General C
Convergence

rate

Theodorsen 1931
[7]

Gutknecht 1981
[5], [8]

Symm 1966
[7], [17], [18]

Los Alamos groups
1972, 1980 [4], [12]
Reichel 1981 15]

Meiron, Orszag,
Israeli 1980
Ill]

Fornberg 1980 [1

Papamichael et al.
1981 [13], [14]

Fornberg 1984
(present work)

Nonlinear integral
equation in polar
coordinates
Functional iteration
SOR type relaxation

Linear singular
integral equation,
solved by:
Direct iteration

Gaussian elimination

Part Cholesky
factorized,
rest iterated

ODE for initial
value problem.
Requires very small
continuation step
from correct mapping
of nearby region

Newton--conjugate
gradient

Variational method.
Allows corners, but
ill conditioned.
Needs N < 30

Laurent expansion.
FFT

N log N N log N

N log N

N log N N log N

N

N log N

N log N

N log N

N N

N log N N log N

N log N

Linear

Linear

Linear

Direct

Very fast
linear

Direct

Quadratic

Direct

Linear

Near
circular
regions
only

Regions
of
general
shape

flow past a body etc. A calculation of time dependent surface waves on deep water
was described in [1] as an application for simply connected mappings. The present
method can similarly be applied to waves over a bottom of any shape or to waves on
deep water passing over a submerged object.

Another area of application is computer generated computational grids. A draw-
back with simply connected conformal mappings is their tendency to give a very
nonuniform resolution. A local boundary fitting grid partially overlapping with a
rectangular grid has been found to be effective in many cases of finite difference
approximations of partial differential equations (G. Starius [16], B. Kreiss [10]). As
Figs. 1 and 2 illustrate (the outer boundary is the same in the two cases) there need
not be any resolution problem for doubly connected mappings.

2. Formulation o the mapping problem. Different analytical properties of the
conformal mapping function can be exploited in the construction of numerical methods.
We will now very briefly outline these for a few of the major methods (in case of
simply connected regions).
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w= f(z)

FIG. 1. Example oJ’ a simply connected mapping.

w f(z)

w plane lane

FIG. 2. Example of a doubly connected mapping.

Theodorsen’s method is based on a Hilbert transform relation between the real
and imaginary parts of w- log (f(z)/z) where f(z) is the mapping function from the
unit circle. If the given region is represented in polar coordinates, the relation takes
a particularly simple form.

In Symm’s method, the inverse mapping (from the given region to the unit circle)
is considered. Through the (unknown) mapping function, the polar coordinate angle
0 on the unit circle is a function of t, some parameter describing positions along the
given boundary. The function 0’(t) can be shown to satisfy a linear Fredholm integral
equation of the first kind.

The methods used by Papamichael are closely related to the Ritz method: the
derivative of the mapping function from the given domain onto the unit circle can be
shown to minimize

(1) f f lu(z)12 dx dy

over a certain class of functions.
In paper [1] by the present author, we considered a Fast Fourier Transform applied

to a set of points on the given boundary. This gives Laurent coefficients for an analytic
function which maps roots of unity to these points. The mapping function has to be
regular at the origin. The requirement that all negative Laurent terms vanish provides
a ormulation.
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The methods of Theodorsen, Symm and Papamichael all generalize almost directly
to doubly connected domains [7], [14], [18]. This work is a first attempt to make use
of a formulation similar to the one in [1]. In case of a doubly connected region, a full
Laurent expansion with both positive and negative powers is allowed. However, N
’boundary correspondence points’ on either boundary is sufficient to determine N
Laurent coefficients. Since the Laurent expansion is unique, this imposes constraints
on the point positions, sufficient to determine their locations. Although we are not
aware of this formulation having been used earlier, we do not believe it to be new.
The original contribution of the present work lies in the construction of the numerical
method. In the rest of this chapter, we present our formulation in more detail.

Figure 2 illustrates a mapping of a doubly connected region. With a region given
in a complex w-plane, the inner radius as well as the mapping function w f(z) are
uniquely determined up to a rotation in the z-plane. A Laurent expansion of f(z) in
the annulus p-< Izl_-< 1 takes the form

(2) w= f(z) az.
Let N, a power of two, be large enough that a and pVa can be ignored for Ivl > N/2 1.
We consider (2) for z w k and z pw k, k =0, 1," , N- 1, w e2=i/u. These equidis-
tant points on the outer and inner circles in the z-plane are mapped by (2) into points
:k and ’k on the boundaries of the given region. Relation (2) for the points on the
outer boundary can be written in matrix form

-1

_1

1 1 1 1 1
0) 092 0)N/2--1 -1 0)--N/2+1 60--2 0)--1
0)2 0)4 0)-4 0)-2

0)N-1 0)2N-2 1 0)-2N+2 0)--N+I

(3)

-0

2

ao
al

aN
aN/2 I"
a-N/2+._

a-1

For later algebraic convenience, an extra ’reflection frequency’ denoted a+/-N/2 is
included. Under the assumptions on the decay of [a[, the size of a:N/2 is negligible.
Noting that (.O

k
"-O0N+k, (3) takes the simpler form

(4)

1 60
N-1

(.0
2N-2 (N-l)

ao
al

aN
a+N/2

a-N/2+
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For the inner boundary, we similarly obtain

(5)

"1 1

o 60 t0
N-1

0) 0)
4

O)
2n-2

O)
N-1

0
2N-2

O)
(N-1)2

P

pN/2-1

--N/2+l

-2

ao
al

aN
a+/-N/2

a--N

a-1

Algebraic elimination of the a-vector in (4) and (5) gives a relation between the
vectors and . After multiplying the different rows by suitable powers of p to make
the result more symmetric, we get

(6)

-1/2
P

p72/2

.0-(N/2-1)/2

p(n/2-1)/2

.p2/2
1/2p

1 1 1 1

1 to-1 (.0-2

1 o-2
to

--4

1 to-N+I

-1
1/2

2/2

p (N/2-- 1)/2

-(N/2--1)/2

.p-/2

1 1

to
-1 0)-2

to
-2

to
-4

-N+I

17- 7 -ol

3. Numerical method. Our aim is to construct an iteration where approximations
and for the true point positions on the boundaries, gradually improve in accuracy.

This is achieved by repeatedly performing the following three steps:
1. From and we find an approximate value/9 for the radius of the inner circle.
2. Substituting , and/9 into (6) gives a residual vector r instead of zero as a

right hand side. From this vector, changes to and are found which move the
approximate mapping points Sk and ’k away from the boundaries but still leaves the
L2-norm of the errors in the point positions invariant.
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3. The points k and ’k are returned to respective boundary. This step reduces
the error norm.

Repetition of these three steps will in general give convergence to the desired
mapping. One way to implement these three steps will now be described in detail.

1. Ideally, the vector r should be zero. If this were the case, any row in (6) (apart
from the two not including p) could be used to find p. Let b= W- and e= W-
denote the products of the Fourier matrix with and in (6). The approximation

Ic l+lb -ll(7) P=lb l+lc - l
uses a combination of the second and the last rows.

2. Evaluate r by substituting lj and into the left-hand side of (6) and form the
following two vectors of length N/2"

(8)

and

p
p2/2

(N/2--1)/2
P

rN/2+2
_rN/2+l..]

(9)

-1
(N/2--1)/2p

p2/2
1/2p

tN/2

rN/2-11
rN/2-21

r2
rl

Denote by Wi,c/z the discrete Fourier transform matrix of size N/2 with elements
tO

2(k-1)(1-1)w and by D a diagonal matrix with elements d w--a) Further, let. be a vector o length N/2 containing changes to so0, scz, c4,..., :u_z and use
similar notation foro etc. We use

(10)

The justification for these formulas will be presented in the following chapter on
convergence properties.

3. The changed points are moved back to the boundary curves. If a boundary
curve is given in the form f(x, y)=0, a point x0, Y0 off the curve is approximately
brought back by the steps

(11) d f
(fzx + fzy)’ x’ xo- df yl Yo- dfy.

Repetition of this correction procedure gives quadratic convergence to a point on
f(x, y)= 0. However, we apply it only once.

Figure 3 illustrates graphically the steps 2 and 3 in this iteration.
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.,,.STEP

original \
(o pprx.f error

Ivector(unknown)

/STEP

’Ooo,

(o exact vector

new
(o ,approx.,(. ............

error
x

( exact I vector

L

STEP 2 STEP 3

Practical: A(, A calculated

Theory: The sum of the
squares of the lengths
of the error vectors
unchanged

Practical: Drop points back
to curves

Theory: Each error vector
shorter

FIG. 3. Graphical illustration o.f steps 2 and 3 in the iteration procedure.

4. Convergence properties. Assume that the boundary curves are smooth and
that a sufficient number of points are used in order to well resolve the boundaries.
Assume further that all points lie in correct mapping positions apart from one point
:o which is perturbed tangentially to o+ eo. Substitution in the right hand side of (6)
gives a residual vector r. From (8) and (9) follow

1

(12) [r] =-eo

and

(13) Ire] =-eo
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Straightforward algebra based on (10) gives

(14) /even --0

and

Since

(16)

while

N

1
1
1

-i

1

cot(r/N)
cot(37r/N)
cot(5r/N)

-cot(3’/N)
-cot(Tr/N)

2IIZevenll2= Ila oooll==

(17) IIZevenll2= IlaKoaall 2 <N(l_p e. O
we assume N to be sufficiently large that we are justified in ignoring Zlvn and ZXoad
in comparison with zlvn and Zodd. This simplification is necessary to obtain the
invariance of the error norm during step 2 of the iteration procedure.

The changes in the point positions are negligible for the inner points, provide an
exact correction to the original perturbation in sCo and introduce new errors according
to (15) at all the odd numbered outer points. We note that these errors are largest at
points near sCo. Their directions there are almost normal to the curve.

If not just :0 was perturbed by e0 but all even numbered points even were perturbed
by Ieven we are similarly left with errors only in odd and they satisfy

(18) eodd Qe

where Q is a unitary matrix with elements

2
(19) Qkl=-[1 cotTr(2(k- 1) + 1)/N].

The situation is similar for initial perturbations in odd, even and odd" Since equations
(6) and (8) to (10) are linear in and , any arbitrary initial guess for these vectors
can be treated as a superposition of the four simpler cases with only one of the vectors
perturbed from the correct values. From the fact that Q is unitary follows the key
property of step 2, i.e. the L2-norm of all the positional errors has been left unchanged.
When the points are dropped back to the curves in step 3, this norm is decreased.

There are only two ways in which convergence has been observed to fail (for close
initial guesses):

(i) Every one of the new errors after step 2 happens to fall along the boundary.
The step of bringing the points back to the curve, which normally reduces the error
norm, will have no effect.
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(ii) There may exist errors which do not affect the residual vector r.
The simplest possible mapping, the identity mapping from an annulus to itself,

illustrates both these possibilities. Consider a perturbation on the outer boundary of
even to even" (1 + i6) and odd to odd (1- i6) and similarly on the inner boundary
with factors (1 + ie) and (1 ie) resp. Equation (6) is affected only in line N2+ 2 in
that rv/2+l becomes (approximately) -Nfl(-N/2+1)/2" i instead of 0. The last com-
ponent of the vector r is changed from 0 to -Ni and rc is left unaffected. The
corrections, according to (10), reverse the direction of the perturbation on the outer
boundary and leave the inner boundary points unchanged. In the present case of the
identity mapping, a single application o the following two corrective procedures will
remove these errors completely. We have found no case where repeated use has failed
to give convergence.

(i) Oscillatory error patterns on the outer boundary change sign every iteration.
Without this problem, the approximations for p at successive iterations change in
general monotonically. When the mapping has converged so far that the oscillatory
errors dominate, the approximations for p start to oscillate. Whenever this is observed,
we start the following iteration not with , from the last iteration but with the average
of , from the last two iterations. In typical test cases, this step is invoked about
once every 5-10 iterations. The cost of this averaging is negligible.

(ii) Oscillatory error patterns on the inner boundary may remain invariant. When
W-I is ormed in (6) to calculate the residual, the sum of the magnitudes of components
with indicesN2/ 1 andN2+ 2 (which may have remained large) is compared against
components N/2-1 and N/2-2 (for which the method works fine). If the ratio of
the sums exceeds a given threshold, say 30, the following step is inserted: Form

(20) [W]

-W1/2
W2/2

W3/2

-2/2W

which corresponds to a rotation of the mapping half the angle that separates adjacent
gridpoints. Bringing the points back to the curve cancels the oscillatory errors that
were present. This procedure is repeated once more to rotate the points back again.
In typical test cases, this step got invoked once about every 10-20 iterations. The
added cost of 4 FFTs of size N is therefore negligible.

5. Test results. Two test cases for the mapping method are described below. In
each of them, a one parameter family of successively altered regions is mapped.
Theodorsen’s method converges for some parameter values in the first test case. The
convergence rates were then compared. The operation count per iteration for the two
methods is very similar. With N points on each boundary, one iteration of the present
method requires

2 complex FFT over N points.
4 complex FFT over N/2 points.

overhead dominated by bringing the points back to the curves and occasional
rotations of the inner boundary to remove oscillations.
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Theodorsen’s method requires
6 real FFT over N points.

overhead dominated by evaluating polar coordinate formulas for the points
and N logarithms for trapezoidal rule approximation of a new radius.

It is possible that the linear convergence rate of both of these methods can be
improved upon by suitable acceleration techniques. In the case of Theodorsen’s method
for simply connected regions, this has been investigated by Gutknecht [5], [6] who
proposes a relaxation procedure. However, Hiibner [8] notes that this acceleration
fails for regions which are not symmetric. We have not considered any acceleration
possibilities in this work.

Convergence progressed in all cases until one of the following two limits were
reached.

(i) Machine (roundott) accuracy.
(ii) Truncation accuracy, i.e., size of first ignored Laurent coefficients.
The numerical results in this section were obtained using 64 bit floating point (48

bit mantissa) on the Control Data Cyber 205 computer at the Cybernet Service Center
in Arden Hills, Minnesota. The algorithm can be completely vectorized. One iteration,
including all overhead, takes approximately 1.1 ms with N 128 and 46 ms with
N 4096 on a 2-pipe version ot the Cyber 205.

Test case 1. The outer curve is a unit circle, the inner an ellipse with focii at 0
and a where a satisfies 0-< a < 1. The size is such that the sum of the two radii equals
one for any boundary point. The equations for the boundaries are:

OUTER: X
2 + y2_ 1 0,

(21)
INNER: 4(xi+ yZ)-(ai-2ax-1)2

Figure 4 shows the mappings for some different values of a.
Both the present method and Theodorsen’s method converge linearly with a rate

that is independent of N. Table 2 gives these rates. Tables 3 and 4 show in more detail
how the obtained accuracy varies as a function of N for the two methods. We consider
the cases a .5 and a .7 and iterate both methods until convergence with N 16,
32 and 64. The positional error of every individual boundary point is measured. The
largest of these is tabulated and for the present method is seen to be very closely
linked to the size of the first omitted Fourier coefficients. Theodorsen’s method proves
to be less accurate for same values of N. The last columns of Table 2 are based on
this maximal boundary position test. Both methods give values for p which are far
more accurate than the boundary points.

One further comparison between the methods has been performed. The issue is
how accurate an initial guess has to be to give convergence. The solutions for a
0., .5, .7, .9 and .99 were taken as initial guesses and the point positions were transferred
to new boundaries by keeping their polar coordinate angles unchanged. (Since the
outer boundary was not changed, these points were not moved.) The question we
studied was how far up from a 0., .5 etc. one could go in one single continuation
step. Table 5 shows the result. For Theodorsen’s method, the maximal a .71 could
be reached directly from any of the initial guesses. The present method performed
almost equally well. The solution at a 0. was accurate enough for a .64 while a .5
allowed a single step to a .83, well beyond the range of Theodorsen’s method. As
might be expected, the steps had to be taken smaller for the extremely deformed final
cases.
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0 0:.5

o 7 o =.9"-o

o =.99 o =.999

FIG. 4. The mappings for different values o]’ a in test case 1.
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TABLE 2
Summary of test case 1.

Geometric convergence
rate

Present Theodorsen

Number of points N
required for accuracy

10-4 10-8

.5

.7

.9

.99

.999

.5000

.5118

.5273

.5641

.6334

.6859

.50 0.0

.55 .56

.67 .94

.87 Diverges

.98 for

.997 a>.71

32 32
32 64
64 64
64 128
128 256

TABLE 3
Accuracy of mapping as function ofN in test case 1, a 0.5.

Number of First omitted
points on Fourier coefficient

each boundary component size of
N number coefficient

Largest error in any
point position

(measured in arc length)
Present Theodorsen

Error in calculated
value of radius

Present Theodorsen

16
32
64

8 .1 x 10-3

16 .8 x 10-9

32 <10-1

.210-3 .2x10-3

.4 x 10-9 .8 10-7

<10-lo <10-lo

.1 X 10-7 .2 X 10-9

<10-10 <10-lo

<10-1o <10-lo

TABLE 4
Accuracy of mapping as function ofN in test case 1, a 0.7.

Number of First omitted
points on Fourier coefficient

each boundary component size of
N number coefficient

Largest error in any
point position

(measured in arc length)
Present Theodorsen

Error in calculated
value of radius

Present Theodorsen

16
32
64

8 .1 x10-2

16 .2x 10-6

32 <10-1

.2>(10-2 .6>(10-2

.1 >( 10-6 .5 >( 10-4

<10-lo .7x10-8

.3x10-5 .6x10-5

<10-1 .5 >( 10.9

<10-lo <10-10

TABLE 5
Longest single continuation steps that can be taken

from different values of a in test case 1.

Present Theodorsen’s
method method

0. .64 .71
.5 .83 .71
.7 .89 .71
.9 .954
.99 .992

Test case 2. We map a series of strips of increasing width. With d small, an
approximate equation for a curve at a distance d from f(x, y)= 0 is g(x, y)= 0 where

(22) g(x, y)=/(x, y)- d*4x +f2r.
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The outer boundary is f(x, y)= 0 with

(23) f(x, y) (x2+ (y-.5)2)*(1- x2- y2)-0.1.
The inner boundaries correspond to d .05, .1 and .2. In the initial guess for d .05
the points k were equidistantly distributed along the boundary. Matching ’k were
obtained from (11) and (23). The case d=.2 was illustrated in Fig. 2. Table 6
summarizes this test case. This test case, which is typical for the application of finding
boundary fitting local grids, is well outside the range of Theodorsen’s method. We
note that significantly more points N are required to resolve this problem thanwas
called for in test case 1.

TABLE 6
Summary of test case 2.

d p
Geometric Number of points N
convergence required for accuracy

rate 10-4 10-8

.O5

.1

.2

.9521

.9096

.8356

.97

.93

.89

128 512
256 1024
512 2048
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A MATHEMATICAL PROGRAMMING APPROACH TO EDITING OF
CONTINUOUS SURVEY DATA*

PATRICK G. McKEOWN"

Abstract. Since data from surveys often contain errors, it is desirable to attempt to detect these errors.
Clearly, not all errors can be detected: What can be attempted is to detect those errors that result in
inconsistencies. The detection process is referred to as editing of the answer fields of the survey record. In
this paper, we present a mathematical programming approach to data editing whose objective is to minimize
the weighted number of answer fields that are suggested to be in error relative to a set of internal consistency
conditions. This procedure is then applied to test data from the Annual Survey of Manufacturers and
computational results are presented.

Key words, mathematical programming, data editing

1. Introduction. A key step in the processing of large-scale data is the editing
and imputation of the data. By editing, we refer to the process of checking answer
fields to detect inconsistencies. The fields suggested to be in error may then be changed
to an acceptable value. The process of changing responses is referred to as imputation.
Survey data can be broadly classified as either coded or continuous. In coded or
qualitative data there are only a few possible pre-specified responses to a given question.
Continuous data, on the other hand, may have almost any values as responses. Due
to the difference in the type of data considered, it is necessary to approach the editing
and imputation of the coded and continuous problems differently. In this paper we
will consider only continuous data.

Fellegi and Holt [1] presented a procedure for editing coded data. In that paper
they based their work on the assumption that one would wish to alter the original
observations to the least possible extent. (They used a procedure to find all edit
conditions which are implied by specific edit conditions. All of the resulting edit
conditions are then used to solve the edit problem. The work has been refined recently
by Liepins [7].) In an earlier paper on economic data, Freund and Hartley [2] used a
least squares approach to minimize a combination of the weighted sum of squared
differences between original and corrected data and the weighted sum of squares of
deviations from the edit conditions. In that paper, the edits were made up of internal
consistency conditions in the form of linear inequalities that would have to be satisfied
for an edit condition to be met.

In this paper our objective will be to minimize the weighted number of fields that
would have to be changed through imputation in order for the resulting answers to
meet a set of internal consistency conditions which are expressed as linear inequalities.
The weights represent confidence in the value in each field. In this way, we have
attempted to combine key portions of the Fellegi-Holt and Freund-Hartley approaches.
However, there are important differences in each case. In the first case, we are working
with continuous data while Fellegi and Holt were editing coded data. In the second
case, we require that all consistency conditions be satisfied while Freund and Hartley
allow for consistency conditions to go unsatisfied so long as the sums of squares are
minimized. In all cases, we are considering deterministic errors, that is, errors which
can be determined with certainty.

* Received by the editors November 19, 1981, and in final revised form July 8, 1983. This research
was partially sponsored by Bureau of the Census, U.S. Department of Commerce.

f College of Business Administration, University of Georgia, Athens, Georgia 30602.
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Before continuing, two comments should be made about our objective function.
First, given certain assumptions (stated below), minimizing the weighted tumber of
fields changed can be thought of as a surrogate for the objective: Maximize the product
of the probabilities that a changed field is in error and that an unchanged field is
correct [7]. Since such an objective would be extremely difficult to work with, the
objective of minimizing the number of fields which are changed is used as a replacement.
This substitution has the desired effect since it tends to reduce the probability of
changing a correct field.

If a field has a high probability of being correct, we would assign it a relatively
large weight. If a field has a low probability of being correct, we would assign it a
relatively low weight. Since we are minimizing the sum of the weights, an optimal
solution to the problem would seek to avoid changing fields with high weights in tavor
of changing fields with low weights. In so doing, fields with a high probability of being
correct have less chance of being changed.

Second, by using the minimization of the weighted number of fields that are
changed as our objective in an editing procedure, we are making an important
assumption. We are assuming that the occurrence of an error in a field is unrelated
to the magnitude of the value in the field. In the context of surveys, these assumptions
may not be unrealistic when one considers the many transitions that the data must go
through between the respondent and final tabulation. Errors may occur at any stage,
i.e., respondent calculation in computing values for responses, respondent error in
entering response, typographical error by respondent, keypunching error or error in
transfer of data from computer output. Only in the initial case would the assumption
be obviously unrealistic. For this reason, the objective of retaining as much of the
original data as possible appears to be a reasonable approach to the editing problem.

It is important here to state that our objective will be to present a procedure to
edit coritinuous survey data. While this procedure will demonstrate that imputations
do exist for the fields suggested to be in error, this is only a side effect of the editing
procedure. It is our contention that editing and imputation are separate and distinct
problems, each requiring a different solution methodology. If we can solve the editing
problem, then other methods can be used to impute values for the fields suggested to
be in error.

In the next section we will present a mathematical programming formulation of
the editing problem for continuous data and discuss a solution method for that problem.
In 3 we present an example, while 4 discusses the application of our approach to
sample data of the form generated by the Annual Survey of Manufacturers (ASM).
Finally, we will state some conclusions and discuss refinements of this work.

2. A mathematical programming approach. In a recent paper, Sande [11] sug-
gested the following formulation of the editing problem for continuous data:

(1) Minimize: Y wji (yj) + w(z),
j=l j=l

(2) subject to" A(x + y- z) <= b,

(3) x+ y-z>-O,

(4) y->0,

(5) z->0,

(6) yrz =0,
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where

(7)

(8)

and

1 if yj>0,8(y)=
0 otherwise,

]=1,..., k,

1 if zj>O,6(z) 0 otherwise,
./= 1,. , k,

k number of fields to be edited,

x a given record of continuous survey data,

w weights on each field of the record denoting the degree
of confidence in the value in that field.

A and b are m x k and m x 1 matrices, respectively, which represent the m consistency
conditions. If Ax <- b, the record x will satisfy the consistency conditions. This model
assumes that the consistency conditions or edits can be written as linear inequalities.
The values of yj and z indicate one possible set of minimum changes required to
produce a consistent record. In practice, g x+ y-z will be a consistent record on
the boundary of the acceptance region with y and z being possible changes. If y is
positive, this indicates that an increase of an amount greater than or equal to y in. the
jth field of x is needed for consistency. Similarly, if zj is positive, the jth field of x
must decrease by an amount greater than or equal to z in order for the record to
become consistent. The weights, w, serve to make changes more costly in those fields
which the user believes to be more likely to be correct. The weights may be determined
subjectively or through past data on the survey being edited.

The above formulation ((1)-(8)) defines a problem with an objective of minimizing
the weighted cardinality of the fields in which changes are required in order to make
the record x consistent. This is done by use of the deviational variables, y and z. If
a given deviational variable must be made positive in order for the sum x+ y-z to
be consistent, i.e., A(x+ y-z)<= b, then the cost w will be incurred because the
corresponding 6(y) or 8(zj) will be equal to 1. This formulation is a form of mathemati-
cal programming known as a fixed charge problem [5].

The vector x is the initial record of data to be edited, so to actually solve the
problem (1)-(8), we must transform the inequalities as follows to form problem (P0):

k k

(9) Minimize: Y. w(y) + w(zj)
j=l j=l

(10)

(11)

(12)

(13)

where

(14)

(Po)

(15)

subject to: A(y- z) <= b- Ax

yi-zi>-xt], ]-l,...,k,

yj>=O, j=l,...,k,

Z>=0, ]=l,...,k,

if y>0,
otherwise,

if z>0,
otherwise,
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Note that we have left the complementarity condition, y T"z =0, out of this final
formulation. This condition is unnecessary in a fixed charge formulation because both
yj and zj will not be nonzero at the same time for a given value of j in a minimum
value solution. This is true because if both y and z were nonzero, the objective value
could be reduced while still satisfying the constraints by forcing either y or z to be
zero and making a corresponding increase in the other. Note that when either yj or

z is nonzero, increasing its value does not change the value of the objective function.
0Another important result about (Po) is that constraint (11), i.e., y-z >- -x, can

o > 0 thenbe handled implicitly as an upper or lower bound. To see this, note that if xj
(11) can be replaced by

0(lla) z<=x.
oSimilarly, if x < O, then (11) can be replaced by

0(llb) y>-_x.
This latter situation can occur when a nonresponse is replaced by -1 [13], to insure
that missing data is recognized as an error.

Because our solution procedure uses linear programming to search for an optimal
solution, replacing (11) by (11a) or (11b) is very useful since upper or lower bounds
can be easily handled in the solution procedure without explicitly carrying along the
constraints. This has a dramatic effect on the efficiency of the procedure, since the
number of constraints to be explicitly satisfied is reduced by the number of fields. The
number of constraints tends to be a key variable in solution speed of linear program-
ming-based solution procedures such as the one used here.

The solution to P0 provides a solution to the editing problem, that is, the fields
in the record x that could be causing the inconsistency are determined. A side effect
is that the determination of the y and zj values for each field demonstrate that
imputations that will yield a consistent record do exist.

Even though the formulation of the fixed charge probem (9)-(15) is very similar
in form to that of the well-known linear programming problem, the approach to finding
a solution is very different. For linear programming problems one can use the simplex
algorithm. Unfortunately, no simplex-like procedure has been developed for fixed
charge problems because the objective function for fixed charge problems is concave
rather than linear. It is a well known result that the optimal solution to the minimization
problem with a concave objective function and linear constraints will occur at an
extreme point [5]. However, it is also true that it is not easy to find which extreme
point is the global minimum due to the existence of local optima [10].

Given that the fixed charge problem is not easy to solve, it becomes necessary to
use a search procedure to determine an optimal solution. We have chosen the branch
and bound procedure for this. Branch and bound methods work by subdividing the
feasible region into subproblems (branching) and deleting subproblems from con-
sideration if it can be shown that an optimal solution will not be found in that sub-
problem (bounding). For an excellent discussion of branch and bound, see Geoffrion
and Marsten [3].

A branch and bound procedure for fixed charge problems, which has been
previously developed by the author [8], was extended to solve the fixed charge problem
(9)-(15) with implicit upper and lower bounds. This procedure is well suited to solve
this type of problem which has only fixed charges, in that a bound on the fixed charge
component is computed separately. Most solution procedures for fixed charge problems
depend upon the continuous variable cost to be efficient (for example, see [9]).
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This branch and bound procedure solves (9)-(15) with implicit upper and lower
bounds, by partitioning the problem into a linear programming problem and a set
covering problem. The linear programming problem (PLy) is:

Find a feasible solution to"

(PEP)

A(y-z)<=b-Ax,
y- z >=-x,
y>=O,

and the set covering problem (Psc) is:

Minimize:
k

(Psc) subject to:
k

Z Au >-1 for e F,

where

and

1 ifa#O,
h= 0 ifa=O,

o } ={ilx 0}.bi- a,lx < 0 4’ <

The set covering problem is equivalent to the failed edit matrix used by Liepins
[7] in solving discrete coded data editing problems. It is made up of the constraints
or bounds of the edit problem that are causing the input record, x, to fail the edits.

In the branch and bound procedure, the branching is determined by choosing any
yj or zj that is basic and nondegenerate to branch upon. If a y or zj is positive, then
the corresponding uj must also be basic in (Psc). Similarly, if y or z is forced to be
zero, then the corresponding u must also be zero. The bounding is accomplished in
two ways. If forcing a yj or zj to zero results in (PLP) being infeasible, then the
resulting subproblem is terminated. Or, if the objective value of (Psc) becomes greater
than the current incumbent solution when u is forced into or out of the basis, the
resulting subproblem is terminated. The choice of a yj or z to branch upon is done
through the use of penalties as described in [3].

A computer code based upon the procedure described in [8] has been developed
and used to solve the editing problem or data supplied by the U.S. Census Bureau.
Another extension of the branch and bound procedure allows for the determination
ot equivalent solutions to the editing problem. These equivalent solutions will be
presented in the section on computational results.

3. Example. As an example of the fixed charge formulation for the fields-to-
impute problem, consider the following set of consistency or edit conditions:

(16) Xl->l,

This example was first suggested by Sande [12].
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(17) X1<=4,

(18) X2=> 1,

(19) X2=<4,

(20) Xl + Xz =< 7,

(21) Xl+X2=> 3,

(22) -Xl + x2 <-- 2,
(23) Xl--X2< 2.

Geometrically, these edit conditions specify that a record which satisfies the edit must
lie on or within an octagon in R 2. Figure 1 shows the octagon with a record which
fails the edit conditions being marked by an asterisk.

X2

4-

3

2

1

2 3 4

FIG.

If we now consider a record, x= (5, 0.5), we find that the product of x and A,
Ax, is (5, 5, 0.5, 0.5, 5.5, 5.5, 4.5, 4.5). If we then compare these values to the edit
conditions (16)-(23), we find that x fails edit conditions (17), (18) and (23). Since
the record x fails the edit conditions, we will now set up the fixed charge formulation
to find the field(s) that are suggested to be in error and a value(s) that can be imputed
to yield a consistent record. When this is done, we obtain the following equally-weighted
problem (where the Ax values have been moved to the right-hand side of the
inequalities)"

(24) Minimize" t(yl) q- t (y2) -t- ( (Z1) -[- ( (Z2)

(25) subject to: Yl Zl >=-4,

(26) Yl --Z1 -<-1",
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(27) Y2 Z2 0.5*,

(28) Y2 Z2 3.5,

(29) Yl + Yz z1 z2 1.5,

(30) Ya + Y2 Za Zz >-- --2.5,

(31) --Yl + Yz + z1 z2 6.5,

(32) Yl Y2 --Z1 +Z2 _-<-2.5*,

(33) Yl, Yz, Z1, Z2 0.

In this formulation we have marked with an asterisk (*) those inequalities which cannot
be satisfied by setting Yl Y2 Zl z2 0. Note that these inequalities correspond to
failed edits.

If we solve (24)-(33) as a fixed charge problem, an extremal solution is given by
7,1 2, 7,2 "-0, Yl --0, Y2 0.5 with a cardinality of 2. This implies that both coordinates
must be changed to yield a consistent record. In terms of Fig. 1, if we use the values
found in the solution process, we move the record x to the boundary of the consistency
octagon at (3, 1) by changing the fewest number of fields or coordinates. In this case,
any point on or in the octagon is an acceptable imputation with the same number of
changes.

4. Application to Census Bureau edits. To apply the fixed charge formulation to
the editing of economic survey data, it is necessary to derive consistency conditions,
Ax <= b. The Industry Division of the Bureau of the Census provided test data for the
Annual Survey of Manufacturers (ASM) for testing purposes. These data are currently
edited by the ASM General Statistics Edit [6] which uses ratios between various fields,
year-to-year ratios and the requirement that the sum of the parts must equal the whole
to determine consistency. This is a very special set of edits since, if the edits requiring
that the sum of the parts equal the whole are ignored, the ratio edits plus all implied
edits can be treated as a network. The edit problem then becomes one of solving the
associated node disconnect problem. Greenberg [4] has discussed this approach and
presented a heuristic to solve this problem. However, he presents no results on solving
the problem optimally or on solving heuristically the complete editing problem (includ-
ing the sum of the parts edits).

If xk is the value in the kth field and xi is the value in the jth field, then a ratio
edit involving these two fields would be written as

Xk(34) l <-_-- <- ui,x
where li and ui are lower and upper bounds, respectively, for ith field-to-field con-
sistency condition and xj # 0. The single ratio edit may be transformed into linear
inequalities as follows:

(35) Xk lxj >= O,

and

36) xk uix O.
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as
For the same two field values, xj and Xk, a year-to-year ratio edit would be written

(37) l-]
/-

where 2k prior year value for Xk (assumed to be known),

2 prior year value for x (assumed to be known),

li ith year-to-year lower bound,

tTi ith year-to-year upper bound.

This ratio edit can also be converted into two linear inequalities but this is not necessary.
This ratio converts into another ratio involving only x and Xk"- (a).

x
Now referring to the ith field-to-field ratio in (36), note that if u> (a)(2k/2), then
we may replace u by (a)(2k/2) in (36). Similarly, i l> (2k/2), then l may be
replaced by l(2k/2) in (35). is combination of field-to-field and year-to-year ratios
serves two purposes. First, if there are n field-to-field and n year-to-year ratios, we
would need only 2n linear inequalities rather than the 4n linear inequalities that would
be needed without the combination. Secondly, the linear inequalities which result are
the 2n most restrictive inequalities, so there are no redundant or unnecessary
inequalities.

The final set of consistency conditions, those which require the sum of the parts
to be equal to the whole, may be stated as"

(39) x B,,
]=1

where r number of fields which make up the whole,

B the value for the field corresponding to the whole,

x the values of the fields corresponding to the parts.

These edits do not require a conversion since they are already linear inequalities.
The ASM orms come in two main categories, MA-100 and MA-100(s). Both

forms request information about industries with the MA-100(s) being used for smaller
companies and requiring less detailed information. A single set of ratios is used for
both forms. There are 51 field-to-field ratios and 42 year-to-year ratios, which are
used in the editing process. We will present results for the MA-100 form since it us
used for many more companies than the MA-100(s).

The MA-100 form used in the ASM requests information in twenty major fields.
A given field is not a major field if the only ratio edit in which it is involved also
involves a field for which the given field is a part. For example, if A + B C and the
only ratio involving field A is A/C, then A is not a major field and is termed a minor

field. The objective becomes to change the minimal number of major fields using
mathematical programming and then to use other procedures to edit the minor fields
since they depend on the major fields. For the MA-100 edit, the twenty major fields
and their mnemonics are given in Table 1. We will only consider the editing of the
major fields here.
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TABLE 1
Major field for MA-100 edit.

Field

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Quantity edited

production workers
other employees
total employees
production workers’ salaries
other workers’ salaries
total wages and salaries
legally required labor cost
payments to voluntary programs
total supplemental labor cost
plant hours worked
cost of products purchased
cost of materials
ending inventories
value of assets at beginning of year plus capital expenditures during year
value of assets at end of year
rental paymentsmbuilding
rental payments--equipment
total rental payments
value of resales
value of shipments

Mnemonic

PW
OE
TE
W
OW
SW
LE
VP
LC
MH
CR
CM
ET
TCE
TAE
BR
MR
TR
VR
VS

There are 23 ratio edits and four sum-of-the-parts or balance edits which involve
the twenty major fields. The ratio edits, with their upper and lower bounds, are shown
in Table 2. The balance edits are"

(40)

(41)

(42)

(43)

PW+OE=TE,

BR+MR =TR,

OW+WW= SW,

LE+VP LC.

For the MA-100 edits, there are 50 inequality conditions which result from the
23 ratio edits and four balance edits. The conditions plus the bounds of the form
X+ Y-Z-> 0, result in a fixed charge problem with 40 X and Y variables, 40 0-1
(6(X) or 6(Y)) variables, 50 constraints and 20 upper or lower bound conditions.

To test the computer code after it had been developed to handle the problem
presented by the MA-100 form, the Industry Division supplied seven MA-100 forms
of test data. These data are shown in Table 3. For each record, the prior data and
current year data are shown. A dash is shown in those fields where there was no
response. These records were then run on the branch-and-bound solution procedure
after it was combined with a heuristic procedure developed by Walker [14] for finding
good solutions to fixed charge problems.

The results of these computer runs are shown in Tables 4 and 5. Table 4 shows
the current record before and after editing. The minimal fields which the procedure
determined need to be changed for each record are denoted with two asterisks (**)
in Table 4. The statistics for the solution procedure for each record are presented in
Table 5. These statistics include" The CPU time to generate the matrix for the fixed
charge constraint set from the ratio edits, the balance edits and the current record;
the CPU time to solve the two parts of the lower bound via linear programming; the
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TABLE 2
Ratio edits ’or ASM form MA-100.

Ratio

sw/vs
SW/TE
ww/sw
ow/sw
CM/VS
ET/VS
TAE/VS
BR/VS
MR/VS
VR/VS
PW/TE
OE/TE
ww/Pw
WW/MH
OW/OE
CR/CM
CR/VR
MH/PW
TCE/TAE
(SW+CM)/VS
TCE/VS
LE/SW
vP/sw

Current year
(field-to-field)

Lower limit Upper limit

0.510
30.000
1.000
1.000
0.850
0.357
6.000
0.200
0.200
0.750
1.000
1.000

25.000
15.000
30.000
1.000
1.480
2.710
0.505
1.182
1.000
0.700
0.400

0.010
3.000
0.250
0.100
0.120
0.010
0.010
0
0
0
0.25
0.100
3.000
2.000
3.000
0
0.250
1.372
0.010
0.100
0
0.040
0.005

Year-to-year

Lower limit

0.251
0.525
0.250
0.100
0.3O0
0.100
0.100
O.O50
0.050
0
0.506
0.100
0.546
0.574
0.250
0
0.237
0.475

Upper limit

0.749
1.575
4.000
10.000
1.700

10.000
10.000
20.000
20.000
20.000
2.000
10.000
2.000
2.000
4.000

20.000
3.000
1.525

CPU time to search for and prove a solution to be optimal via branch and bound; the
total CPU time for each record; and the number of branch and bound subproblems
encountered in the search procedure. This last statistic is an indicator of the difficulty
that the solution procedure encountered in finding and proving an optimal solution.

In looking at Table 4, we observe several interesting characteristics of the fixed
charge editing procedure for the test problem. First, the fact that records 1 and 3 have
only missing data is confirmed by the fixed charge editing procedure. Secondly, record
2 demonstrates an important capability of the editing procedure. In this record, the
edits for field MH are with WW and DW, both of which are missing but the editing
procedure still suggested that MH was incorrect. This capability of the fixed charge
editing procedure to edit records with both missing and erroneous data is also demon-
strated by records 4 and 6. Note that some fields in records 2 and 6 appear to have
scaling errors which might be corrected in a pre-editing procedure that checks for
scaling. In any case, the fixed charge editing procedure suggests that these fields are
in error.

In Table 5, we see that all records except number 6 were solved in less than two
seconds and with five or less subproblems. Problem 6 turned out to be somewhat more
difficult in terms of CPU time and number of subproblems. One can only conjecture
why this record was more difficult than the others but it may have to do with a seeming
reversal of the numbers of production workers (PW) and other workers (OW) plus
the missing value for the production workers’ salaries (WW). These are subtle errors
which tend to make difficult the process of proving a given solution to be optimal.



794 PATRICK G. MCKEOWN



EDITING OF CONTINUOUS SURVEY DATA 795



796 PATRICK G. MCKEOWN

TABLE 5
Solution statistics for FCEDIT.

Record
Matrix

generation
time

0.067
0.064
0.065
0.070
0.063
0.081
0.064

LP
solution
time

0.491
0.563
0.450
0.552
0.324
0.665
0.343

B and B
search
time

0.013
0.588
0.010
0.228
0.564
5.312
1.372

Total
time

0.571
1.215
0.525
0.850
0.951
6.058
1.779

B and B
subproblems

0
3
0
2
2

48
5

In addition to the seven test records discussed above, 163 test records were formed
by perturbing one or more fields of an acceptable record to a very large, incorrect
value in such a way that records having up to ten incorrect fields were generated.
These records were then run on the fixed charge editing procedure to determine if it
would pick out the perturbed values. In this testing, the fixed charged editing procedure
was 100% successful in finding the perturbed values.

The final testing involved a modification to the branch and bound procedure to
allow for determination of alternate solutions for records. As an example of the result
of finding alternate solutions, consider record 6. From Table 4, we can see that the
number of fields suggested to be in error was 8. In Table 6, we see the original fields
found in error along with four alternate solutions for record 6. In all cases, the
cardinality is 8.

TABLE 6
Equivalent edits.

Alternative Fields in error

2 3 4 5 6 17 18 19
3 4 6 10 17 18 20
2 4 6 10 17 18 20
3 4 6 10 16 17 20
2 4 6 10 16 17 20

Cardinality

Since the ASM editing problem is of such a special nature, it may be possible to
derive a special purpose code to find the optimal number of fields to change that will
be more efficient than the general purpose branch and bound procedure discussed
here. However, we have shown that our procedure does work in a reasonable time
for this set of edits even though no modifications were made in the procedure to take
advantage of the special structure of the ASM edits. The strength of this algorithm is
that it will work on any set of linear edits regardless of the structure (if any) of the
problem.

5. Summary and suggestions for future work. We have described a fixed charge
formulation of the editing of economic data for deterministic edits and discussed the
use of a branch and bound procedure to solve this formulation for a minimal number
of fields to be imputed. This fixed charge approach was applied to Annual Survey of
Manufacturers (ASM) test data. Results from using a computer code based on the
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fixed charge editing procedure to edit the ASM test data were presented and discussed.
The results appear to be encouraging for several reasons. First, it has been shown that
it is possible to edit economic surveys with either missing or erroneous data or a
combination of both. As long as the edit conditions are consistent, a side effect of this
editing is a demonstration that an imputation exists. Secondly, this editing procedure
is easy to understand and to use. The errors found involve a minimum number of
fields to be imputed in order to yield a consistent record, and it is possible to vary the
weights on fields to yield different imputations. Finally, a capability to find alternate
patterns of fields suggested to be in error was demonstrated.

It should be noted that the approach to data editing described here could be used
to edit any type of economic survey data so long as the edit conditions can be written
as linear inequalities. The ASM edit conditions shown here were given as an example
and the procedure is not specific to this set of edits. It would only be necessary to
modify the data and edit conditions to fit the form described here before a fixed charge
solution procedure could be used.

In terms of future work, the usefulness of implied edits as discussed by Fellegi
and Holt [1] as they might be incorporated into the fixed charge editing procedure
should be tested. If such implied edits could tighten up the lower bound calculations,
then they might be useful in reducing the branch and bound search time.
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THE PERFORMANCE OF k-STEP PSEUDORANDOM NUMBER
GENERATORS UNDER THE UNIFORMITY TEST*

HARALD NIEDERREITER"

Abstract. Sequences of integers generated by k-step linear recursions can be transformed into sequences
of uniform pseudorandom numbers by the digital method. We show by a priori bounds that if the least
period of such a sequence is sufficiently large, then the pseudorandom numbers perform well under the
uniformity test.

Key words, uniform pseudorandom numbers, digital method, uniformity test

1. Introduction. The most commonly used method for the generation of uniform
pseudorandom numbers is the multiplicative congruential method of Lehmer [4], which
is based on the one-step recursion

Yn/l =-ayn mod M forn=0,1,...,

where M is a large integer, a is a suitably chosen integral multiplier, and the yn are
integers with 0 < yn < M. A sequence of uniform pseudorandom numbers in the interval
[0, 1] is derived by setting x, y/M. The statistical properties of multiplicative
congruential pseudorandom numbers have been studied extensively both from the
theoretical and the empirical point of view (see [3], [9] for surveys). The idea of using
general k-step recursions for pseudorandom number generation was brought up shortly
after the appearance of Lehmer’s work (see e.g. van Wijngaarden [19]), but it received
wider attention only through a later article of Tausworthe [16]. Since then, a consider-
able amount of literature has been devoted to k-step pseudorandom number gen-
erators; see e.g. [1], [2], [5], [7], [8], [10], [11], [12], [14], [15], [17], [18], [21], [22].

Pseudorandom number generation by k-step recursions proceeds as follows. For
a prime number p a sequence Y0, Yl," of integers satisfying 0-< y, < p is generated
by the recursion

(1) Yn+k =-" ak-Yn+k-1 +" + aoy mod p for n O, 1, ,
where the ai are constant integral coefficients with a0 0 mod p. The sequence of y
is determined by the initial values Y0," ", Yk-1. For obvious reasons it is assumed that
not all of these initial values are 0. There are two different methods of obtaining
uniform pseudorandom numbers from the yn"

(a) Normalization method. Here one chooses p to be a large prime and normalizes
the numbers y by setting x y/p for all n. Then Xo, Xl,"" is taken as a sequence
of uniform pseudorandom numbers in [0, 1].

(b) Digital method. Let p be a small prime (often p 2) and choose an integer
m >= 2. Then set

(2) xn y,+i-lP
-i for all n,

i=1

that is, blocks of consecutive y, of length m are interpreted as digits of xn in the base
p. In (2) these blocks are overlapping. One can also consider nonoverlapping blocks by

* Received by the editors March 15, 1983, and in revised form July 12, 1983.

" Mathematical Institute, Austrian Academy of Sciences, Dr. Ignaz-Seipel-Platz 2, A-1010 Vienna,
Austria.
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setting

(3) x, Y y,,/i_lp
-i for all n.

i=1

In either case, x0, xl," is taken as a sequence of uniform pseudorandom numbers
in [0, 1].

An important statistical test for the suitability of uniform pseudorandom numbers
for simulation purposes is the uniformity (or equidistribution) test (see [3, Chap. 3]).
The performance of uniform pseudorandom numbers obtained by the normalization
method under univariate and multivariate uniformity tests was already investigated by
the author [8], [10], [11], [12]. In the present paper we apply the (univariate) uniformity
test to uniform pseudorandom numbers obtained by the digital method. The theoretical
analysis of this method is more complicated than that of the normalization method.

If x0, xl," is a sequence of uniform pseudorandom numbers in [0, 1], then the
uniformity test amounts to measuring the maximum deviation between the empirical
distribution function of the sequence and the uniform distribution function on [0, 1].
In detail, let N be a positive integer and EN(t) the empirical distribution function,
i.e., EN(t) is N-1 times the number of n <N with x,-< t, and set

(4) D= sup IE(t)-tl.
Otl

We establish bounds for D with x, obtained from either (2) or (3).
It should be noted that a sequence Y0, Yl," obtained from (1) is always periodic.

Let z denote the least period of the sequence. Then z is also a period of the sequence
of x, obtained from either (2) or (3). It is easily seen that in the first case (i.e., in the
case of overlapping blocks) z is again the least period, whereas in the second case (i.e.,
in the case of nonoverlapping blocks) the least period of the sequence of x is given
by z/gcd (m, z). In order to achieve a large value of z, we assume that the characteristic
polynomial of (1), i.e., the polynomial

(5) f(x) X
k

ak_lxk-1 ao,

considered as a polynomial over the finite field Fp ./p., is irreducible over Fp. Then
r is always a divisor of pk-1, and the value r=p-1 can be achieved (see 2). In
the case of nonoverlapping blocks we assume further that gcd (m, z)= 1. Then for
both overlapping and nonoverlapping blocks the least period of the sequence of x is
equal to z. We also assume m <-k so as to prevent obvious correlations among the
digits of any single x.

Because of the periodic nature of the x it is only of interest to study Dn for
1 <= N =< z. We can now state the bounds for DN that are valid under the assumptions
above. For the sake of convenience we list again all the hypotheses: (i) m -< k; (ii) the
polynomial f in (5) is irreducible over Fp with f(0)OeFp; (iii) the initial values
Yo,’", Yk-1 are not all 0; (iv) gcd (m, z)= 1 in the case of nonoverlapping blocks.

THEOREM 1. For a sequence Xo, Xl," generated by the digital method we have

D<+ logp+ m+(m-1)(P 1)
p" r lq-9k/2 p

In the case p 2 we have

D, -<_ +
r l+k/2 (m 1/2).
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THEOREM 2. For a sequence Xo, xl," generated by the digital method we have

Dv < + log - + - pk/2 1
"r l +pk/2

(m-- 1)(p-- 1))P
forl<=N<z.

In the case p 2 we have

Dv <--+ --log
r 1+-2k/ m- forl<=N<r.

These results demonstrate that uniform pseudorandom numbers generated by the
digital method perform well under the uniformity test if the period - is sufficiently
large. Particularly good results are obtained for the maximum period " pk_ 1.

In 2 we present some preparatory results. Sections 3 and 4 contain the proof
of Theorem 1 and Theorem 2, respectively. In 5 we show lower bounds for DN that
indicate to what extent Theorems 1 and 2 are best possible. A brief discussion of the
results follows in 6.

2. Preparatory results. For an arbitrary sequence w0, Wl," "in [0, 1) whose terms
are given by finite digit expansions, we establish a bound for DN by means of exponential
sums. Let b >-2 be an integer that serves as the base for the digit expansions, and let

wn Y wi) b-i for all n,
i=1

where the digits w are integers in the interval [0, b-1]. For r-> 1 we define Cr(b)
to be the set of (hi,""" ,hr) E 7]r with -b/2<hj<-b/2 for l<=j<=r, and we let C*(b)
be the set Cr(b) with the r-tuple (0,. , 0) deleted. We set C(b) C(b) and C*(b)
C*l(b). For real u we write e(u)= e2"i".

LEMMA 1. For the sequence Wo, wl, we have for any N>= 1,

1 1 1
D<=-+ E E

r=l (hl,’",hr_l)-Cr_l(b) hr-C*(b) sin "a’lhr/ bl 1 (hlW(n1)+’’’+hrw))
,.-2 b-1

-" E r+l E
r=l b (hl,’",hr)eC*r(b)

+ ,_,------- E e
O (hl,’",hm_l)C*m_l(b) n=0

hl w(nl)-I-. .T hm_l w(nm-l))b

Proof. For 0 _-< =< 1 let

t= ’, tib-i
i=l

be the expansion of to the base b, with the usual condition that not almost all digits
ti b- 1, except in the case 1 where we take all ti b- 1. Then we have w _<-t if

<r-l) tr-,w)<trforsomerwithl <r<m 1 (forr 1and only if w tl, ", w

the condition reduces to w < tl) or w)= tl,’’’, W(nm-l) tm-, W(nm)< tin. Thus, if
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A(N, t) denotes the number of n <N with wn -< t, then

m-1 tr-1 N-1
A(N,t)= Y. Y c,l(w))’"ct,_l(W-l)lcj(w))

j=0 =0

tm N--1

+ E Z
j=0 n=0

where cj(w)= 1 for ] w and c(w)= 0 for/" w with integers ], w e [0, b-1]. Now

1 e(h(w-j))Cj( W) " heC(b) b
and so

m--1 tr--1 N--1 1
A(N,t)= ,

7r=l j=O n=O (hl,’",hr)Cr(b)

(hi w(nl)+"""-F hrw(nr)- hltl hr-ltr-l-hr)e
b

tm N--1 1

j=O =0 (hl,’",hm)Cm(b)

e (/lw(nl)-I-" "+ hmw(nm)-hltlb hm-ltm-l-hmj)
Separating the contributions from (hi,. , h)= (0,. ., O) in the sums above, we get

1 m-l tr-l Nnl 1
A(N, t) N --+ Y. Y -r=l b r=l j=O 0 (h,.- .,hr)C*r(b)

(hlW)+’’’ + hrw(nr)- hit1 hr-ltr-1-hrj)e
b

hlW/+ + h.,w()- hit1 hm-ltm-1- hmj)e
b

It follows that

A(N,t)
N

1
b (hl,’",hm)C*m(b)

tr-l0 e(-hb])
i=

2o e
]_-

For h C(b) and an integer L ->_ 1 we have

Y e =L+ 1
]=0

for h 0
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and

2 1
le(h/b)- 11 sin rlh/bl

for h O.

Using these results and the fact that EN(t)=A(N, t)/N, we obtain Lemma 1 from
(4). D

COROLLARY 1. Let Wo, Wl, be as above and suppose that for all (hi,. , hr)
C*(b), 1 <= r<-_ m, we have

(6) <=B

.for some constant B. Then

1 1
DN <-----+ B E

hC*(b) sin rlh/ bl
(m- 1)(b- 1))b

Proof. Using (6), we get from Lemma 1

1 ( 1 ’-:(b-1)(br-1) bin-l-l)DN <=-+B Z + E r+i
hC*(b) sin 7rlh/bl r=l b ---7

and the desired result follows by a straightforward calculation.
The integers Y0, Yl," as well as the coefficients ai in (1) may be interpreted as

elements of the finite field Fp. The recursion (1) becomes then the linear recurrence
relation

(7) yn+k=ak_lYn+k__l-t-...-t-aoyn for n=0, 1,"

over Fp. We use the theory of finite fields to get an explicit formula for the Yn. We
refer to [6] for the necessary background on finite fields. Set q pk and let Fq be the
finite field of order q. Let Tr denote the trace function from Fq to Fp; it is a surjective
Fp-linear mapping. Furthermore, the irreducible polynomial f over Fp in (5) splits in
Fq; let a fq be a fixed root of f. We denote by Fq* the multiplicative group of nonzero
elements of Fq.

LEMMA 2. Let the sequence Yo, Y," of elements of Fp satisfy (7), and suppose
that not all initial values Yo," Yk-1 are O. Then there exists F*q such that

Yn Tr (/3c) for all n.

Proof. Since f is irreducible over Fp, {1, a, a 2 c k-l} is a basis of Fq over Fp
Then [20, Corollary 3-7-7] implies that the k x k matrix with (i, j) entry Tr (ai-laj-l)
is nonsingular. It follows that there exist bl," , bk Fp with

k

Y bi Tr (ai-laj-l) Yi-1 for 1 =<]-< k.
i=1

Putting/3 bl + b2a +" + bka k- Fq, we get

Tr(/3an)=yn forn=0,1,...,k-1.

We have/3 # 0 because not all initial values are 0. Since the y, are uniquely determined
by Yo," "’, Yk-a and (7), it suffices to show that Tr (/3a ") satisfies the relation (7).
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Using properties of the trace function, we get

Tr (a,+k)_ ak-1Tr (/3a "+k-l) a0 Tr (fla ")

=Tr (/3(a"+k--ak_la"+k-1 aoa")) =Tr (a"f(a))=0

since f(a) 0.
Since f(0) 0 by hypothesis, we have a 0, so that a is an element of the group

Fq*. Let s be the order of a in that group. Then it follows from Lemma 2 that y,/ y,,
for all n, i.e., that s is a period of the sequence Yo, Yl," Thus, the least period r of
this sequence satisfies r =< s. On the other hand, Lemma 2 implies Tr (fla"/) Tr
for all n, hence in particular

Tr(a’(a-1))=0 forn=0,1,...,k-1.

Using linear combinations with coetiicients in Fp and the fact that {1, a, a2, a k-a}
is a basis of Fq over Fp, we deduce that

Tr(y(a-l))=0 forallyF.

As the trace function is surjective, this is only possible if a -- 1. Consequently, we
have z s. It follows that z is a divisor of q-1- pk_ 1. The value z q-1 pk_ 1
can be achieved by letting f be the minimal polynomial over Fp of a generator of the
cyclic group Fq*, i.e., by letting f be a so-called primitive polynomial over Fp (compare
with [6, Ch. 3]). From z- s and the fact that - is independent of the choice of a root
a of f, we get another proof of the well-known result that any root of f has the same
order in Fq*.

We consider now character sums over the finite field Fq. We note first of all that

(8) X() e Tr () for all e Fq

defines a character of the additive group of Fq. Let 0 be a character of Fq*. Then

a()= 2 ,(#)x(#)

is a so-called Gaussian sum (see [6, Ch. 5]). With each O there is associated its conjugate
character -, defined by (y)= O(y-1) for all V Fq*.

LEMMA 3. If X is given by (8), then

1
X(Y)

q-1
G(ff)(y) for allyF*q,

where the sum is extended over all characters 0 of F*q.
Proof. For y Fq* we have

E G()O(T)=F 0(7) Y (fl)X(fl) E X(fl) d/(Yfl-1)=(q-1)X(Y)

by the orthogonality relations for characters, and the result follows.

3. Proof ot Theorem 1. By Lemma 1, the estimation of DN reduces to the
estimation of certain exponential sums. We consider first the case of overlapping blocks.

(i)Then wn Yn+i-i for 1 _-< i-<_ m and all n, so that the exponential sums in Lemma 1
are of the form

N--1 ( hlYn + hzyn+l +. ._F hrYn+r_l)(9) ? e
=o p
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with (hi,""", hr)E Cr*(p), 1-<_ r<= m. Since the hi and y, only matter mod p, we can
view them as elements of Fp. Setting

Zn hlyn + h2y.+l +" "+ hrYn+r-1,

we get from Lemma 2 with a suitable/3 E Fq*,

z, hi Tr (fla")+ h2 Tr (fla"+l)+... + hr Tr (/3a n+r--1)
Tr (fla "(hl + h2a +" + hrar-1)).

The hypothesis m =< k implies r=< k, and since {1, a, a2, , a k-l} is a basis of Fq over
Fp and not all hi are 0, it follows that hi + h2a +" + hra -1 s O. Consequently, there
exists 3’ Fq* with

(10) z.=Tr(ya) foralln.

It follows from (8) and (10) that the sum in (9) attains the form

() E x(").
n--0

For the case N - these character sums can be estimated by the following general result.
LEMMA 4. If A is an element of F*q of order d, then for any 3’ F*q we have

1/2 d
n=0

Proof. From Lemma 3 we get

1/2"l+q

a-1 1 a-1 1 a-1

E x(X")= E E G(q,)q,(x")= E G(q,)q,() E
.=o q-1 .=o, q-1 , .=o

The inner sum in the last expression is equal to d if q,(A) 1 and equal to 0 if q,(A) rs 1
since q,(X) a q,(k a) 6(1) 1. Therefore,

(12)
a-1 d
E x(X")= E
.=o q- 1

q(X)=l

The last sum contains (q-1)/d terms. Furthermore, we have G(@) =-1 if q, is the
trivial character and IG(q,)l ql/2 if q, is nontrivial (see [6, Ch. 5]), so that (12) yields

d-1

E x(,x") -< 1 q +1 =q 1/2.q-1 d l+q

Since cr has order in Fq* (see 2), it follows that for N " any sum of the form
(9) is bounded in absolute value by ql/2-’/(1 +ql/2). Therefore, the condition (6) is
satisfied with

ql/2 1
7" l+q1/2"

Corollary 1 implies

p" r 1 + h C*(p) sin rl h/pl
(m- 1)(p- 1)).P
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For p 2 we have

For general p we have

1

he C*(p) sin rl h/pl

1 2
Y’. <--p log p +p

hC*p) Sin :lh/Pl r

according to [8, p. 574]. Recalling that q pk, we have shown Theorem 1 in the case
of overlapping blocks.

In the case of nonoverlapping blocks we have w)= Y,,n/i-1 for 1 <-i=< m and all
n. Thus, instead of (9) we get sums of the form

N--1 ( hlYmn W h2Ymn+l + + hrYmn+r_l)(13) Y’, e
n=O

with (hi,. , hr) Cr*(p), 1 --< r =< m. The argument leading to (11) shows then that a
sum in (13) attains the form

N--1

(14) E
with a suitable y Fq*. Again, a has order z in Fq*, and since in the case of nonoverlap-
ping blocks we assume god (m, z)= 1, it follows that a also has order " in Fq*. Using
Lemma 4 with , a", we get

’--1

ran) 1/2Y, X(’a < q a/2.
,=0 l+q

Thus, for N z the condition (6) is satisfied with

q/2 1
B

z 1+ql/2"
The proof of Theorem 1 is completed as in the case of overlapping blocks.

4. Proof o[ Theorem 2. In the case ot overlapping blocks we have to consider
sums of the form (9), which can be written in the form (11) according to the argument
in 3. These sums are estimated by the following general result.

LEMA 5. If is an element ofF o]’ order d, then for any y F*q we have

2 X()’I’) < q/ log d + -I
Nq/

,,=o d 1 +ql/2 for allN> 1.

Proof As in the proof of Lemma 4 we get
N--1 1 N--1

E x(y;")
--o q 1 E G(,)q,(y) q,(x).

q n=0

Distinguishing between the cases O(A) 1 and O(A) 1, we obtain

N-x N 1E X(rA )= E G(q’)q(V)+
1

n=o q-1 , q-1 q(,X)-I

N d-1

,)
1

E X(rX + E G(q,)q,(y)4’(Xu) 1

d,=o q-i , q(;)-I



806 HARALD NIEDERREITER

where we used (12) in the last step. By Lemma 4 and the fact that IG()l--q1/z for
nontrivial O, it follows that

X(),An) ql/2_
_

.=0 1 + q/2 q- 1 IO(A)- 11
(A)l

Each dth root of unity e(j/d) occurs exactly (q- 1)/d times as a value of if(A), hence

-1

") ( 2 d ) 2q1/,=oE X(YA ql/ -1+ql q- 1
q
d

1 le(]/d)l 11

1/2 d)ql/2 1
1 + ql/2 "+y

j=l sin (r]/d)"

By [8, p. 574] we have

d-1 1 2
<--d log d +d,

=1 sin Trj/ d) r

and the desired result follows.
As in 3 we see then that condition (6) is satisfied with

B =--- log r+ +
ql/2 1

’r l+q1/2"

The proof of Theorem 2 for the case of overlapping blocks is completed by the
arguments of 3.

In the case of nonoverlapping blocks we have to consider sums of the form (13),
which can be written in the form (14). We use Lemma 5 with ) a m, but otherwise
proceed as in the earlier case.

5. Lower bounds. The term p-" appearing in the bounds for Dv in Theorems
1 and 2 can be viewed as the "discretization error," resulting from the fact that all
the pseudorandom numbers xn are rationals with denominator p’. Indeed, it can be
shown easily that p-m is a lower bound for DN. We note that any xn generated by (2)
or (3) satisfies

x. _-< (p- 1)p-i= 1 _p-m,
i=1

so that (4) implies

(15) DN >= IEN(1--p-’)--(1--p-m)l l1--(1- P-")I p-m

for all N >-1.
By more elaborate arguments, we can establish lower bounds for Dv that relate

to the second terms in the bounds given in Theorems 1 and 2. We use the notation
introduced in 2.

For a prime p define the constant

Ap=o=<o<lSUp j=o2 cos27r +0 -cos2r\+0
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It is easily seen that A2 2. For general p and any real 0 we have

p-2 () (j+l) p-2 lcos2r +0 -cos27r +0 =2 sin2(x+0) dx
j=0 p j=0 j/p

<2 sin 2(x + 0)1 dx=4,
0

so that Ap N 4.
To 3. Let be an irreducible polynomial over Fp ith (0) e 0 as in (5),

and let be the order o any root o in F. Then for any N 1 NNN , there exists a

sNuence xo, x, generated by the digital method (with overlapping blocks) by means
4 (1) such that

1 ( pk-N 1/2

The same result holds for the case of nonoverlapping blocks under the usual assumption
gcd (m, r)= 1.

For the proof of this theorem we need two lemmas.
LZMMA 6. Let f be an irreducible polynomial over Fp with f(O) 0 as in (5), and

let be the order of any root of f in F, q p. Then for any N, 1 N , there exists
a sequence Yo, Y,"" of integers satisfying 0 y, < p and the recursion (1) such that
not all initial values Yo," Yk- are 0 and

(Y;) (N(q-N) we

=0
e Z ]

Proof. Let a eF be a root of f and fix N, 1 N z. Then

N--1 2 N--1

E E x(#") E E x(#J)x(-# ")

N-I N-I

x(#(-"))=(q-)N+ x(#(-)).
,n=o# y,n=o

jn"

Since has order in F, we have for j n. Therefore, each inner sum in
the last expression has the value

and so

Z x(,) Z x(r)-x(0)=-l,

N-1

n=O

2

(q- 1)N-(N2-N) N(q-N).

It follows that there exists/3 Fq* with

N-1

E x(/3-)
n=O

(16) N(q-N)
1/9

With this # we put y. Tr (fla ) for all n. Then one shows as in the proof of Lemma
2 that the y satisfy (7). If Yo," , Yk-1 were all 0, then using linear combinations with
coefficients in Fp and the fact that {1, a, a, , a k-l} is a basis of Fq over Fp, it would
follow that Tr (/33,)= 0 for all y Fq, hence/3 0, a contradiction. We interpret now
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the y,, as integers with 0 _<-y,, < p. Then the y,, satisfy (1), and the proof is complete
by (16) and the observation that X(fla")= e(y,/p) for all n according to (8). [3

LEMMA 7. Let f and - be as in Lemma 6, and let gcd (m, )= 1. Then for any
N, 1 <= N <= -, there exists a sequence Yo, Yl," of integers satisfying 0 <= y, < p and the
recursion (1) such that not all initial values Yo," Yk-1 are 0 and

1 (Ymn)>(N(q-N) 1/2

e - }.=o \p/

Proof. The argument leading to (16) can be carried out with a replaced by a m,
since a also has order z in F*. Hence there exists fl F* with

N--1

n=O

N(q-N)
1/2

We put y, Tr (/3a ") for all n and complete the proof as in Lemma 6.
Proof of Theorem 3. Let N be fixed. For the case of overlapping blocks we choose

a sequence Yo, Yl," satisfying the properties in Lemma 6. For j=0, 1,..., p-1 let
Z(j) be the number of n <N with y, =j, and put

Then

E e Z(j) e Z(j)
N

e
n=0

and summation by parts yields

Y e F S(j) e -e
=0 j=0

where we used S(p-1)= 0. For some 0, 0-< 0 < 1, we get

and taking real parts,

e(O) = S(.i)(e() e (J-))
(,+1S(j)(e(+ O)- e \-T+ 0)),

(y;) p-:z (() (j+l))e S(j) cos2r +0 -cos2r "+0
=o j=o p

p-2 ()(j+l )p
<-- E Is(j)l cos2 +0 -cos2+oj=0

Let the integer J, 0 J p- 2, be such that

Is(/)l max
Ojp--2

Then

p-2

IS(J)l E
j=O

IS(J)IAp;
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hence

(17)
s (J+ 1)NE Z(i)- 1 (N(q-N)) 1/2

by Lemma 6 and the definition of S(J).
The sequence Yo, Yl,"" yields a sequence Xo, Xl,’" generated by the digital

method with overlapping blocks of length m. Choose 0 -< e <p-m and put to
(J+ 1)p-l-p + e. Then xn =< to if and only if y,, -<J. It follows from (4) and (17) that

s J+l
Ds >- IEc( to) tol E Z( i)-+p-"

i=0 P

>-
,=

Z(i)-
P -]P-’-e[-->pp((d--i-Nq-N)1/2 --p-m+e.

Letting e tend to p-" and recalling that q pk, we obtain the desired result for the
case of overlapping blocks.

For the case of nonoverlapping blocks we proceed as above, but we use Y,,n instead
of Yn and Lemma 7 instead of Lemma 6.

6. Discussion. As an illustration of the lower bounds in 5 we consider the case
N -. If - has the maximum value pk_ 1, then, dropping absolute constants, we see
that the upper bound for Dr in Theorem 1 is of the order p-’ +p7k log p’, and since
m =< k in that theorem, Dr has an upper bound of the order p-" log p". On the other
hand, Dr is at least p-" by (15). In other cases of interest, - will be of the form
(pk_ 1)/d with a small divisor d> 1 of pk_ 1. Then, dropping absolute constants, the
upper bound for Dr in Theorem 1 is of the order p-m +(d-1)p-k/2 log p". On the
other hand, Dr is at least p-" by (15) and, apart from absolute constants, at least of
the order (d-l)l/ap-k/2 by Theorem 3. It should be noted that the number " in
Theorem 3 is also the least period of the sequence x0, xl,’" ", according to the
information gathered in 1 and 2.

These results demonstrate that digital k-step pseudorandom numbers perform
better under the uniformity test if the value z of the least period is increased. For the
maximum period -= pk_ 1 the discussion in the preceding paragraph shows that the
order of magnitude of Dr is, up to a logarithmic factor, given by the discretization
error p-’. Since this is independent of the choice of k->_ m, the following procedure
is suggested. Choose a small prime p, say p 2, and select m large enough so as to
get a tolerable discretization error p-". Then take k m and choose the recursion (1)
in such a way that its characteristic polynomial (5) is a primitive polynomial of degree
rn over Fp (compare with 2).

Apart from the requirement that the ai in (1) be selected in such a way that the
sequence of Yn has a large least period (e.g., such that the characteristic polynomial
is primitive), no further condition on the ai is needed to guarantee good behavior
under the univariate uniformity test. This is similar to the situation arising for uniform
pseudorandom numbers generated by the normalization method (see [12]). The specific
choice of the a has a bearing on the performance of digital k-step pseudorandom
numbers as soon as multivariate uniformity tests of sufficiently high dimension s are
considered, namely for s> k/m. This will be discussed in greater detail in [13].
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COLLOCATION FOR SINGULAR PERTURBATION PROBLEMS III:
NONLINEAR PROBLEMS WITHOUT TURNING POINTS*

U. ASCHERf AND R. WEISSt

Abstract. A class of nonlinear singularly perturbed boundary value problems is considered, with
restrictions which allow only well-posed problems with possible boundary layers, but no turning points. For
the numerical solution of these problems, a close look is taken at a class of general purpose, symmetric
finite difference schemes arising from collocation.

It is shown that if locally refined meshes, whose practical construction is discussed, are employed, then
high order uniform convergence of the numerical solution is obtained. Nontrivial examples are used to
demonstrate that highly accurate solutions to problems with extremely thin boundary layers can be obtained
in this way at a very reasonable cost.

Key words, collocation, singular perturbation, nonlinear problems, symmetric difference schemes

1. Introduction. The numerical solution of nonlinear singular perturbation prob-
lems presents some major computational difficulties. At the same time, such problems
are abundant in applications, e.g. in semiconductor theory, diffusion-convection proces-
ses with a dominant convection term, fluid dynamic problems with large Reynolds
numbers, etc.

The basic computational difficulty arising can be roughly described as follows.
Suppose that a grid with maximum spacing h is used to discretize the differential
problem. While normally h can be assumed to be small compared to the differential
problem parameters, in a singular perturbation problem the parameter e, which
multiplies some of the highest derivatives appearing in the problem formulation, is so
small that for practical reasons we must consider the case

h->_e, or even h>>e.

Furthermore, from the solution approximation point of view, one has to deal with
transition layers, i.e. regions where the solution profile varies rapidly, with gradients
proportional to some negative power of e.

Consider boundary value problems of this type for ordinary differential equations.
To recall, there are two classes of general purpose methods for boundary value ODEs.
(See, e.g., Keller [13].) The first is that of initial value techniques like multiple shooting.
Such techniques fail to perform adequately for singular perturbation problems, requir-
ing h O(e), essentially for the same reason that causes grief when simple shooting
is applied to moderately "stiff" problems.

The other class of general purpose methods is that of centered difference (or
collocation) schemes. Such schemes offer more hope for singular perturbation prob-
lems, requiring small mesh spacing (of size comparable to e) only in layer regions, not
everywhere. However, if the mesh is not fine enough in a layer region then the numerical
solution is polluted everywhere by oscillatory error components.

* Received by the editors November 24, 1982, and in revised form June 8, 1983.
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The research of this author was supported in part by the Natural Sciences and Engineering Research Council
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t Institut ffir Angewandte und Numerische Mathematik, Technische Universitfit Wien, 1040 Wien,
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In recent years, a large number of special purpose methods have been proposed
which do not require an accurate representation by the mesh of layer regions, while
still producing accurate numerical solutions outside the layers. The upwinded Euler
scheme is a popular example of such methods, where the error generated inside the
layer regions is quickly damped outside.

The approach highlighted in this paper is that of centered, general purpose.schemes
with local mesh refinement in layer regions. Since this is currently less popular than
special, (explicitly or implicitly) upwinded schemes, we now discuss the relative merits
of these approaches.

Firstly, as has been noted by others as well, while centered schemes tend to
produce wiggly numerical noise if the mesh is inadequate, special one-sided schemes
tend to have too much "artificial viscosity," i.e. to be inaccurate (typically only first
order in h) and to smear a layer information over a number of neighboring mesh
elements. A smooth solution curve can actually be considered worse than one containing
numerical ripples if it is wrong, because its form is more deceptive; cf. Gresho and
Lee [11].

A natural idea here is to obtain a first, relatively inaccurate, solution by a special
purpose method and then to switch to a centered, more accurate, general purpose
method with mesh points distributed according to the obtained first solution profile.
However, the general implementation ot such a switch is far from being trivial, and a
simpler and probably more robust technique is to do continuation in e, using the
centered method all along (i.e., solve a sequence of problems with decreasing e,
the first with e h, say, and the last with the desired value of e, gradually upgrading
the mesh, as well as the initial solution profile for the nonlinear iterative process). In
some special cases, it is well known that replacing e by a O(h) in a centered scheme
produces a one-sided scheme (see, e.g., Hemker [23]). Then, the usual continuation
process for centered schemes can be viewed as a gradual, flexible generalization of a
switch from one-sided to centered schemes.

It should be noted that higher order special purpose methods of Runge-Kutta
type exist as well (Ringhofer [18], Ascher and Weiss [3]). These methods do share
the drawbacks of special purpose schemes mentioned below.

One-sided special purpose schemes generally require upwinding (explicit or
implicit). Thus, unless the problem is already in a form where growing and decaying
fundamental matrix components are separated, a costly transformation is required to
bring it to such form; see Kreiss and Kreiss [15].

Recently, there has been a significant interest in the phenomenon where the
difference problem has spurious solutions, which do not correspond to any solution of
the differential problem (see, e.g., Beyn and Doedel [5]). When solving a singular
perturbation problem with e << h, using any type of scheme, there is in general room
for such concern, because the difference operator is not exactly modeled after the
differential operator any more. If a centered scheme is used with an inadequate mesh
(say, uniform) then spurious solutions may easily result; see, e.g., Kellogg, Shubin and
Stephens [14]. This, however, is less important for practical purposes, because such a
numerical procedure is nonsensical anyway. Our experience, and reports by others,
indicate that with an appropriate mesh (still with e<< h), difficulties with spurious
solutions are rather rare in practice when using the schemes advocated here.

Finally, note that a nonlinear singular perturbation problem where the location
of a transition layer is not precisely known can be far more difficult to solve numerically
than one with only known layer locations. At least in the latter case we can always
flood the transition layer region with sufficiently many mesh points so as to remove
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the singular perturbation effect and obtain a solution, even if not in the most cost-
effective way. Now, in case the layer location depends on the solution and is not exactly
known, the upwinding of a special scheme may be done in the wrong direction. A
backward Euler scheme then becomes a forward Euler scheme, which is not even
A-stable. This may result in difficulties in the convergence of the nonlinear iteration,
yielding a cause for some pessimism in general. Note, though, that in some special
cases easy convergence with upwinded one-sided schemes can be guaranteed. For
instance, Abrahamsson and Osher [24] have devised a low order scheme for a class
of single, quasilinear second order ODEs with possibly many turning points, where
Newton’s method is replaced by a slow but sure time-variable imbedding and the
resulting process is guaranteed to converge. No such guarantees are known for sym-
metric schemes. However, under more general circumstances, a symmetric (or cen-
tered) scheme as discussed in this paper is A-stable in both directions of integration
and hence is less prone to disastrous results. Yet, some idea of the location of layers
must be at hand when e h. Continuation in e can again be used in principle with
centered schemes to methodically refine the mesh appropriately. For an example, see
Wan and Ascher [21]. Still, the success of such a process may well depend on a (perhaps
vague) a priori knowledge of a desirable initial solution profile.

In summary, the one-sided upwinded schemes seem to be suited mainly for special
purposes, i.e. for particular classes of problems, and especially when the solution is
needed to be accurately known only away from layer regions. For general purposes,
e.g. in order to use in a general singular perturbation software for boundary value
ODEs, the symmetric schemes seem more suitable.

The purpose of this paper is to consider the computational implementation and
performance of a class of symmetric, or centered, collocation schemes which include
the most familiar finite difference schemes as special cases. We consider the application
of these schemes to a general, but restricted, class of nonlinear singularly perturbed
problems which are well posed and allow for boundary layers only. This class of
problems is relatively well understood analytically. The analytical knowledge allows
us to take a close look at the numerical schemes, and we believe that this is an essential
step towards understanding the performance of these schemes on wider classes of
problems. Computational experience with such schemes crudely applied to a number
o various problems has already been reported (e.g. Hemker et al. [12], Ascher [1],
Wan and Ascher [21]).

In Part I [3] and Part II [4] of this work (hereinafter referred to as "Part I" and
"Part II," respectively) we have considered symmetric collocation schemes for the
numerical solution of linear singularly perturbed problems. In particular, Lobatto and
Gauss collocation points have been considered. The simplest instances of these methods
are the well-known trapezoidal and midpoint difference schemes. The ideas in these
papers have been put into use in Spudich and Ascher [20].

We have shown that these symmetric schemes produce highly accurate
numerical solutions at a very reasonable cost, provided that appropriately fine meshes
are used near the boundaries, where the analytic solution may have steep boundary
layers.

Here we extend these results to nonlinear problems, where Newton’s method of
quasilinearization is used and the resulting linearized boundary value problems are
solved using the collocation implementation discussed in Part II. We demonstrate the
potential of these schemes on three examples which appear in the literature.

It turns out that the convergence results as well as the mesh construction in Part
II extend, with slight modifications, to the nonlinear case. However, the extension is
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not trivial. The differences between the linear and nonlinear problems are highlighted
in the next section, which prepares the analytic preliminaries.

In 3 we describe the numerical schemes used, state the convergence results and
outline their proofs. Practical mesh construction is discussed in 4.

In 5 we discuss in detail our numerical experience with three examples. The
numerical schemes are shown to produce highly accurate solutions to problems with
extremely thin boundary layers, at a very reasonable cost.

2. Analytic preliminaries. Consider the problem of order n+ m for x(t, e)=
(y(t, e), z(t, e)), where O_<- t<_-1:

(2.1) ey’=f(t,y,z,e),

(2.2) z’ g(t, y, z, e),

(2.3) b(x(O);x(1); e)=0.

Here e > 0 is a small parameter, y and f have n components, z and g have m,
and b is a boundary vector function of size n + m. The nonlinear functions f, g and b
have asymptotic expansions in e, with the coefficients being smooth functions of the
other variables.

We assume that the Jacobian matrix fr (t, y, z, o) of the "fast" solution components
has a regular splitting with n_ >= 0 (strictly) stable and n/ := n n_ => 0 (strictly) unstable
eigenvalues, for 0-< -< 1 and (y, z) in an appropriate domain. This excludes turning
points in the linearized problem, and it is natural then to look for a solution x*(t, e)
(y*(t, e), z*(t, e)) which has the representation

(2.4)

(2.5)

Here

y*(t, e)= y(t)+ tz(’) + v(r) + O(e),

z*(t,e)=e(t)+O(e),

t-1
tz.) =-,

y(t) and 2(t) are solutions of the reduced equations

O__<t__<l.

(2.7) 0 f(t, y, 2, 0),
0_<t_<l,

(2.8) 2’= g(t, y, 2, 0),

subject to m appropriate boundary conditions, and/z and v are left end and right end
layer correction functions. They satisfy

d
(2.9) d--/x f(0, (0) +/x (r), 2(0), 0), 0<_- r<,

d
(2.10) &rV=f(1, y(1)+ v(tr) e(1) 0) -o<,r<0,

and /z and v decay exponentially to 0 as --, cr--oo, respectively. Equations
(2.7)-(2.10) arise from the representation (2.4), (2.5) by equating O(1) terms with
respect to e in (2.1), (2.2).

Note that the assumption on the eigenvalues of fy in itself does not necessarily
imply the ansatz (2.4), (2.5) (as it would if (2.1)-(2.3) were a linear problem with a
uniformly bounded inverse), especially if there are more than one solution to the
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reduced problem. However, the representation (2.4), (2.5) is of a major practical and
theoretical interest.

Now, to construct the solution as in (2.4), (2.5), we substitute into the boundary
conditions to obtain

(2.11) b((y(0) +/z(0), 2(0)); ()7(1) + v(0), 2(1)); 0)=0.

The requirement that and u decay exponentially implies that/x(0) and ,(0) must
be on the stable manifolds of their corresponding equations, and we write these
equations as

(2.12)
b_(y(0), 2(0),/x(0)) =0 (n+ eqns.),

+(y(1), e(1), u(0))=0 (n_ eqns.).

Thus in (2.11), (2.12) we have 2n+m constraints for the 4n+2m unknowns $(0),
(1),/x(0), u(0).

Eliminating /x(0) and u(0) from (2.11), (2.12) (in principle) leaves a set of m
equations to be satisfied by y(0), 2(0), 37(1) and 2(1) alone, and these are the boundary
conditions for the reduced equations (2.7), (2.8) (cf. Episova [8], O’Malley [17]).
Flaherty and O’Malley [9] construct the reduced boundary conditions numerically in
the case where (2.1) and (2.3) are linear in y, which implies that (2.11) and (2.12)
are linear in y,/x and ,.

Note that everything is much simpler when f is linear in y. Not only can the
manifolds (2.12) be explicitly found, but also, and more importantly, (2.9) and (2.10)
imply that/z and , are simply decaying exponential functions. In the more general
case, (2.9) and (2.10) are just general systems of ODEs.

The reduced differential equations (2.7), (2.8) plus the reduced boundary condi-
tions form the reduced problem whose solution(s) 2(t) ()7(t), 2(t)) is referred to as a
reduced solution. Different reduced solutions yield different solutions to our problem
(2.1)-(2.3) provided they can serve in the ansatz (2.4), (2.5). To enable this we assume
that the Jacobian matrix fr at a reduced solution has a hyperbolic splitting or all
0_<_ t_<_ 1.

For simplicity we also assume that at the reduced solution, fy(t, 37(0, 2(0, 0) is
nondefective. Thus, there is a nonsingular (smooth) matrix function E(t) such that

(2.13) E-l(t) fr(t, y(t), 2(t), O) E(t) A(t) diag {Al(t),’’-, An(t)}

and,

11{<0, ]=1,.’. ,n_,
(2.14) re (A(t 0<-t<-l.

>0, =n_+l,... ,n,

Consider now a linearization of our problem (2.1)-(2.3) about an appropriate
function (, ), which we write in operator form as

(2.15) []x s[].

In detail, (2.15) is written as

(2.16) ey’-A11y-Aazz $1,

(2.17) z’-Azly-Az2z s2, 0<= <- 1,

(2.18) Box(O)+Bx(1)=fl,
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where

(2.19)

Al,(t, e)= f(t, y, , e), A12(t, e)= fz(t, ), ,
Azx(t, e)= gr(t, , ., e), Az(t, e)= gz(t, , ,

Ob(xa, x2) Ob(x,x2)
Bo B1 at x (0), x2 3(1).

(X }X2

We assume that the linear operator [x*] has a bounded inverse, independent
of e, for 0 < e- e0. Lipschitz continuity of (which follows, e.g., if f, g, b are twice
differentiable with respect to the dependent variables) then implies a similar bound
for w[] at points near x* and, in particular, at the constructed solution (2.4), (2.5)
for e small enough.

Our problem (2.1)-(2.3) can be written in the form (2.16)-(2.19) with = x*,
simply by defining s[x*] appropriately, e.g.

Sa(t, e)=f(t, y*, z*, e)-allY*-a12z*,
etc. The problem then looks like the one considered previously in Part II, but there
is a difference" Here, the matrices Aij and inhomogeneous terms si, 1 <-i, <= 2, are
not slowly varying near the interval ends, since they contain the boundary layer effects
of y*. Thus, while on the "long" interval O(e)< < 1- O(e) away from the layers
not much change is expected, in the boundary layer regions a richer solution behavior
is now allowed, compared to the usual linear, variable coefficient case, as described
above in connection to (2.9) and (2.10).

In Part I and Part II a layer mesh was constructed which took advantage of the
known exponential decay of Ix(z). In the nonlinear case, then, this mesh construction
is less clear. Fortunately, by the exponential decay of Ix and v, the mesh construction
can be applied for values of which correspond to sufficiently large values of z and
-tr, if we know enough about the reduced solution 2(0), 2(1). The practical construction
of a mesh in the layer regions near the boundaries is discussed in 4 and 5.

3. Numerical schemes and their convergence. To solve the problem (2.1)-(2.3)
numerically we use k-stage, c-collocation as described in 3 of Part I and in 3 of
Part II. The same notation is adhered to here. Thus, on a given mesh

(3.1)
A: 0 tl < t2 <" < tN < tN+l 1,

hi:=ti+l-ti, l<=i<=N, h:= max hi
l<_i<=N

the solution xa(t) (Ya(t), za(t)) is a continuous piecewise polynomial vector function
which satisfies the boundary conditions (2.3) and the differential equations (2.1), (2.2)
at the collocation points

(3.2) tij := ti + hip, l <= <= N, <= ] <- k.

The points 0 -</91 <’’" < Pk -< 1 are chosen to be the Gauss or Lobatto points. This
gives the difference scheme, (for 1 <- _-< N, 2 r -_< ] _-< k + r)

k

(3.3) ehy l(yij Yi) 2 ylf(til, Yil, Zib E),
l=l

k

(3.4) h 1( Zi Zi 2 ]lg tib Yil, Zib E ),
/=1

(3.5) b(xl; x+1; e)=0,
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for xi xa(ti), xij xa(tij), where tt are known constants and Xi.k+l Xi+l. For Gauss
points, r 1, Pa > 0, Pk < 1 (SO mesh points are not collocation points) and tk/l. ,

1," , k. The simplest of these schemes, with k 1, is the midpoint rule

ehS, a(Yi+l Yi) f(ti+a/2, Yi+l/2, Zi+l/2,
(3.6)

h?l(zi+a zi) g(ti+a/z, Yi+/z, Zi+1/2, e)

where ti+a/2 ti +1/2hi, Yi+l/2 --’1/2(Yi q- Yi+I) and z+a/2 =1/2(z + Z+l). For Lobatto points,
r--0, Pl-" 0 and p 1. Thus the mesh points t are collocation points. The simplest
of these schemes, with k 2, is the trapezoidal rule

ehS a(Yi+l- Yi) 1/2(f( ti, Yi, zi, e) +f /i+l, Yi+I, Zi+l, E)),
(3.7)

hv, a(Zi+l z,) 1/2(g(ti, yi, z,, e) + g(ti+l, Yi+l, Zi+ 1,

Denote by q,c the restriction of a function @(t) to At.J{ti; l<=i<=N, l<=]<=k}.
Equations (3.3)-(3.5) form a nonlinear algebraic system for xx, which we attempt to
solve by Newton’s method. Equivalently, and more naturally for implementation, the
quasilinearization can be done before discretization. Thus, given an initial guess X0A(t),
a sequence of iterates xOA(t), xla(t), x(t),’’" is generated as follows" With xa(t)
known, define

(3.8) x/a+l(t) xia(t)+csa(t)
where sea(t) is the collocation solution of the linear problem

(3.9)

with

(3.10)

(3.11)

(3.12)

(cf. (2.16)-(2.19)).

s[x ]

S "-f(t y, z, e)- e (yA) ’,

S2= g(t, y, za, e)- (z)’,

/3 b(xa(O); XA(1); e)

The formulation of (3.9) as a difference scheme is similar to (3.3)-(3.5) except
that the resulting algebraic equations for sx are linear and can be written as

(3.13) a[xa]sx sC[xa]
with a a possibly large, sparse matrix (see Part II).

Key questions regarding the use of our schemes are the definition of suitable
meshes A, the existence of solutions to (3.3)-(3.5), their approximation properties
with respect to the exact solution of the boundary value problem and the convergence
of iterative methods, in particular of Newton’s method. The question of convergence
of Newton’s method is, of course, closely related to that of the stability of the linearized
difference operator. Our results regarding these questions are summarized in the
following theorem.

THEOREM. Assume the following:
(a) The boundary value problem satisfies the assumptions of 2. Denote by Sr(X)

{U C[0, 1]; ]]u-x]] <-_ r} a sphere with radius r>0 around x C[0, 1].
(b) The matrix condition

[P-E-I(0)] # 0(3.14) det p+E_a(1)
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holds, where E (t) has been defined in (2.13) and

(3.15) P_=[I 0]e ’-", P+=[0 I]e "+",
.! being appropriate identity matrices.

(c) The following mesh construction is used: For a given tolerance 8, 0 < ce <= 8 < 1,
near 0 define 0 tl < t2 <" < tvo+l by

(3.16)

where

hi :=
hi-1 exp

1 /.,’

hi-1 ’ye < ti+ <- Toe

2k,
(3.17) P= 2(k- 1),

k-stage Gauss scheme,
k-stage Lobatto scheme,

(3.18) To v-1 In 8-1,

(3.19) u =min {-re (h(0)), ]= 1,..., n_} > 0

and c, c, and 3/are positive constants, independent of e and 8. A similar formula.is used
near 1 to construct (1 >) tN >" > tN-l/ >= 1 Tie) based on the eigenvalues
h,,_+1(1)," , h, (1). In between, a much sparser mesh is used. Let

(3.20) K 1= E:b-l(’-j)

where

(3.21) _h := min { h,, _/ =< < i-}, _/:=No+l, -:=N-NI+I.
Then, for each scheme of the class considered there are positive constants eo, 80,

ho, ro, o, c and K >= O, independent of e and A, such that there is a unique isolated
solution XA Sro(X*) provided that 0 < e <= eo, 8 <= 80, h <= ho and <= o. Further,
Newton’s method converges quadratically to this solution provided that the starting iterate
xa satisfies xOA Srl X*), with rl sufficiently small Finally, the numerical solution satisfies
(3.22a) [Ixa(t,)-x*(t,)l[<-c(e+), 1-< _<- N+ I,

where e stands for the following"

h k+q, k-stage Gauss scheme,
(3.23) e

Khp + ehk-l+q, k-stage Lobatto scheme.

In (3.23), K =0 if m =0, p is defined in (3.17) and q 1 if the mesh is locally almost
uniform, i.e.,

(3.24) hi+l hi(1 + O(hi)) for all odd o__r all even, j <= < i-,

and k is odd For Gauss, even for Lobatto schemes; otherwise, q O. Further, improved
estimates for the slow components z are obtained when, up to O(e), the boundary
conditions (2.18) contain a subset ofm linearly independent conditions involving z alone.
In this case the error at mesh points is bounded by

(3.22b) IIZA(t,)--Z*(t,)ll<=c(hP+eb-(e+))



COLLOCATION FOR SINGULAR PERTURBATION PROBLEMS III 819

for Gauss schemes and

(3.22c) IIz(t,)- z*(t,)II c(hp + h6)

for Lobatto schemes.
Before giving an outline to the proof of the Theorem, we wish to remark on some

of its details, so that a reader with a primary interest in the algorithm can skip the proof.
The condition (3.14) is a restriction on the differential problem which has nothing

to do with its well-posedness. It is a limitation on the applicability of our numerical
schemes with full success and is needed to guarantee the stability of the discretization
process on the interval [t_, r]. There, h >> e and thus the difference operator does not
closely approximate the differential operator any more. Computational difficulties can
arise when (3.14) is violated, as discussed in Weiss [22] and in Part II.

The principle underlying the layer mesh definition (3.16) is that of keeping the
error at the mesh points below the tolerance 6 by approximating functions of the type
exp {-(0)t/e}, ] 1,..., n_, which determine the decay in the boundary layer; see
Part II. Of course, to be really constructive one needs to pin down the constants in
(3.16) and to provide a working estimate of u of (3.19). This is done in the next section.

Finally, it is clear that the size of the constant rl determining how close x has
to be to xa for Newton’s method to converge is very important practically. Unfortu-
nately, our result in this respect is somewhat incomplete: While we can show that for
Lobatto schemes rl can be chosen independently of e and A, for Gauss schemes our
analysis leads to the condition that rl shrinks like (--j)-l, as the mesh on [t_,
becomes dense. However, in practice we have never experienced a difference in the
domain of attraction of the Newton iteration for the two types of schemes.

Since the proof of the Theorem is loaded with technicalities, we proceed to give
only an outline of it, in an attempt to keep the paper readable.

Outline of the proof of the theorem. We consider a k-stage Lobatto scheme and
remark about Gauss schemes at the end of this section. Let c denote a generic constant.
Also, all norms appearing in the sequel are appropriately restricted maximum norms.
As a first step, consider the application of the collocation scheme to the linearized
problem at the exact solution x* of (2.1)-(2.3),

(3.25) [x*Jx six’]

(recall (2.16)-(2.19)), where the right-hand side functions are

(3.26)
Sl(t) f(t, y*(t), z*(t), e)-A11(t)y*(t)-A1e(t)z*(t),

s.(t) g(t, y*(t), z*(t), e)-Ael(t)y*(t)-Ae.(t)z*(t)

with the e dependence of the functions involved omitted for brevity. The solution of
(3.25), (3.26) is of course x* as well.

The collocation scheme for (3.25), (3.26) is, for 1 -< <- N, 2 -<_ ] <= k,

(3.27a)
k k

eh-l(yq-Yi) E at(A11(tu)ya + A12(ta)za) E tj,Sl(til)=-- rij,
I=1 /=1

(3.27b)
k k

h?1 Zi Zi Z aSl(A21 til Yil 4r Aee til Zil 2 jlS2 til - sij,
/=1 /=1

(3.27c) Box1 + B1xN+ .
We now derive stability and convergence results for (3.27). Systems of this form have
been investigated in Part II, with only one essential difference: There the matrices Aq
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were assumed to be smooth functions of the slow variable for 0 <- <= 1, which is not
the case here. Still, the key idea of the treatment of Part II can be imported here" To
establish unique solvability of (3.27) we consider the discrete system separately at first
on the three intervals [0, t_], [t_, tr] and [tr, 1], subject to the following special boundary
conditions:

I. On [0, t_],

Zl fiI, P+E-l(t_/) y_/= ’)/I;C-yl 0I,

II. On Its, t;],

P-E-(t_,)Y_, ali, 2! ii, P+E-I(t;)Yr
III. On It;, 1],

P_E-l(t;)yr aiXi, Z--- flIII, C+yN+I ’)/IlI"

Here, ai,n,ni -, )ti,ii,iii c n+ and I,II,III C are arbitrary parameters. The matrices
C_ and C/ are chosen so that the problems

d
d’-’=fy(O, y(0) +/x (’), e(0), 0) :, 0 <_-- "r < oo,

C_:(O) O, lim :(z) O,

and

d
&rSr =fr(1, )7(1)+ v(r) (1), o)r,

C+sr(O) O, lim sr(o’) O,

-oo< o-_--<0,

which result from linearizing the layer equations, have only the trivial solutions.
On the "long" interval [t_, tr] the procedure of Part II is immediately applicable

and Lemma 5.2 there yields, with (3.14), unique solvability of the problem for all
parameters aii, /ii, yi and sa, ra. (The latter two are abitrary right-hand sides in
(3.27a) and (3.27b), respectively.) Also, it yields the explicit dependence of the solution
on the parameters, and since K of (3.20) is sufficiently small, the bounds

(3.28) IIxXllii<=c(llxiIl/ll1x]]/llyii]l/(?-J)llrXlln/llsCallii),

On the layer interval [0, t_], where the Aij(t) vary like tz(t/e), we can employ
the results of Markowich and Ringhofer [16] who treat the layer equations in the
variable -= t! e with fast components only. Their mesh construction is as in (3.16)
(with an insignificant modification in (3.19)), and a contraction argument, based on
the fact that t_<< 1, allows the inclusion of slow variables as well. Thus we obtain
the unique solvability of the problem, a representation of the solution in terms of the
parameters Oi, I and /I and the bound

(3.30) IlXCA[li< C(llOl.iI[ + ll[3iIl + [[ill + llSCA[[i+ llrcAl]i).

An analogous situation occurs for the boundary layer at the other end.
The next step is to patch the solutions obtained above together, to obtain a solution

of (3.27) by requiring that the representations be identical at t_ and tr and that the
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boundary conditions (3.27c) be satisfied. This results in a linear system of equations
for the parameters, of dimension 3(n+ m). Due to assumption (a) of the Theorem,
the matrix involved has a bounded inverse; the details follow closely those of Weiss
[22]. Hence we finally obtain for (3.27)

(3.31) IIxXll<-c(llll/llrXlli/(Y-i_)llrXIli/llrXIIxxi/llsXII),
(3.32) IIxXII -< c(ll / IIs  ll / sXII).

Having thus established stability for (3.27), we turn to convergence. The solutions
of each of the three discrete problems are approximations to the (general) solutions
of the continuous problem (3.25) on the three intervals, subject to the special boundary
conditions. The relevant convergence results are described in Markowich and
Ringhofer [16] for the layer intervals and in Part II for the "long" interval in between.
Using these error estimates in the patching procedure, we obtain the following error
estimates relating (3.25)-(3.26) and (3.27). At mesh points,

(3.33) IIx-x*(t,)ll<=c(/e), i=1,’.. ,N+I,

while at collocation points other than mesh points,

(3.34) IIx,-x*(t,)ll c(/+Khk + ehk-1),

This completes the description for the linearized problem. After this preparation
we turn to the analysis of the nonlinear scheme (3.3)-(3.5). We employ the contraction
mapping principle, the application of which to a nonlinear problem

(3.35) u V(u)

proceeds in two main steps:
(i) defining an approximate solution t of the problem which leads to a small

residual, a (a), and
(ii) obtaining a sufficiently small bound on the Lipschitz constant of V in a vicinity

of U.

To put our discrete nonlinear system in the form (3.25), we write it as

(3.36a)

k

eh 7, yq Yi Z al(All til Yil + A12 til Zil
/=1

Z al f til, Yil, Zil, E All (til) Yil A12(til) Zil),
l=l

2<=j<=k,

(3.36b)

(3.37)

h;l(zij Zi)-- E a%l(A21(til)Yil + A22(til)Zil)
1=1

E al(g(til, Yil, Zil, E)--A21(til)Yil--A22(til)Zil),
l=l

Box q- BIXN+ Box d- BIXN+ b(Xl; XN+I’

where the matrices A,s, Br are as above. In concise form, (3.36), (3.37) are written as

(3.38) Lea[x*]xa F(xa).
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By (3.31) we know that ,l[xg] exists, whence we write (3.38) as

(3.39) XA ,[x*]-F(x,,)=-- (x),

which is of the type (3.35). Next we establish a contraction argument as follows.
As an approximate solution xa of (3.36)-(3.37) we choose the solution of (3.27).

When substituting a into (3.36) a residual d’q of the form

ij E jldil, 1 <-i<-N, 2 <= j <= k,
/=1

is obtained, where the vector dx formed from the dij values is bounded in norm by
the right-hand term of (3.34). Hence, by (3.32)

(3.40) I1  -X(Ra)11--< c( ,3’/e + Khk + eh’-l).
So, 23 produces a small residual of (3.39), as desired.

Further, it is clear that due to the smoothness of f, g and b as functions of x and
due to (3.32), the Lipschitz constant of Na in a suitably restricted sphere about
can be made sufficiently small. The contraction mapping principle then yields the
existence and uniqueness of a solution xa of (3.39) in this sphere, and the bound

(3.41) IIx -  11 <= cll  -
Combining (3.41), (3.40) and (3.33), (3.34) we finally obtain the convergence

result at collocation points for (3.3)-(3.5),

(3.42) Ilxi-x*(tiy)l]<=c(k/p+ghk-t-ehk-), l<-_iNN, l<-j<=k.

It is now easy to see that Newton’s method can be applied to (3.39) with quadratic
convergence. Further, Newton’s method is clearly invariant under the transformation
that carries (3.38) to (3.39), so the quadratic convergence result applies to the scheme
actually employed in practice.

The result (3.42) corresponds to the global convergence estimate for Lobatto
schemes in the usual (not singularly perturbed) case. To obtain the corresponding
superconvergence results at mesh points, note that

C(3.43) [Ix*c- xX[[ < [Ix*c- xll + xC- x[[.
To bound the second term in this inequality, we compare (3.36) to (3.27), apply a
Taylor expansion to the right-hand side of (3.36) and utilize (3.32) once again to yield

(3.44) xXll--< cllx*c- xNll =.
Hence from (3.33), (3.42), (3.43) and (3.44) we finally obtain the desired result
(3.22a). The sharper estimates (3.23c) for the slow components follow similarly from
corresponding estimates in the linear case; see Theorem 3.3 of Part II. This completes
the proof for Lobatto-type schemes.

The analysis for Gauss-type schemes is significantly less pleasant. The basic reason
is that special favorable things occur at collocation points which, in the case of a Gauss
scheme, do not include the mesh points. This property, which is actually welcome in
some applications (because it allows for a slick implementation for problems with
discontinuous coefficients or problems with artificial singularities), causes here weaker
convergence and stability properties than those enjoyed by Lobatto schemes, and a
harder analysis to prove them. In particular, weaker convergence properties are already
evident in the desired estimates (3.22a), (3.23) (which are sharp for the fast solution
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components); a factor of i-_/creeps into the stability estimate (3.29) (hence (3.32));
and the patching procedure at t_ and t is harder to justify because these are not
collocation points any more.

Using a more elaborate analysis for Gauss-type schemes, we were able to show
existence of a discrete solution, unique in a sphere about the exact solution, and the
convergence estimates (3.22), (3.23). The convergence of Newton’s method, however,
is guaranteed in our analysis only when the starting approximation is already in a
sphere about x whose radius shrinks like (--j)-.

4. Mesh construction. In this section we discuss the practical mesh construction
in the layer region [0, Toe], where To is given by (3.18), (3.19). An analogous
construction holds, of course, for the right end layer region [1-Tie, 1], while in
between a sparse mesh, fine enough only to approximate the reduced solution, is used.

The purpose of the mesh selection is to obey a uniform error tolerance (which
is considered as an estimate, not a bound), and the strategy is to equidistribute the
error with respect to/z(r), which is the dominant solution component in this region;
see (2.4), (2.5). This is already the strategy behind the definition (3.16) and we wish
here to somewhat refine and precisely specify this selection.

The proposed mesh construction is as follows:

(4.1) hi :’-- "-E[ ,’C/’l] 1/ptI/p’ h := max {,h(O)[ ]1, , n_},

(4.2) hi := hi_lexp{e hi-l}, i=2,""" ,No until tNo <= Toe <= tNo+ l.

Here p is defined in (3.17), cv is a known constant depending on p and defined in
Part I, and v is a slight modification of (3.19), to be discussed below.

The mesh selection strategy (4.1), (4.2) can be easily seen to be at least as
conservative as (3.16) for suitable constants cu and y. The number of mesh points No
obtained by this construction is independent of e and is proportional to tI/P’ see
Theorem 4.2 of Part II. Comparing (4.1), (4.2) to the mesh (3.46), (3.47) of Part II,
we see that they are essentially the same. The difference is that v here cannot be
determined on the basis of the eigenvalues of All(0, 0).

Since we do not really wish to always compute the reduced solution, for the
practical evaluation of v (at "z", which is only O(e[ln ]) away from (3.19)) we
can calculate the eigenvalues of All =fy at Toe, say. These eigenvalues will, of
course, depend on the currently available approximation to the reduced solution. Thus,
a strategy blending the nonlinear Newton iterations with mesh refinement suggests
itself. Luckily, however, the solution is not very sensitive to the exact location of the
layer mesh points, so re-evaluation of the eigenvalues (and the corresponding redefini-
tion of the layer mesh) is usually not needed more than once.

Consider the function/z(), with respect to which we are choosing the mesh. In
(4.2), we are simply capitalizing on its known exponentially decaying behavior for z

large enough. If f of (2.1) is linear in y then (2.9) implies that/z(z) has that known
exponential behavior right from z 0. Thus, in Part II we have used the "exponential
mesh" throughout the layer region. In the more general nonlinear case, what one
needs, strictly speaking, is a general nonstitt ODE error control for (2.9), of which
the first constant steps in (3.16) are a primitive instance. However, a sophisticated
error control can hardly be justified here and, in fact, the mesh (4.1), (4.2) can be
used as well to obtain an error proportional to 8, with a moderate constant of
proportionality.
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5. Numerical examples. In order to test the theoretical results numerically and
to demonstrate the power of the obtained schemes, a computer program was written.
Newton’s method of quasilinearization is implemented and the linearized problems
are solved by collocation using local parameter elimination, as described in 3 of Part
II. The mesh in possible layer regions is automatically constructed using (4.1)-(4.2),
as discussed in the previous section, with the initial solution profile, provided by the
user, being used to calculate the eigenvalues at the two boundary points.

That initial solution is an approximation to the reduced solution and is expected
to be smooth near the boundaries. Note that the knowledge and use of the reduced
solution as an initial guess for Newton’s method does not guarantee its convergence.
However, the constructed mesh is right and so Newton’s method usually converges in
practice.

The input tolerance 6 is used to control both the layer meshes construction and
the convergence of the nonlinear iteration. Optionally, the condition numbers of the
matrices fa of (3.13) are calculated. The emphasis in the implementation was on
flexibility, rather than efficiency; the efficient implementation of these schemes will be
discussed elsewhere.

For the calculations reported below, a floating point system with 14-hexadecimal-
digit mantissa was used.

Example 1 (Carrier [6], Chin and Krasny [7]). Consider the problem

(5.1) e2u"= l-2b(1-t2)u-u2, -l=<t-<l,

(5.2) u(-1) u(1) O,

where b => 0 is a parameter. The reduced solution about which the representation (2.4),
(2.5) makes sense is

(5.3) a(t) =-b(1-t:)-4b(1 t:)+ 1.

To convert to a first-order system, set

(5.4) y U, Y2 eU’.

Using symmetry we then obtain the problem

(5.5)

(5.6)

ey y2, O<=t<--l,

ey 1 26( 1 2)y y2,

(5.7) yz(0) =0, yl(1) =0.

Thus we have only fast components and the eigenvalues of fr are

(5.8) A2(t)=4-2(y1(t)+ b(1 tz)), )tl(t)=-Az(t).

So, at the reduced solution (5.3), Al(t) and )t2(t) are real and stay away from 0. Also,
u x/ in what corresponds to (3.19) for the boundary layer at the right end. (Clearly
there is a boundary layer only near t 1.) Note that the boundary conditions (5.2)
imply that, evaluated at the exact solution, the eigenvalues of the Jacobian matrix
vanish at 1. This, however, does not cause analytic or computational difficulties for
our procedures.

Numerical solutions were calculated for b 0, 1, and e 10-2, 10-3, 10-6, 10-1.
Some typical values are listed in Table 1. The results in [6], [7] were verified. The
number of mesh points, the condition numbers of a and the number of nonlinear
iterations needed, all were found to be essentially independent of e and of b for the
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TABLE 1
Selected solution values for Example 1 with b 1.

e u(0) eu’(1)

10-2 -2.414093 1.174918
10-3 -2.414212 1.156703
10-6 -2.414214 1.154703
10-1 -2.414214 1.154701

above range of parameters. With 6 10-6 and 10 uniform subintervals away from the
layers, we tried a number of initial guesses xa: With the reduced solution as xa, 3
iterations were needed for convergence on a mesh with N 28, automatically construc-
ted for a 4-stage Lobatto scheme.

With xa--(-), which gives an O(1) perturbation to the eigenvalues A 1, X2 used
to construct the mesh, a mesh with a similar structure was constructed and nonlinear
convergence took 4 iterations. Results in both cases were indeed accurate to within
6. On the other hand, with xa--0 the mesh construction produced an inadequate
uniform mesh of 10 subintervals, because Aa 0 near 1. Thus, while the process is
not very sensitive to inaccuracies in the profile and end values of the reduced solution,
of course not every initial guess automatically produces a suitable mesh and some care
is needed in the design of the initial solution profile. This observation is even more
pronounced in the next example.

Example 2 (Flaherty and O’Malley [9]). This example demonstrates that finding
the reduced solutions of a problem may help in more ways than one. Here, multiple
solutions are detected. Consider the problem

(5.9)

(5.10)

(5.11)

(5.2)

where

(5.13) a(z) l+2z,

eyl Y2,

ey= a2(z)yl + (z), 0_--<t_--<l,

z’ --z / 1,

z(0)+ yl(0)=0, -bz(O)+ y2(0)=0, z(1) / yl(1) 0,

fl(z) 8z(1- z)

and b is a parameter. Note that the nonlinearities appear as functions of the slow
component alone.

Clearly, the eigenvalues at the reduced solution are

(5.4) ((t)), =-.
Also, the reduced solution is given by

8e(t)(1- e(t))(5.15) y(t)= (1+2e(t))2 y:(t)=0, e(t)=+e-’[e(0)-l].

It is much less easy to see what values 2(0) may take. One could experimentally use
(5.15) with a variety of values for 2(0) as initial approximations for (5.9)-(5.12).
However, using the technique described in [9], Flaherty and O’Malley obtained that
z(0) may have precisely the following three values:

(5.16) z(O)=O, 1/4[bs-6+/-((bs-4)2+48)/a], s=sign (a(2(O))).
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The entire construction holds, by (5.14), (5.15), only if

(5.17) Al(t)=3+2((O)-l)e-t 0, 0-<t=<l.

Following [9] we have calculated 3 solutions for each of the parameter values
b 2, 0, -2. In [9], the general purpose code COLSYS [2], which implements colloca-
tion at Gaussian points, was used with the reduced solution as the initial guess. The
authors had some difficulties in carrying out the calculations for small e, and continu-
ation in e was needed (see [9], [10]). The reason for these difficulties (as noted by the
authors themselves in private communication) is that a uniform mesh was initially
used, before allowing COLSYS to adapt it for a given problem. Thus, the approximate
solution on the initial mesh had large oscillations throughout the interval [0, 1] and
was not close in norm to either the exact differential solution or the initial guess.

Here, using the a priori graded meshes described above, we have encountered no
difficulty at all for all cases where (5.17) holds, even with very small e. No continuation
in e was needed. Using 10-6, the mesh construction of 4 with 10 uniform
subintervals away from the boundaries and the reduced solution for the initial guess,
solutions were calculated with 3 Gauss, 5 Gauss and 4 Lobatto points per subinterval.
The first two choices of collocation points were used by Flaherty and O’Malley [9].
The Lobatto scheme with k =4 has, by (4.1), (4.2), the same mesh construction and
computational cost as the Gauss scheme with k 3, while by the Theorem, its accuracy
in h away from the layers is 6, the same as that of the Gauss scheme with k 5. It is
therefore interesting to compare the actual performance of these 3 schemes.

Computing solutions for e 10-3, 10-6, 10-12, we have found that, as in the
previous example, the number of mesh points (N 28 for k 3, N 18 for k 5
Gauss points), the condition numbers of a and the number of nonlinear iterations
needed (usually one) were essentially independent of e and b, as long as (5.17) holds.
The Lobatto scheme was particularly accurate for some cases, notably of the negative
values of (0) for b 2 and b 0. To understand why, consider the error term e in
(3.23). For the Lobatto scheme e=Kh6+eh4 and the constant K arises from the
approximation of the slow components z. Here z is very smooth and is approximated
very well. Thus K is very small and, when e is very small, the error e of (3.23) is very
small.

In order to measure computational errors approximately, we have used the reduced
solutions for very small e away from the layers, and additional calculations with denser
meshes, to obtain "exact solutions". We have subsequently verified for the above
calculations that the layer error tolerance has been met to an order of magnitude.

The negative values of .(0) provide the more challenging cases. It can be verified
that hi(t) has a zero at

(5.18) i=ln(b+ 10 +x/(b + 4)2+ 48),

and so we have a turning point at if 0 < < 1, and the theory then breaks down. This
is the case for b =-2 and we note in passing that, while solutions now become
unbounded as e- 0, for values of e which are not extremely small solutions can still
be calculated using COLSYS, as pointed out by Flaherty and O’Malley [9]. For b 0,

In 3 > 1, but is close to 1. There results a large boundary layer jump (cf. [9]);
however, the condition number of the problem and of a does not blow up as e 0.
Accurate solutions were obtained for this case as well, using the Lobatto scheme with
N 28. Some sample values are given in Table 2.

Example 3 (Flaherty and O’Malley [10]). This problem arises when considering
a nonlinear elastic beam which rests on a foundation with nonlinear resistance to
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TABLE 2
Sample solution values ]’or Example 2 with b O,

2(0) -3.5.

e y1(1) y2(1)

10-3 .6555561 --26.70139
10-6 .6554576 --27.71479
10-12 .6554575 --27.71592

deflection. One is led to the system, for 0 _-< t_-< 1,

(5.19) ey’l --Y2,

(5.20) eye= ck(za) cos z2- yl(sec z2 + ey2 tan z2),

(5.21) z =sin Z2,

(5.22) z=ya
where for 4 we took 4(Zl)= z1-1. See [10] for the development and analysis of this
problem.

Now, assuming that Y2 is bounded, we get the eigenvalues

(5.23) ha(t) /sec 22(t), A2(t) =-hi(t)

and the reduced solution system

(5.24) 2 sin 22, Yl 4)(21) COS2 22,

(5.25) 2 371, y2 O,

which is referred to as the hanging cable system [10]. The latter system can be integrated
if two "reduced" boundary conditions are provided. This can be easily done in the
case where the beam is simply supported:

(5.26) yl(0) ya(1) 0,

(5.27) Zl(O) z1(1)=0.

For then, (5.26) is dropped and (5.27) is retained for the reduced solution. Note that
in this example, the sharper error bounds (3.22b) or (3.22c) can be used for the slow
solution components z.

Applying our numerical schemes to the problem (5.19)-(5.22), (5.26), (5.27),
we have once again encountered no difficulty. Rather than integrating the hanging
cable system, we simply used the following initial approximation:

(5.28) yl=t(1--t), y2=O, Zl=sinTrt, z2--1/2t2--t3.

With tolerances and mesh sizes as in the previous examples, 3 iterations were needed
for convergence (see Table 3).

Other types of boundary conditions are discussed in [10]. One case is of clamped
supports at both endpoints, where (5.27) is retained but (5.26) is replaced by

(5.29) z2(O) z2(1)=0.

As argued by Flaherty and O’Malley [10], this set of boundary conditions leads to a
problem with unbounded inverse as e -> 0, which is therefore not covered by our theory.
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TABLE 3
Selected solution values for Example 3 with simple support boundary conditions.

e Y2(0) z2(0) Yl (0.5) Z (0.5)

10-2 .867460 .426679 -.891701 .108247
10-4 .863935 .434442 -.891686 .108314
10-6 .863899 .434519 -.891686 .108314
10-12 .863899 .434520 -.891686 .108314

The analysis in Schmeiser [19] shows that the reduced problem is still given by (5.24),
(5.25) and that there are boundary layers of magnitude O(1) in z2 and boundary
layers of magnitude O(1/e) in Yl and Y2. Hence we expect, with a slight modification
of the mesh selection procedure, to be able to solve with the same techniques for the
clamped supports as well, with almost the same success as before. (Note, however,
that we cannot avoid condition numbers of order O(1/e) in a; but that alone would
only bother us with unrealistically small values of e.) An extension of our analysis and
computations for singular singular-perturbation problems, which covers the above
case, will be reported in the near future.
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A SPLINE BASED TECHNIQUE FOR COMPUTING RICCATI
OPERATORS AND FEEDBACK CONTROLS IN REGULATOR

PROBLEMS FOR DELAY EQUATIONS*

H. T. BANKS’I’, I. G. ROSEN:I: AND K. ITO

Abstract. We consider the infinite interval regulator problem for systems with delays. A spline approxi-
mation method for computation of the gain operators in feedback controls is proposed and tested numerically.
Comparison with a method based on "averaging" approximations is made.

Key words. Riccati operators, regulator problem, delay systems, spline approximations

1. Introduction. The problem of constructing feedback controls for hereditary
or delay systems is not new and there is a rather extensive literature pertaining to
several aspects of this problem. We refer the reader to the surveys of Ross [26], Alekal
et al. [1 ], and 5 of Banks and Burns [5] for accounts of some of the previous pertinent
results. Among the fundamental earlier contributions are those of Krasovskii [19],
[20] (establishment of the functional form of optimal feedback for delay systems and
early use of an "averaging" type approximation scheme), Eller et al. [14] and Ross
[26], [27] (derivation of Riccati type equations for the feedback gains in the functionals
and methods for computing these gains), and Delfour [13] (convergence analysis of
an "averaging" scheme for approximate solution of an operator form of the Riccati
type equations for the feedback gains). More recently, Gibson [15] and Kunisch [21]
have made important contributions which we shall discuss in the context of our
presentation below.

Our own renewed interest in feedback controls for delayed systems was motivated
by problems arising in the design of controllers for a liquid nitrogen wind tunnel (the
National Transonic Facility or NTF) currently under construction by NASA at its
Langley Research Center in Hampton, VA. With this wind tunnel it is expected that
researchers will be able to achieve an order of magnitude increase in the Reynolds
number over that in existing tunnels while maintaining reasonable levels of dynamic
pressure. Test chamber temperatures (the Reynolds number is roughly inversely
proportional to temperature) will be maintained at cryogenic levels by injection of
liquid nitrogen as a coolant into the airstream near the fan section of the tunnel. In
addition to a gaseous nitrogen vent to help control pressure, motor driven fans will
be used as the primary regulator of Mach number. Fine control of Mach number will
be effected through changes in inlet guide vanes in the fan section. Schematically, the
tunnel can be depicted as in Fig. 1.1. The basic physical model relating states such as
Reynolds number, pressure, and Mach number to controls such as LN2 input, GN2
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bleed, and fan operation involves a formidable set of partial differential equations (the
Navier-Stokes theory) to describe fluid flow in the tunnel and test chamber. This model
has, not surprisingly, proved to be very unwieldy from a computational viewpoint and
is difficult, if not impossible, to use directly in the design of sophisticated control laws.
(Both open loop and feedback controllers are needed for efficient operation of the
tunnel--and this is a desirable goal since cost estimates for liquid nitrogen alone are
$6.5 106 per year of operation.) In addition to the design of both open loop and
closed loop controllers, parameter estimation techniques will be useful once data from
the completed tunnel is available (current investigations involve use of data from a
meter scale model of the tunnel).

In view of the schematic in Fig. 1.1, it is not surprising that engineers (e.g., see
[3] and [16]) have proposed design of control laws for subsystems modeled by lumped
parameter models (the variables represent values of states and controllers at various
discrete locations in the tunnel and test chamber) with transport delays to account for
flow times in sections of the tunnel. A specific example is the model [3] for the Mach
number control loop in which variations in the Mach no. (in the test chamber) are, to
first order, controlled by variations in the inlet guide vane angle setting (in the fan
section)--i.e., M(t)--. O(t-r) where r represents a transport time from the fan
section to the test chamber. More precisely, the proposed equation relating the variation
M (from steady state operating values) in Mach numbers to the variation 0 in guide
vane angle is

’]Vl( t) + M(t) kSO( t- r),

while the equation relating the guide vane angle variation to that 80A of an actuator is

’b(t) + 2srtoSi9 (t) + oo 280( t) tO
280A t).

Rewriting the system in vector notation, one thus finds that the Mach number control
loop involves a regulator problem for the equation

(1.1) 2(t) Aox(t) + AlX(t- r) + Bou(t)

where x (SM, 80, 8i9), u 80A. Here the control is the guide vane angle actuator
input. A similar 4-vector system problem can be formulated in the case where one
treats the actuator rate 8i9A as the control (see [3], [12]). We shall return to examples
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such as (1.1) for the NTF in 4 below where we present numerical results obtained
using the methods we propose.

Several recent contributions to the literature on numerical methods for delay
systems prompt the techniques we present in this paper. A rather complete convergence
analysis (along with numerical results) of the so-called "averaging" scheme applied to
open loop control problems for delay systems was given in Banks and Burns [5]. The
analysis was based on approximation results for linear semigroups involving the
Trotter-Kato theorem (a functional analytic version of the Lax Equivalence theorem:
consistency plus stability implies convergence). Gibson [15] and Kunisch [21] have
shown that these same tools can be used to develop a convergence theory for approxima-
tions of the feedback gains based on the "averaging" techniques. Subsequent to the
development of "averaging" methods for delay systems (which result in essentially
first order numerical schemes), Banks and Kappel [9] developed higher order approxi-
mation schemes based on spline approximations. In numerous situations ([4], [6], [7],
[8], [9]) these methods have proven superior computationally to the popular "averag-
ing" techniques. In this paper we show how one can use spline based computational
schemes to obtain the gains in the feedback controllers for delay systems. We present
a summary of our numerical findings with these methods which support the efficacy
of the proposed schemes.

Our presentation is as follows: In 2 we summarize those facts from the literature
on delay systems needed to discuss and develop our approximation techniques. Section
3 is then devoted to a careful explanation of the proposed schemes, hopefully in
sufficient detail to permit readers to develop their own computational packages should
they so desire. We report on our numerical experience with the spline based schemes
in 4 where we also compare our findings to those obtained using the "averaging"
methods. Finally we discuss briefly in 5 some of the theoretical aspects of the spline
techniques.

The notation we use throughout is rather standard with the following exception.
We shall be dealing with vector systems but shall not always make this precise when
no loss of understanding results. For example, if x is an n-vector valued function with
components in the Sobolev space H1, we shall simply write x H1. We shall only use
transpose notation where it is essential; e.g., if Q0 is an n n matrix, we shall write
xQox instead of the more conventional xTQox.

2. Feedback controls for delay system problems. In light of the motivation above,
we consider the control problem of finding an m-vector valued Lz control a which
minimizes

(2.1) J(u; r, q)= [x(t)Oox(t)+ u(t)Ru(t)] dt

subject to the n-vector system

(2.2) Yc(t)=Lx,+Bou(t), t>=O,

(2.3) x(0) r/, Xo ,
where Q0, R are symmetric n n and m m matrices, respectively, with Q0 => 0, R > 0,
B0 is an n m matrix, and 4’ is an n-vector function with components in L2(-r, 0)re(we
denote this by L(-r, 0)). Following standard notation, the symbol xt denotes the
function 0-> x(t+ 0), -r<= 0<=0, and we assume the linear operator L has the form

/ a4,(-r + (o)(o ao
i=0
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where 0 ro < rl < < r r, Ai, 0, 1,. , u, are n n matrices, and D is an
n n matrix function with components in L2(-r, 0). This operator and the system
(2.2), (2.3) can be given a proper interpretation for initial data and controls u in
L2 and, indeed, one can establish existence of a unique solution x H on any finite
interval [0, T] where the equation (2.2) is satisfied in the usual Caratheodory sense
(i.e., almost all t)msee [9].

Assuming for the moment that a solution to the above control problem exists in
closed loop form, it can be shown (see [19], [15]) to have the form

(2.4) a(t) Kox(t)+ K(O)x(t+ O) dO

where the m n gain matrices satisfy certain Riccati-like systems of equations ([14],
[26], [1], [15]). Our goal here is to discuss numerical approximations to K0 and K1
which, when applied to (2.2), (2.3), (2.4), yield a near optimal performance. It has
been understood for some time that we are in this case dealing with feedback controls
for an infinite dimensional state system. This system can be succinctly formulated
abstractly (e.g., see [5], [9], [13], [15]) in a manner that facilitates convergence analyses
for approximation schemes. While we shall not pursue a convergence analysis in this
paper, it is convenient in discussing our numerical methods and results to use this
formulation and the corresponding notation.

To this end, we let

(2.5) z(t)=(x(t),xt)

where x is the solution of (2.2), (2.3). Define Z to be the product space R" L(-r, O)
with the usual product Hilbert space topology (and inner product) and let D()=
{(:, b) Z: sc b(0), b Hl(-r, 0)} be the domain for the linear operator given by
(b(0), b)= (Lb, ). Recalling (2.1) and (2.2), we define the linear operators Q"Z
Z and : R" -* Z by Q(sc, b) (Q0sc, 0) and v (Boy, 0). Then our original optimi-
zation problem for (2.1)-(2.3) can be reformulated as the equivalent problem of
minimizing

(2.6) J(u; Zo)= {(Oz(t), z(t))+ u(t)Ru(t)} dt

over u Lz subject to the evolution equation constraint

(2.7) z(t) z(t) + u(t), >= O,

(2.8) z(O) Zo (rt, q).

It is known [5], [9] that generates a C0-semigroup {S(t)} of solution operators and
that z defined by (2.5) is the unique mild solution of (2.7), (2.8). That is, z is given by

(2.9) z(t) S(t)Zo+ S(t-tr)u(tr) dcr.

If we define an admissible control for our problem corresponding to the initial
condition z0 Z to be an m-vector function u which is integrable on (0, o) and for
which J(u; Zo) is finite; and if we make the assumption that the operators Qo and L
are such that any admissible control corresponding to the initial condition z0 Z drives
the resulting solution of the state equation (2.7) to zero asymptotically, then we may
use results due to Gibson [15] to characterize the solution to the problem in feedback
form. More precisely, if there exists an admissible control corresponding to each initial
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condition Zo Z (or equivalently the system (2.7) is stabilizable, see [15, Def. 2.2 and
Cor. 4.1]), then there exists a nonnegative, selfadjoint linear operator II on Z which
satisfies the Riccati algebraic equation

(2.10) M*II + IIM IIR- ,iI+ O 0.

Moreover, under the assumption made above there exists at most one such solution
and the unique solution to the problem (2.6)-(2.8) can be given in feedback form by

(2.11) (t)=-R-a*IIz(t), O< t<c,

and

min J(v; z0) (Hzo, z0).
admissible

The operator II can be written as a matrix of linear operators

rII I-[1 ]FI
[i_[10 l_i11j

where II: R" - R" and II1 :L(-r, O) - L(-r, O) are nonnegative and selfadjoint,
II e L(-r, O) and II II1* with

(2.12) II01 I# III(0) Tck( O) dO, ck e L(-r, 0).

If we recall the definition of the operator and assume that the system (2.7) is
stabilizable, then under the assumption made above. (2.5), (2.11) and (2.12) yield
that the unique solution to the problem for (2.1)-(2.3) is given in feedback form by

(2.13) a(t)=-R-1Bg Hx(t)+ IIIO(O)Tx(t+O) dO

with (for Zo (rt, $))

min J(v; 7, ) (II Zo, z0).
admissible

That is, the gains K0, Ka of (2.4) are given by R-1BfflI and R-Bo(IIa), respec-
tively, and can be obtained by solving the Riccati equation (2.10).

3. The approximation scheme. In this section we develop and discuss the
implementation of a spline based computational scheme which yields a sequence of
finite dimensional operators {IIu} which approximate II, the solution to the operator
Riccati algebraic equation given by (2.10). The IIu are found by solving standard
matrix Riccati algebraic equations, and are then used to construct feedback controls
which approximate (2.11) and which produce near optimal performance by the system
(2.7) (2.8) as measured by the functional (2.6).

The approach we take is based largely upon the spline approximation framework
developed in [9] for the approximation of solutions of linear functional differential
equations. We summarize briefly the essentials of that development. Let Zu be a
sequence of spline based subspaces of Z satisfying Z D(M) N 1, 2,.... Let
u:Z--> Zu denote the corresponding sequence of orthogonal projections of Z onto
Zu computed with respect to the weighted inner product (., .)g on Z given by

((r/, 4), (, q))g rlT+ c(o)To(O)g(O) dO
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where

g(o)

1, -r_-< 0 <-r-l,
2, --r-i -< 0 < r_2,

9-- 1, --r2N 0 < rl,

9, --rl -< 0--<0.

Define the linear operators N and QN on ZN and 33N" R’--> ZN by N ,
N N33 and QN NQ, respectively, and let IIN be a nonnegative selfadjoint
solution to the Riccati algebraic equation in ZN given by

(3.1) ,SNI-IN -Jc" IIN,52N IIN/NR-1 /d NIIN "Jr- ON O.

The existence and uniqueness of solutions of (3.1), which are related to the existence
and uniqueness of solutions of (2.10) and certain properties of the approximation
scheme itself, will be discussed in 5. For the present, however, we assume that for all
N sufficiently large, a solution IIN exists with I-IN 0 and II*s I-IN.

The use of the weighted inner product (., .)g in place of the standard inner product
on Z in computing the projections N (and therefore the operators N) insures that
the operators N satisfy a uniform dissipative inequality of the form

<Nz, Z>g [<Z, Z>g, Z e ZN,

and hence that the solutions of the finite dimensional ordinary differential equation
initial value problem in Z

1,( t) NZN(t) + Nu(t), >= 0,
(3.2)

z(O)= Zo
approximate the solution of (2.7), (2.8) (see [9]). It is this fundamental convergence
result which forms the theoretical foundation for the schemes being developed here.

Since the domain of the operators is Z R L(-r, 0), the operators
can be written as the matrix of linear operators given by

n= n n
where the n x n matrix H and H" L(-r, 0) L(-r, O) are nonnegative and self-
adjoint, H is an n n matrix valued function with components in Le, and H H*with

H Hff(0)T(0) dO, e L(-r, 0).

If the approximating optimal controls in feedback form for the problem involving
(2.6)-(2.8) are defined by

(3.3) aN(t) -R-1nNNZ(t),

then the approximate solutions to our problem take the form

(3.4) a(t) R-ox(t+ R- Bgn(Ox(t+O O
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with the corresponding approximating optimal trajectories being given by the solutions
to

(3.5)
Yc( t) (Ao BoR-, ...T’-’O0", t) + i Ajx( t rj)t,,x,_,_

+ (D(O)-BoR-’BH(o)T)x(t+O) dO

for any initial conditions x(0) r/e R and x0 ff e L(-r, 0). In addition, the optimal
cost can be approximated by

(3.6) <IINN(, #J), @N(,

Equation (3.1) is an operator equation, and thus is not suitable for computational
purposes in its present form. In order to find the matrix form of (3.1) a basis for Zn
must be chosen and matrix representations for the operators sgn, sg*, n, * and
Qn with respect to this basis must be computed. The adjoint operators s* and *(and therefore their approximations s* and *) may be computed with respect to
either the standard inner product on Z, (.,.), or the weighted inner product (.,.)g.
Indeed, the fact that

Oz, z> Oz, z>
for all z e Z implies that the abstract regulator problem given by (2.6), (2.7) and (2.8)
can be formulated in the space Z using either inner product and still be equivalent to
our original control problem. However, the expressions for the matrix representations
for the operators s* and * are simplified if the (.,.)g inner product is employed
(in this case of course it must also be used in (3.6)). When the discrete delay part of
L consists of only a single delay term (i.e., u 1), then g(O)= 1 and the two inner
products are the same.

We briefly outline the necessary procedure for finding matrix representations in
the case of "linear" or first order spline functions. A more detailed description can
be found in [11]. The ideas presented here and in [11] for linear splines are easily
extended to the case of cubic or higher order spline functions.

For each N 1, 2,. , and j 0, 1,. , N denote by bv the standard piecewise
linear spline basis element corresponding to the partition {t) defined so that b}v has

N N N Nsupport n [tj+, tj_] and value 1 at t where tj =-l(r/N). Define Z to be

Zn (b(O), &)eZ: &= L vby, v)eRn
j=O

Note that dim Zn n(N+ 1) and Zn C D() as is required by the theory outlined
above. If we define the n n(N+ 1) matrix function qn(. by

for 0 e [-r, 0], where In denotes the n x n identity matrix and (R) is the Kronecker
product, then it is easily shown (see [9]) that the matrix representation AN for the
operator sn is given by

(3.7) AN =(KN)-IHN
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where the n(N+ 1) x n(N+ 1) matrices KN and HN are given by

(3.8) KN=rb(o)TdpN(O)+ dPN(o)Tdp(O)g(O) dO

(3.9) gr (0)r(L)+ (O)r4(O)g(O) dO.

Furthermore it is straightforward to see that the matrix representation A* for the
adjoint operator is given by

(3.10) A*u (KU)-’(A)TK
For the linear spline case it is not difficult to compute the inner products appearing
in the definitions of the matrices K and Hu analytically, at least for relatively simple
forms of the operator L. The forms for these matrices are given explicitly (in terms
of the matrices A, j=0, 1, 2,..., u, and the matrix function D appearing in the
definition of the operator L) in [9] and [10].

Since the operators :R Z and O:Z Zu are defined by v
u(Bov, 0) and O(, ) u(O0, 0) respectively, it is easily seen that their matrix
representations, B and O are given by

(3.11) B (KN)-aN(0) rBo
and

(3.12) Ou (KN)-IN(0)TOoN(0),

whereas, B*% the matrix representation for the operator is given by

(3.13) B*U=(BU)K
If we let u denote the matrix representation for Hu, the solution to the operator

equation (3.1), the matrix form of (3.1) is given by

(3.14) A*NN +pNAN--pNBNR-B*NpN + oN=0.
Premultiplying by KN and using (3.10) and (3.13), (3.14) becomes

(AN)TKNpN + KNNAN--KNpNBNR-’(BN)TKNpN +KNoN o.
If the substitutions pN KNN and 0N KNoN are made in the last equation above,
a standard matrix Riccati algebraic equation in RN+) for pN results and is given by

(3.15) (AN)TpN +pNAN--pNBNR-(BN)TpN + 0N=0.
Equation (3.15) can be solved for the matrix pN using standard computational
techniques and readily available software packages (see [2] and [22]).

Once pN has been determined, a simple calculation reveals that the Nth
approximating optimal control for our problem given by (3.4) takes the form

aN(t) -]R-Bff N(O)(KN)-IPN(KN)-N(0) Tx( t)
(3.16)

+ R-Bg,(O)(K)-P(K)-,(O)x(t+ O)g(O) dO

Comparing (3.16) to (3.4), it is immediately clear that the approximating feedback
gains are given by

(3.17) R-lTnoN R-1BON(O)(KN)-IpN(KN)-*N(o)T
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and

(3.18) R-1BH( T R-1BdN(O)(KN)-pN(KN)-,dN Tg( ).

For a given set of initial conditions x(0) rt, Xo q we also have an approximation to
the optimal value of the cost functional

(3.19) J(a;

where hN is given by

(.o h’(n, 4,l=,(01%+ ,(01%(01g(o,0.

The approximation scheme which was developed above is semi-discrete in nature
in that the approach taken is based primarily upon the approximation of the infinite
dimensional state equation (2.7) in the space Z by a sequence of finite dimensional
ordinary differential equations in ZN of the form (3.2). However it is also possible to
develop a parallel theory which is based upon a full discretization of the optimization
problem in the spirit of the results presented in [25]. The cost functional (2.6) is
discretized and the state equation (in its integrated form (2.9)) is approximated by a
finite dimensional difference equation in ZN resulting in a finite dimensional discrete
steady state linear regulator problem which can be solved in feedback form using
conventional methods. We sketch briefly the particulars of such an approach.

Let the Nth approximating optimization problem be given by:
Find a sequence {a}7=0 of m-vectors in 12 such that a minimizes

subject to

JN({uY}; Zo)= E (ONZY, ZY)+(RNu, UY)
t=O

(3.21) zt+, P zN+ Nuu t=l 2,’"

(3.22) z Nz0

where 0N (r/N)ON, RN (r/N)R and seN, N, NN, ON, R and Zo are as they have
been defined above. The rational functions P(z) and P,(z) are selected from among
the entries in the diagonal or first two subdiagonals of the Pad6 table of rational
function approximations to the exponential.

The basis for the construction of the approximation problems is the fact that the
variation of parameters form of the solution to (3.21), (3.22) given by

zT=Pi-N NZo N i=1

is an approximation to (2.9) in the sense that

an N- oo uniformly in for e {0, 1, 2,. [t,N/r]} for any t, < oe, where the symbol
[] denotes the greatest integer less than or equal to c (see [25]).
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The feedback form of the solution (if it exists) to the corresponding approximating
problem and the optimal value of the cost functional are given by

a,= -Fnz, t=0,1,2,...,

and

(3.23) J({a}; Zo) <HZo, Zo>,

respectively, where the linear operatorsF’Z R and HN"Z Z are determined
by solving the system of operator equations (see [22])

(3.24) H XHX+FRF+ ON,
(3.25) X M BF,

(3.26) F (R +
in the unknowns Hn, Xn and Fn where n=Pi((r/N)Mn) and n=
r/N)P,( r/N) .

To actually compute the optimal control law, the system (3.24), (3.25), (3.26)
must first be transformed into an equivalent matrix formulation. Adopting the conven-
tion that the symbol
with respect to the linear spline basis defined above, it is not dicult to show that the
system (3.24), (3.25), (3.26) is equivalent to the system of matrix equations given by

t NQN,(3.27) PS (xs)rPSX + (F)rRSF +K

(3.28) X N NF,
(3.29) F (R + (N)pN)-,()p

where pN KH% p((r/N) AN), N (r/N)Pt((r/N)A)BN, R
(r/N)R and K, AN, BN and O are given by (3.8), (3.7), (3.11) and (3.12)
respectively. Standard software packages can be used to solve the system (3.27), (3.28),
(3.29), see for instance [2]. Once the matrices FN and P have been determined, the
Nth approximating solution to our problem is given by

a( t) -Fz(t)
(3.30)

F(K)-l(O)x(t)+ FS(K)-l(O)x(t+O)g(O) dO

or, using the fact thatH approximates H, by

a(t) -R-*nz(t)

(3.31) =-[R-B(K)-P(K)-(O)rx(t)
+ R-Bg(K)-P(K)-(O)x(t+ O)g(O) dO

The feedback gains Ko and K in (2.4) are approximated by

and
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respectively, if (3.30) is used and by

(3.34)

and

(3.35)

if (3.31) is used.

R-1B(KI)-IP (KN)- I)N(0) T

R-,B(KI)-,pr(K)-,dr Tg(

Finally for a given set of initial conditions x(0)= r/, Xo , the optimal value of
the cost functional can be approximated using (3.23). We have

(3.36) J(a; r, )---[(KN)-lhN(r/, o)]TpN(K)-lh(.O, )
where hN is given by (3.20).

4. Numerical results. In this section we summarize some of the numerical results
obtained by using the linear spline based approximation schemes described above to
compute feedback controls for several hereditary regulator problems of the form given
in 2. For the purpose of comparison we have also computed approximate solutions
using the finite difference based AVE scheme discussed in [15]. We recall that for the
semi-discrete spline scheme, the approximating feedback gains R-1BIIN and
R-1BII(. )T are given by (3.17) and (3.18) respectively while for the AVE scheme
they may be computed using the time invariant forms of [15, (7.27) and (7.28)]. For
the fully discrete spline scheme, the approximating gains are given either by (3.32)
and (3.33) or by (3.34) and (3.35). Analogous formulae can be derived for a fully
discrete scheme based upon the AVE approximation.

All computations were performed on a Control Data Corporation Cyber 170
model 730 at the NASA Langley Research Center.(LaRC) using software written in
Fortran. For the semi-discrete schemes, the approximating matrix Riccati algebraic
equations (3.15) were solved using both an iterative Newton technique as it is described
in [16] and the Potter method (see [24], [22]) which involves the eigenvalue-eigenvector
decomposition of the 2n(N+ 1) x2n(N+ 1) matrix

Ar _BR-aBNT"qAN _ON _ANT J
where the matrices AN, BN and 0N are as they were defined in 3. The implementa-
tions of the two methods we used are contained in ORACLS [2], a software package
developed at LaRC for the design of multivariable control systems.

Although the Newton algorithm performed well on the equations arising from
both the spline and AVE schemes, the Potter method was the more efficient of the
two, particularly for large values of N. The ORACLS implementation of the Potter
method, however, requires that the matrix fi.N be diagonalizable. This additional
requirement posed no difficulties for the spline schemes in any of the examples we
considered. On the other hand, for the AVE scheme, certain classes of problems
(including those involving state equations of dimension greater than one of the form
considered in Examples 4.2, and 4.3 below) lead to N which are nondiagonalizable
(see [15] Theorems 7.11 and 7.12). In this instance, if one wishes to use the Potter
method to solve (3.15), the generalized eigenvectors of fiN must be computed.

For the fully-discrete schemes, the system (3.27), (3.38), (3.29) was solved using
an iterative Newton algorithm from the ORACLS package. The finite dimensional
algebraic Riccati equation arising from either the semi-discrete or the fully discrete
approximation schemes could also have been solved using a Schur decomposition
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technique (see [23]). This method is similar in spirit to the Potter method with the
exception of the fact that a Schur decomposition of the Hamiltonian matrix is employed
in the place of an eigenvector decomposition. There is evidence that this method for
solving algebraic Riccati equations with dense matrices of moderate size (order up to
100) is numerically stable and computationally more efficient than either the eigenvec-
tor or Newton-Kleinman approach. In addition the difficulty in applying the Potter
method to the algebraic Riccati equation resulting from the AVE approximation
scheme described above could be avoided. Since our primary objective was not to
study the solution of the finite dimensional Riccati equations but rather the investigation
of a spline based finite dimensional approximation to the original infinite dimensional
delay system and since the Potter and Newton-Kleinman methods yielded satisfactory
results in all of the equations we considered, we were content to make use of these
methods which were included in the ORACLS pckage. The Schur method, on the
other hand, was not readily available to us. However, we do recommend that in the
application of our approximation schemes the use of the Schur technique for solving
the resulting approximating finite dimensional algebraic Riccati equation be considered.

We have included results for three examples. Others can be found in [11 ]. Example
4.1 involves a 1-dimensional state equation while Example 4.2 involves a system of
dimension 2. In Example 4.3 we consider the wind tunnel system described in 1.
These examples were all solved using semi-discrete approximations. Example 4.1 was
also solved using the fully discrete method and we shall comment further on this later.

Example 4.1. We consider the minimization of

(4.1) J(u; x(O), Xo)= [xz(t) + u2(t)] dt

subject to the scalar differential equation given by

(4.2) (t) x(t) + x(t- 1) + u(t).

In this example, the II are scalars and have been tabulated for N 4, 8, 16,
and 32 in Table 4.1. The II(.) are scalar valued functions and have been plotted for
the same values of N in Figs. 4.1, 4.2, 4.3 and 4.4.

TABLE 4.1

N AVE Spline

4 2.8866 2.7940
8 2.8476 2.8054

16 2.8278 2.8084
32 2.8182 2.8091

Although we do not have a true value for II, it is immediately clear from Table
4.1 that the values computed using the spline based scheme appear to have converged,
while those computed by the AVE scheme are converging much more slowly. The
oscillatory behavior exhibited by the spline approximations to IIa is a consequence
of the fact that while in general it is not the case that II= IIa(0), the requirement
R(H)ZN D(M) imposes the conditions H=II(0) for each N. However,
because in the closed loop form of the state equation (see (3.5)) II(. appears in
the form of the kernel of an integral operator, the effect of the oscillations is minimized.
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We selected the initial data (we also satisfactorily considered other initial data,
see [11])

(4.3) x(0) =0 xo(O) =sin r0, -1<_- 0<=0,

and computed the trajectories which result when the approximating optimal feedback
controls (computed using either the AVE or the spline approximation schemes) are
applied to the system (4.2), (4.3). Approximate values for the cost functional (4.1)
were computed two ways: directly using the approximating optimal controls (3.4) with
the corresponding approximating optimal trajectories (3.5) in (4.1) and also via (3.19).
The integration of the closed loop state equation (3.5) was carried out by first
discretizing the integral term and then by applying a modified version of a Runge-Kutta
method for the numerical solution of ordinary differential equation initial value prob-
lems. We note that the numerical integration method employed to compute these
trajectories was completely independent of either of the approximation schemes used
to compute the approximating feedback operators, and thus should not have biased
our results. For N 4, 8, 16, and 32 the approximating optimal trajectories are plotted
in Figs. 4.5, 4.7, 4.9 and 4.11 while the open loop form of the approximating optimal
controls are plotted in Figs. 4.6, 4.8, 4.10 and 4.12. The approximating values for the
cost functional are tabulated in Table 4.2 where columns 1 and 3 contain the values
computed directly and columns 2 and 4 the values computed using (3.24).

TABLE 4.2

N

4
8

16
32

AVE

.(x(a)) <nZo, Zo>

.3309 .2809

.3281 .3000

.3275 .3121

.3274 .3191

Spline

J(x(aN)) <IINZo, Zo>

.3272 .2484

.3271 .3027

.3272 .3163

.3273 .3196

Based upon the numerical results for the example presented above and several
others which we have considered, the following observations concerning the relative
performance of the AVE and spline based schemes can be made.

(I) The spline scheme converges faster and is more accurate at low orders. The
AVE approximations generate a scheme that appears to converge like 1/N while that
for the splines is like 1IN2. This is not unexpected, given our experience with the
AVE and spline approximations in other contexts (e.g., see [5], [9], [7]). Furthermore,
the trajectories, controls, and cost functional values obtained using the spline approxi-
mations with N 4 are competitive with the results produced by the AVE scheme
with N 16. The computational effort and expense involved in solving a high order
Riccati equation makes this an important consideration. In the scalar examples we
tested, the amount of CPU time required to solve (using the Newton algorithm) the
5-dimensional Riccati equations (corresponding to n 1 and N 4) was on the order
of 10 seconds while the 17-dimensional equations (n 1, N 16) required approxi-
mately 70 seconds.

(II) If the value of the cost functional J computed using the approximating optimal
control and the resulting trajectory is used as a measure of the relative performance
of the two approximation methods, then we found that the spline based technique is
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FIG. 4.11
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preferable. The spline approximations consistently produced a smaller value for
J(tTN; x(0), Xo) than did the AVE scheme. Similar conclusions can be drawn in the
case of higher dimensional equations. Numerical results for a second order equation
is presented in Example 4.2 below. Since the qualitative behavior of each component
of the matrix valued functions II(. was the same as already depicted here in the
1-dimensional case, for the 2-dimensional example we present only the computed
values for the 2 x 2 matrices II.

Example 4.2. We consider the problem of minimizing

(4.4) 2+ 3)( t)2+ u(t)2] dtJ(u; y(0), Y0, )(0), )o)= [y(t)

subject to the harmonic oscillator with delayed restoring force and delayed damping
given by

(4.5) y(t)+ ))(t- 1)+ y(t- 1)= u(t),

or, equivalently

where

(t)=
0

x(t)+
-1 -1

x(t-1)+ u(t)

y(t)]x(t)=
))(t)

In this form J can be written

J(u; x(O), Xo)= [x(t)Tx(t)+ U(t)2] dr.

The values of II for this example are given in Table 4.3 below.

TABLE 4.3

N AVE Spline

4
1.9849 1.1248 2.1419 1.2952
1.1248 1.6538 [.1.2952 1.853528

8 [2.0511 1.1991] [2.1394 1.296 ]1.1991 1.7432 I_ 1.296 1.8568

16 [2.0914 1.2440] [2.1389 1.2963]1.2440 1.7965 1.2963 1.8576

We note that using the AVE scheme, Gibson [15] computed II2 to be

2.1034 1.2574]1.2574 1.8123

with the convergence being monotonic from below in each component of the matrix.
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The values of the cost functional (4.4) evaluated using the trajectories obtained
by integrating (4.5) with u given by (3.4) and initial conditions

2(0+1), -1_<- 0=<-1/2,
y(0) 0, y(0)

t-20, -1/2 <-_ o <-_ o,

(0)=-, (01={’ --<0-<_-1/2,
-2, -1/2< 0<=0

are given in Table 4.4.
TABLE 4.4

N

4
8

16

AVE

l(x(a)) <nZo, Zo>

14.4103 11.2650
14.2493 12.3886
14.2165 13.0784

Spline

J(x(aN)) <rlNZo, Zo>

14.2383 13.8926
14.2201 13.8045
14.2160 13.8308

Example 4.3. In this example we investigate the Mach no. control loop problem
described in the introduction. Recall that when the guide vane angle actuator is the
control, the state of the system is governed by an equation in R3 of the form

Y(t) 0 0 1 x(t)+ 0 x(t-.33) + u(t).
0 --0)

2 -20) 0 0)2

Here x (6M, 60, 6)r is made up of the variation in Mach no. 6M, the variation in
guide vane angle 60, and the variation in guide vane angle velocity 6, u 603 is the
guide vane angle actuator input and the parameters z, to, ’, and k take on the values
1.964 sec, 6.0 rad/sec, .8, and -.0117 deg-1 respectively [3].

Parametric studies [3] on the elements of the state weighting matrix in the cost
functional revealed that if J was chosen as

J(u; x(O), Xo)= [x(t)Oox(t)+ uE(t)] dt

where Qo diag (104, 0, 0), then the resulting control gains, upon simulation, produced
responses which typically did not exceed the physical limitations of the system.

The values for the matrices II computed using the AVE and spline schemes for
N 2, 4, and 8 are given in Table 4.5.

TABLE 4.5

N AVE Spline

8655.2438 -9.8912 -.9567q
-9.8912 .0170 .0017/
-.9567 .0017 .0002d

8665.7889 -9.8528 -.9523-
-9.8528 .0175 .0018
-.9523 .0018 .0002_

8671.3161 -9.8336 -.9500
-9.8336 .0179 .0018/
-.9500 .0018 .00023

-9.8201
-9.8201 .0183
-9.477 .0018

-9.8164
-9.8164 .0185
-.9477 .0019

-9.8154
-9.8154 .0185
-.9477 .0019

--94771.0018
.0002

-.9477
0019/
.00023

-.9477-
.0019
.0002_
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Using the approximating feedback control laws, we computed trajectories for the
problem of driving/M from -.1 to 0.0 (corresponding to M varying from .8 to .9)
and 0 from 8.55 to 0 (corresponding to the guide vane angle varying from 10.480 to
a steady state of 1.93). The initial variation in the guide vane angle velocity, 0(0)
was set to 0. The resulting values for the cost functional are given in Table 4.6. The
Mach no. and guide vane angle trajectories produced by the approximating control
gains computed using the spline scheme with N 8 are plotted in Figs. 4.13 and 4.14,
respectively. Our results compare favorably with those obtained by Armstrong and
Tripp [3] using an approximating feedback control law produced by a finite difference
technique and with those obtained by Daniel [12] using a spline based approximation
scheme to solve a similar problem in open loop form.

TABLE 4.6

N AVE

136.7393 123.9360
136.7369 124.5019
136.7361 124.8019

Spline

(x(,)) (II,,Zo, Zo>

136.7355 138.6967
136.7354 138.7345
136.7353 138.7624

.90
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.85

.84

.83
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.81

.80
1.0 2.0 3.0 4.0 5.0
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FIG. 4.13
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We have also tested the fully discrete schemes on Example 4.1 and compared the
results with those obtained with the semi-discrete techniques. The results obtained
were not surprising (see [11]). Based on these results and other comparisons of fully
discrete vs. semi-discrete versions of these methods we conclude:

(I) For low order approximation (i.e., N small) the results produced by the
semi-discrete schemes are better than those produced by the fully discrete methods.
As N increases, however, the two techniques yield comparable results.

(II) For N large, using an iterative Newton algorithm, the ORACLS package
was able to solve the system (3.27), (3.28), (3.29) arising in the fully discrete methods
in roughly half the time it required to solve the matrix Riccati algebraic equation
(3.15) resulting from the semi-discrete approximation schemes.

(III) As measured by the magnitude of the cost functional corresponding to a
given set of initial conditions and the rate of convergence of the approximating feedback
gains, control law (3.31) is preferable to control law (3.30).

(IV) Using the same criteria as in (III), for the fully discrete schemes, as was the
case with the semi-discrete schemes, the spline approximations out-perform the AVE
approximations.

5. Theoretical considerations and further remarks. We turn to a brief discussion
of the convergence exhibited by the "gain" operators in IINN. Careful study of the
numerical examples in 4 reveals that numerically one has weak convergence of IINV,
strong (L2) convergence of the approximating feedback controls {rtN} Of (3.4) and
convergence of the performance measures (3.6) and J(tiN; x(0), Xo). We have actually
proved the weak convergence 1-INNII in certain special cases that include scalar
and second order examples such as those considered in 4. More precisely, if we
consider a hereditary system of the form (1.1) and assume (i) (Ao, Bo) is a controllable
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system and (ii) Range (B0) Range (A1), then {IINN} is uniformly bounded in L(Z).
One can then, under assumptions similar to those invoked by Gibson [15, 6], establish
weak convergence of the sequence. For example, if we further assume (iii) the hereditary
system is stabilizable, (iv) O0, Ao, A1, B0 are such that any admissible control drives
the state to zero asymptotically, and (v) for N sufficiently large, there exist self-adjoint
nonnegative solutions IIN of the approximate Riccati algebraic equations (3.1), then
arguments similar to those in [15] (see Theorem 6.7) can be made to obtain IInn---’II.

If we are willing to assume that Gibson’s conjecture 7.1 (essentially, that the
approximation scheme when applied preserves uniform asymptotic stability possessed
by any original hereditary system) holds for the spline schemes (an assumption that
Gibson makes for the "averaging" scheme and one which, based on spectral consider-
ations, we feel confident is valid for both schemes), then we can guarantee existence
of solutions IIn of the approximate Riccati equations (3.1) and furthermore, bounded-
ness of {IIN} follows immediately (e.g., see Theorem 7.5 of [15]).

With respect to the question of strong or trace norm convergence of {IInn}, we
note that Gibson [15] obtains such convergence for the averaging scheme. This in turn
(see Theorem 6.8 and 7 of [15]) yields convergence of the payoffs. Fundamental to
Gibson’s arguments (see Theorems 6.1 and 6.9) is the result S(t) $*(t) where {S(t)}
is the solution semigroup for the original hereditary system (2.2) with u =0, and
{Sn(t)} is the solution semigroup for the approximating system (e.g., (3.2)) with u 0.
For our spline schemes we do not believe arguments similar to those of Gibson will
suffice to obtain this strong convergence of adjoints; specifically, we do not believe
that * * in a mode sufficient to yield the required convergence of S*. At this
time we honestly do not know whether we have strong convergence of {IINn} for
the spline schemes. From our numerical results we tend to doubt strong convergence
although we do observe the desired convergence of the payoffs and can actually
establish this theoretically for our spline schemes. If strong convergence of {IINn}
is true, we believe a theory somewhat different from that of Gibson’s will be required
to establish this. In this regard we further note that Kunisch, in his investigation [21]
of both the spline and averaging schemes for the finite interval integral quadratic cost
control problem for systems with delays, obtains convergence of the payoffs and
controls and weak convergence of the associated time dependent Riccati operators in
a theoretical treatment that is independent of adjoint convergence considerations.
However, even if this theory could be extended to treat the infinite interval regulator
problems, it would not appear to yield the stronger convergence results for {I-IN’N}.

in addition to our numerical findings, there is other evidence that appears to cast
doubts on the possibility of strong convergence of {IIuu}. Recall that Zu D(4)
for each N and since in the representation

n

the first column is "in" D(4), we must have II IIff(0). The components of II do
not satisfy such a boundary condition. Indeed (see [15, Theor. 4.4]) col (II, II1) is
"in" D(*). This suggest that the convergence of IIvs to II cannot occur in a very
strong mode.

The theoretical considerations above aside, we believe the evidence is quite
substantial in support of our contention that the spline methods offer an attractive
means for computing feedback gains in delay system regulator problems. We close
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with a summary of remarks on the merits of our spline schemes over the averaging
scheme (we do not mean to discredit the averaging techniquemfor many problems it
should perform quite admirablymrather we wish to argue that in some examples, the
spline schemes can offer significant improvements). We recall from the numerical
results of 4 that (on these examples) the linear spline scheme always is as good as
the averaging scheme, and in some cases it is better (faster convergence, better
approximation at low orders). In some situations the averaging scheme yields a Riccati
system that is difficult to solve numerically, while this never (in our experience) occurs
with the spline schemes.

As further evidence of the usefulness of the spline schemes, we offer the recent
experiences of Gibson (private communication) and Ito [17] in using the averaging
and spline approximation schemes as a basis for computation of closed loop eigenvalues
for delay systems (e.g., using the system (3.2), (3.3) to compute eigenvalues that
approximate those of the feedback system (2.2), (2.13)). In these efforts, the spline
based schemes performed in a far superior manner. We interpret this as another
argument in favor of construction of feedback gains via our spline schemes.
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NOTE ON FINITE DIFFERENCE APPROXIMATIONS TO
BURGERS’ EQUATION*

H. AREFf AND P. K. DARIPA"

Abstract. Standard finite difference approximations to Burgers’ equation are considered from the point
of view of dynamical systems theory. Phase plane analyses for discretizations with a few grid points are
presented. These show the existence of initial conditions leading to spurious solutions with unlimited
amplitude growth due to nonconservation of kinetic energy by the nondissipative terms in the discretizations.
It is shown that such solutions may be found even for arbitrarily fine pointwise resolution, i.e., for arbitrarily
many grid points. On the other hand, an energy conserving discretization of the nondissipative terms removes
all spurious solutions of this kind. The results obtained seem to complement recent investigations of the
steady state problem.

Key words, finite difference scheme, Burgers’ equation, phase plane analysis

1. Introduction. We have been studying standard finite difference approximations
to Burgers’ equation [1] as part of an attempt to compare various numerical methods
for solving partial differential equations. Burgers’ equation is a valuable test case for
such studies since it is directly solvable by the Cole-Hopf [2], [3] transformation, and
numerically it is accessible by standard finite difference, finite element and spectral
methods. One may also formulate a "particle method" for Burgers’ equation by
appealing to the possibility of a pole decomposition [4] for this equation.

Our primary interest is in the dynamics of two-dimensional flow, particularly the
two-dimensional Euler equation and the representation of its solutions by an assembly
of point vortices [5]-[7]. The pole decomposition of Burgers’ equation can be seen as
an analogue of the vortex decomposition of two-dimensional incompressible hydrody-
namics formulated as a field theory for the stream function [7]. Hence, a comparison
of "standard" numerical techniques, such as finite differences, for Burgers’ equation
with the pole decomposition solutions suggests itself. As a preliminary to this a study
of the finite difference equations themselves was performed, and, since the ideas of
pole and vortex decomposition quickly lead to notions from dynamical systems theory,
the finite difference equations were considered from this point of view. There has
recently been much interest in using results from the theory of dynamical systems to
study in greater detail the nature of the instabilities to which numerical schemes are
susceptible [8], [9].

A standard finite difference approximation to Burgers’ equation consists of a set
of ordinary differential equations, one for the field value at each grid point, coupled
through quadratic interactions. As is well known, problems of precisely this format
may display chaotic solutions [10]. The Lorenz equations [11] are a case in point. If
such behavior occurs for a finite difference approximation to Burgers’ equation, it
must clearly come from the numerical scheme, since the continuum Burgers’ equation
is in some sense "integrable." (Burgers’ equation is dissipative, and so integrability is
not immediately defined. However, its pole decomposition equations can be imbedded
in an integrable Hamiltonian system, the Calogero-Moser system [4]. Taflin [12]
discusses the concept of integrability and Burgers’ equation.)

* Received by the editors August 5, 1982, and in revised form April 29, 1983. This research was
supported by the National Science Foundation under grant MEA 81-16910 to Brown University.

t Division of Engineering, Brown University, Providence, Rhode Island 02912.
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We must state right away that we did not find chaotic behavior for our standard
finite difference approximations to Burgers’ equation. However, the dynamical systems
point of view suggested that we look in detail at the "phase plane" for discretizations
with a small number of grid points. This was done for N 3, 4, 5 and 6, and we found
for N 4 that there exist initial states which grow in time beyond all bounds. Such
solutions are physically unacceptable. Moreover, we are able to show, by a rather
obvious argument, that for any N which is a multiple of 4 such initial states with
spurious long time behavior will exist. This result seems to complement recent work
on the steady Burgers’ equation [13], [14]. The result is unsettling because it shows
that even for arbitrarily fine pointwise spatial resolution the standard finite difference
approximation to Burgers’ equation can give physically unacceptable results for certain
initial conditions. A complete resolution of this "paradox" is not given. However, we
do show that if a slightly different finite difference approximation is employed, which
conserves the discretized kinetic energy, then no initial conditions can lead to the
above pathology of infinite amplitude growth.

We must emphasize that although our entire discussion centers on Burgers’
equation our objective is not to solve that equation numerically. Burgers’ equation is
trivial. However, as just mentioned, any finite difference approximation to the material
derivative of a field results in a system of ODEs with quadratic couplings. Thus, we
submit that the method of analysis exemplified here is of general applicability and
usefulness. (For a related discussion, involving the Fourier amplitude equations for
two-dimensional flow, see [15]).

2. Preliminaries. We are concerned with Burgers’ equation,

Ut 4- lglg Uxx,

for a real field, u u(x, t), and specifically consider the initial value problem:

u(x,O)=uo(X)

for periodic boundary conditions on an interval of length L:

u(x+L,t)=u(x,t).

To solve this problem numerically, we introduce the grid values u(t) u(kL/N, t)
for k 0,..., N-1, and discretize u and uu according to

Uxx (Uk+IWU-I--2U),

These expressions are accurate to O((x)), where x=L/N. Substituting into
Burgers’ equation we obtain a system of coupled ODEs of first order for the amplitudes
u. We may nondimensionalize these equations by setting

v(s u], =0,...,-.
The proposed discretization of Burgers’ equation then reads

(1)
ds v+ v_ + v+ + v_ 2v.
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There is one ODE for each grid point amplitude Ok, k 0,. , N- 1, making a system
of N coupled equations in all. As noted previously, the couplings are quadratic. The
periodic boundary condition now means that Vk/zV Vk for all nondimensional times s.

The discretization (1) conserves momentum in the sense that

dtk
__o -s

Since the value of the momentum of the field may be altered at will by subjecting it
to a Galilean transformation, viz.

U(x, t)= u(x- ct, t)+ c,

we shall consistently assume that the total momentum vanishes. For the discrete system
we thus assume:

N--1

E v=0.
k=O

This restriction on the sum of the v will prove very convenient later.
Kinetic energy, on the other hand, is not conserved by the scheme (1), i.e.

dv

even if the dissipative (linear) terms are omitted. It may be shown that the kinetic
energy of the field u,

lloEi. dx,

satisfies the equation of motion

dt
-v dx

and thus decreases unless u is constant in x or 0. Hence solutions to the discretized
equations that make the energy increase indefinitely or solutions that are steady in
time but vary in x are not physically acceptable and must be classified as artifacts of
the numerical scheme. We shall meet with such solutions in the next section. In 4
we shall then trace the origin of these spurious solutions to the fact that scheme (1)
does not conserve kinetic energy in the nondissipative limit.

3. Case studies for small N. For N 2 we are led to consider the system

fo (Y-) Vl Vl) + Vl + Vl 2vo 2( Vl Vo),

t 2(Vo-/)1)

(where the dot signifies a derivative with respect to s) so that

t0- tl -4(v0- Vl).

Thus v0-vl decays exponentially and ince Vo and Vl sum to zero (total momentum
is assumed to vanish; see 2) we see that both v0 and Vl must decay to zero. This is
completely in accord with our expectations for the continuum equation.
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For N 3 we get the more interesting system

It is not difficult to see that this system has the integral

I =-- VoVl v2 exp (9s)

(when Vo+ v + v2 =0). This integral immediately shows us that if the equations for
N 3 have a steady state solution, one of the amplitudes, say Vo, must vanish. But if
Vo 0, we have Vl =-v2-- v and the system reduces to

with steady states corresponding to v- 0 and v 6 and in general the solution

6v(O) exp (-3s)
v(s)

6- v(0)(1- exp (-3s))"

Figure 1 shows projections of several phase space trajectories, which reside in the
plane Vo + vl + v2 0, onto the (va, Vz)-plane. We see that for certain initial conditions

FIG. 1. Phase trajectories, projected onto the D1, v2)-plane for scheme (1) with N 3.
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the trajectories depart to infinity due to the existence of saddle points at (0, 6,-6),
(-6, 0, 6) and (6,-6, 0).

For N 4 we must consider the system

We notice that

Hence

/)3/)1 -- /’)3/)1 (/)1 q- /)3) (/)2 "" /)0) 4 vl v3,

/)0/)2 + 30/)2 (/)0 -I-/)2)(/)1 +/)3)--4/)0/)2.

d
d-- vv2- vl v3) -4(VoV2- Vl v3)

and the system has the integral

J (VoV2- Vl v3) exp (4s).

We now observe that the full four-dimensional system has a discrete symmetry: The
constraint Vo =-v3 =- U, Vl =-v2 V will be preserved by the equations of motion.
The evolution of U, V is governed by

Let

x u+ Y=U-V.

Then the equations for U and V may be written as

with

oX’ oY

G(X, Y) -X2(1 +-14 Y)- 2 y2.

Several level curves of the potential G are shown in Fig. 2a and the (X, Y)-flow,
which arises as the family of trajectories orthogonal to the level curves, is shown in
Fig. 2b. Again we see spurious steady states and again they apparently give rise to
modes of evolution in which some discrete amplitudes grow indefinitely.
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FIG. 2(a). The potential G(X, Y) pertaining to the analysis of scheme (1) with N =4. The separatrix
consists of the line Y =-4 and the parabola Y=-X + 4.

FIG. 2(b). The (X, Y)-flow pertaining to scheme (1) with N=4.

We conclude this section by observing that increasing N will not rule out the
existence of initial conditions leading to physically spurious solutions. This follows, for
example, if N 4n. The finite difference amplitude equations will then have a discrete
symmetry which consists in every fourth amplitude being the same, i.e., l.)k+ap "-Vk
where k =0, 1, 2, 3 and p =0, 1,..., n-1. Within the subspace singled out by this
symmetry, the system of ODEs reduces to n replicas of the N =4 system discussed
above. Now consider an initial condition with the repeated period-four symmetry in
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the region that leads to indefinite growth. Such an initial condition can be found in
the form

(v0, , vv-1)=(a, b,-a,-b, a, b,-a,-b,..., a, b,-a,-b)

according to our analysis o the N-4 system above. Since the region in the
(v0, v,-v0,-Vl) subspace that leads to indefinite growth is obviously an open set (cf.
Fig. 2b), it must be possible to find initial conditions for the ull N 4n system of the
form

(Vo," V_l)=(a+el, b+e,-a+ea,-b+e4," .)

where e, e, e3, e4, etc. are different, i.e. initial conditions without the discrete, period
four symmetry, that still lead to indefinitely large amplitudes. We have tried several
such initial conditions and checked numerically that they indeed lead to unlimited
amplitude growth.

To see what this property of scheme (1) means in terms of the original variables
Uk we must refer to the definition of Vk in 2. Then we see that if Uk(O)--Fk,
k 0, 1, 2, 3, is a set of initial amplitudes that leads to indefinite growth for a discretiz-
ation with 4 grid points, Uk+4p(O nFk, k 0, 1, 2, 3, p 0, 1," , n- 1, will lead to
indefinite growth for a discretization with N- 4n grid points. We shall restate this
result in terms of the so-called cell Reynolds number in 5.

4. Remedy. Having described the pathologies of the scheme (1), we must now
prescribe a cure. We note that all the spurious solutions in 3 violate the requirement
that kinetic energy be dissipated. Indeed with diverging amplitudes the discretized
kinetic energy clearly tends to infinity. Hence, if a scheme that conserves energy (when
the dissipative terms are neglected) can be found, unbounded spurious solutions, such
as those found for scheme (1), should disappear. It is not difficult to find such a scheme"
We first recall that Burgers’ equation may be written in "conservation form"

u, + U )x

and this form can then be discretized. This leads to

(2) dye,= 1 v2_a) + + Vk- 2V,
ds -- v2+ Vk+

with the same rescalings as before. This scheme again conserves momentum but not
energy. Few-amplitude truncations of the system (2) can be shown to display spurious
solutions as in 3.

However, we now have two schemes and new schemes can be constructed by
forming convex combinations of them. In particular, we can ask whether some such
combination will conserve energy. Thus we add (1) and (2) with "weights" w and
1-w respectively and impose the condition that the combination conserve energy
(when the linear, dissipative terms are neglected). This turns out to determine w
uniquely (w =-) and the resulting scheme is [16]

dlk 1
(3)

ds 6
(/-)k+l /’)k-l) Ok+l -[’-/-)k-1 -"/)k) ""/)k+l "-/)k-1 2Ok.

Since it arose by linear (convex) combination of (1) and (2), scheme (3) clearly still
conserves momentum. Using the Cauchy-Schwarz inequality it is also easy to show



FINITE DIFFERENCE APPROXIMATIONS TO BURGERS’ EQUATION 863

from (3) that

N-1 dvk< o
k=O

where the equal sign only holds if all Vk are identical (and hence zero).
We remark that it may sometimes be undesirable to have an energy-conserving

discretization (in the limit of zero viscosity) for physical reasons. For example, if the
objective is to track shock formation in an initial value calculation, energy conservation
may actually be an unwanted constraint [17, p. 252].

5. Concluding remarks. It is useful to state precisely what the remedy of 4 was.
Essentially it consisted in discretizing the factor u of UUx by (Vk/l + Vk-1 + Vk)/3 instead
of just by Vk (compare (3) to (1)). This kind of differencing to produce the value of
the field itself at a point, as opposed to the values of derivatives, arises frequently and
naturally in the finite element method. In fact, the discretization of the convective
derivative in (3) can be obtained using the finite element method with a basis of
piecewise linear functions.

It is worth reiterating that we have not found evidence of chaotic behavior. This
seems to be due to the absence of any free parameters in our discretized equations.
With the relative magnitude of linear and nonlinear terms that is forced upon us here,
the phase space flows seem to be dominated by sinks and saddles. We have not
attempted to insert a variable parameter into these equations in order to seek out
regimes of chaotic solutions since the physical significance of such an exercise seemed
unclear.

We may restate our results by saying that close to the origin even the "naive"
schemes (1) and (2) give qualitatively acceptable results. In fact, we can identify a
certain region, <-/)max(N) for k 0, 1,. , N-1, within which the discretization
behaves in a qualitatively correct way compared to the continuum equation. In terms
of the field amplitudes Uk and the spatial resolution Ax ( 2) this criterion takes the
form i.e. the cell Reynolds number, Re= (maxk]Uk[)Ax/V, must
be chosen less than some N-dependent upper bound. Clearly if /)max(N) tends to
infinity with increasing N, spurious solutions become less troublesome with increasing
resolution. However, we have just seen that for scheme (1), Vmax(4n) -< Vmax(4) (see
the argument given at the end of 3) and thus that /)max(N) does not increase
systematically in this case. In terms of the original variables Uk we must go to ever
larger amplitudes as N increases to encounter the spurious behavior. But for scheme
(1) spurious solutions can be found; for scheme (3), they cannot. We may mention in
conclusion that for cell Reynolds number less than 2 scheme (1) is usually found to
be adequate [13], [14].
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discussion. One of us (P.KoD.) would like to thank the Graduate School at Brown
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NUMERICAL METHODS FOR STIFF SYSTEMS OF
TWO-POINT BOUNDARY VALUE PROBLEMS*

JOSEPH E. FLAHERTYf AND ROBERT E. O’MALLEY, JR."

Abstract. We develop numerical procedures for constructing asymptotic solutions of certain nonlinear
singularly perturbed vector two-point boundary value .problems having boundary layers at one or both
endpoints. The asymptotic approximations are generated numerically and can either be used as is or to
furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform
computational mesh needed for such problems. The procedures are applied to a model problem that has
multiple solutions and to problems describing the deformation of a thin nonlinear elastic beam that is resting
on an elastic foundation.

1. Introduction. Initial value problems for stiff systems of ordinary differential
equations are now considered to be relatively tractable numerically (cf. Enright et al.
[7]). However, codes for stiff (or singularly perturbed) boundary value problems are
not readily available, even though these problems arise in a great many applications.
(The term stiff is more commonly restricted to singularly perturbed initial value
problems, when stability forces stepsizes for explicit integration schemes to be severely
restricted in regions where the solution is relatively smooth. We use the term in a
broader context where solutions are not smooth everywhere, but are instead character-
ized by both intervals of smoothness and by rapid changes over narrow intervals.)

In this paper we consider asymptotic and numerical methods for singularly pertur-
bed two-point boundary value problems of the form

(1.1) f(x, y, t, e), e’ g(x, y, t, e),

(1.2a,b) a(x(0), y(0), e) 0, b(x(1),y(1),e)=O,

where x, y, a, and b are vectors of dimension m, n, q, and r m + n- q, respectively,
and e is a small positive parameter.

Although many special problems of this form can be solved by known asymptotic
or numerical techniques, the general problem is very difficult and beyond our current
understanding. The form of equations (1.1), (1.2) imply tfiat, whenever g is not small,
y varies rapidly relative to x. The behavior of the solution in these zones of rapid
transition can be very complicated. For example, y can "jump" abruptly in a narrow
boundary layer near 0 and/or 1. These jumps can also occur at interior locations
where solutions or their derivatives will become unbounded as e 0. The locations of
the interior layers are generally unknown and must be determined as part of the
solution process. Examples of these and other phenomena are discussed in, e.g.,
O’Malley [21 ], Kevorkian and Cole [18], Pearson [25], [26], Hemker [15], and Flaherty
and O’Malley 11 ].

The traditional numerical techniques for two-point boundary value problems all
have difficulties with singularly perturbed problems unless the grid that is used for the

* Received by the editors March 8, 1983, and in final form August 10, 1983. This research was partially
supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under
grant AFOSR 80-0192, the Office of Naval Research under contract N00014-81K-056, and by the U.S.
Army Research Office under grant DAAG29-82-K-0197. Partial support was also provided under NASA
contracts NASl-15810 and NASI-17070 while the authors were in residence at the Institute for Computer
Applications in Science and Engineering, Hampton, Virginia.

" Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181.
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discretization is appropriately fine, at least within boundary or interior layers. If the
grid is not fine enough to resolve the layers, the computed solution typically exhibits
spurious mesh oscillations. There are, however, special purpose schemes that can solve
some singularly perturbed boundary value problems without using a fine discretization
in transition regions. Most notable among these are the "upwind" or one-sided finite
difference schemes (cf., e.g., Kreiss and Kreiss [19] or Osher [24]) and the exponentially
weighted finite difference and finite element schemes (cf., e.g., Flaherty and Mathon
[9] or Hemker [15]). These schemes must usually be either restricted to relatively
simple problems or employ complicated algebraic transformations.

In view of these theoretical and computational difficulties, we simplify problem
(1.1), (1.2) considerably by assuming, in addition to natural smoothness hypotheses,
that (i) g, a, and b are linear functions of the "fast" variable y, (ii) the n x n Jacobian

(1.3) G(x, t):--- gy(X, y, t, 0)

has a strict hyperbolic splitting with k-> 0 stable and n- k.-> 0 unstable eigenvalues
for all x and 0 -<_ -< 1, and (iii) q => k and r => n k. (By a stable (unstable) eigenvalue,
we mean one with strictly negative (positive) real part.) A corresponding theory for
problems with quadratic dependence on y is very limited (cf., e.g., Howes [17] which
discusses second-order scalar equations). This, of course, limits extension of a numerical
theory, but encourages further numerical experimentation.

The assumed hyperbolic splitting restricts any rapid variations in y to occur in
boundary layer regions near 0 and/or 1. Thus, we unfortunately have eliminated
many important and challenging problems having interior or "shock" layers. Some
numerical work on these problems was done by Kreiss and Kreiss [19], Osher [24],
and O’Malley [23].

In a series of three papers, Ascher and Weiss [2], [3], [4] (this issue, pp. 811-829)
show that, symmetric, or centered, collocation schemes could be used on problems that
satisfied assumptions similar to ours provided that appropriately fine meshes were used
in the endpoint boundary layers. Our approach is somewhat different in that we use the
assumed hyperbolic splitting to find an asymptotic solution of problem (1.1), (1.2) which
is composed of a limiting outer solution (Xo(t), Y0(t)) and boundary layer corrections
neat 0 and 1. The limiting solution satisfies a reduced system, which is obtained from
(1.1) by formally setting e to zero, i.e.,

(1.4a,b) 1o t(Xo, Yo, t, 0), 0 g( Xo, Yo, t, 0).

Because G is everywhere nonsingular, we can solve (1.4b) for Y0 Y0(Xo, t) in
a locally unique way, and there remains the ruth order differential system (1.4a) for
determining Xo(t).

In order to completely specify the limiting solution, we must prescribe m boundary
conditions for (1.4a). We do this in 2 by providing a "cancellation law" that selects
a combination of q-k initial conditions (1.2a) and of r-n + k terminal conditions
(1.2b) to be satisfied by Xo(t). If k > q or n-k > r, the linear examples of Wasow
[30] show that limiting solutions may not exist. For more nonlinear problems, we note
that such a cancellation law is much more difficult to specify (cf. O’Malley [22]).
Boundary layer corrections are generally needed to compensate for the cancelled initial
and terminal conditions, and these are easily determined once X0(t) and Yo(t) have
been found (cf. 2).
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In 3 we discuss a numerical procedure for calculating the asymptotic solution
of 2. We implement the cancellation law by using orthogonal transformations to
reduce G(x(t), t) to a block triangular form with its stable and unstable eigenspaces
separated. We also use the general purpose two-point boundary value code COLSYS
to solve the reduced problem and then add numerical approximations of the boundary
layer corrections. This approximation is considerably less expensive to obtain than
solving the full stiff problem numerically and it has the advantage of improving in
accuracy, without any additional computational cost, as the small parameter e tends
to zero. However, when e is only moderately small, our asymptotic approximation
may not be sufficiently accurate for some applications, so we have developed a
procedure for generating an improved solution by using COLSYS to solve the complete
problem (1.1), (1.2) with our asymptotic approximation as an initial guess. In order
for this approach to succeed, we must also provide COLSYS with an initial nonuniform
mesh that is appropriately graded in the boundary layers. We give an algorithm for
constructing such a mesh in 3.

In 4 we apply our procedures to a third order model problem that has multiple
solutions and to problems involving the deformation of a thin nonlinear elastic beam.
These examples show that our methods can calculate accurate solutions of stiff problems
for a very modest computational effort. While our algorithm for furnishing COLSYS
with an initial guess and a nonuniform mesh does not seem to be optimal, it does offer
some advantages over the more standard approach of continuation in e, where one
starts with a large value of e (e.g., e 1) and a crude initial guess of the solution and
reduces e in steps so that the mesh is gradually concentrated into the boundary layer
regions.

We also present two examples in 4 that are beyond the capabilities of our current
methods because their solutions become unbounded as e--> 0. We include numerical
results for these problems in this paper in order to show some of the several challenging
effects that can occur with singularly perturbed problems. Finally, in 5, we discuss
our results and present some suggestions for future investigations.

2. Asymptotic approximation. With the assumed hyperbolic splitting, we expect
solutions of (1.1, 2) to feature boundary layers in the fast y variable near both endpoints
as e->0. Thus, it is natural (cf. O’Malley [21]) to seek bounded uniform asymptotic
expansions of the form

x(t, ) x(t, ) + (, ) +(, ),
(2.1) 0<t<l,

y(t, e)=Y(t, e) +ix(r, e)+v(tr, e),

where the outer solution (X(t, e), Y(t, e)) represents the solution asymptotically within
(0, 1), the initial layer correction (e(r, e), Ix(r, e)) decays to zero as the stretched
variable

(2.2a) r t e

tends to infinity, and the terminal layer correction (el(tr, e), v(tr, e)) goes to zero as
the stretched variable

(2.2b) cr (1- t)/ e
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approaches infinity. The outer solution and the boundary layer corrections are represen-
ted by expansions of the form

(2.3a-f)

-x(t,)-
Y(t, e)

(, )
n(, )
_,(, )

- x(t)
Y/(t)

--o ()

.n(o).(o-)

ej.

The limiting uniform approximation is obtained from (2.1) by letting e tend to zero,
i.e.,

(2.4a) x(t, e)=Xo(t)+O(e), y(t, e)=Yo(t)+ixo(’)+Vo(tr)+ O(e).

At =0 the fast vector y usually has a discontinuous limit, jumping from y(0, 0)=
Yo(0) + Ixo(0) to Yo(0) at 0+. An analogous Heaviside discontinuity generally occurs
near 1.

The outer expansion (2.3a, b) must satisfy the full problem (1.1) within (0, 1) as
a power series in e; thus, the limiting solution (Xo, Yo) will satisfy the nonlinear and
nonstiff reduced system (1.4). As previously noted, since G(Xo, t) (cf. (1.3)) is nonsin-
gular, we can solve (1.4b) for o o(Xo, t) in a locally unique way, so there remains
the mth order nonlinear system (1.4a) for Xo(t). Later terms of the expansion (2.3a, b)
satisfy linearized versions of the reduced system. For example, the coefficients of order
e give

(2.46)
]I [x(Xo, Yo, t, O)X, +f(Xo, Yo, t, O)Y1 q-[e(Xo, Vo, t, 0),

"rO--gx(Xo, Yo, t, O)X --G(Xo, t)V, +g, (Xo, Vo, t, 0).

We can determine ,(t) in terms of X0, 0, and X, from (2.4b) and, once again, there
remains the ruth order linear system (2.4a) for X. Similarly, for each j> 1, we obtain
a system of the form

(2.5)
/= fx(Xo, Yo, t, O)X + fy(Xo, Yo, t, O)Y/+ aj-l(Xo," Xj-1, t),

r/-1 gx(Xo, Yo, t, O)X/+ G(Xo, t)Y/+ 13/-l(Xo,""", Xj-1, t)

with successively determined inhomogeneous terms.
In order to completely specify the outer expansion (2.3a, b), we must prescribe

boundary conditions for the m-vectors X(t). Most critically, we need to specify m
boundary conditions for the limiting slow vector X0(t). It is natural to attempt to
determine them by somehow selecting a subset of m combinations of the m + n
boundary conditions (1.2) evaluated at e 0. For scalar higher order linear differential
equations, the first such "cancellation law" was obtained by Wasow [30]. Harris [14]
obtained a more complicated cancellation law for linear systems with coupled boundary
conditions and Ferguson [8] developed a numerical procedure for corresponding linear
problems. These early works suggest that we should seek a cancellation law that ignores
an appropriate combination of k initial conditions and of n-k terminal conditions.
To this end, we must examine the boundary layer corrections and we begin by
considering the initial layer correction (e, Ix). Near 0, the terminal layer correction
e-q, v) may be neglected, so the representation of our asymptotic solution (2.1) requires
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the initial layer correction (e, I) to satisfy the nonlinear system

(2.6)

d dx dX
d- dt dt

=f(X+ e, Y+lx, ez, e)-f(X, Y, e’, e),

dlx (dydr
e

dt d) =g(X+ eli, Y+tt, ez, e)-g(X, Y, e’, e),

on -=> 0 and to decay to zero as zm. Substitution of the asymptotic expansion
(2.3c, d) into (2.6) provides successive differential equations for the coefficients (j,
In particular, when e 0, we have the limiting initial layer system

(2.7)

__o f(Xo(O) Yo(O) + to, o, o)- f(Xo(O), Yo(O) o, o),
dr

dlxo
dr

g(Xo(0), Yo(0)+ Io, 0, 0)-g(Xo(0), Yo(0), 0, 0).

The decay requirement determines

(2.8a) o(-) I (d(s) ds
d’r ]

as a functional of IXo, while IXo satisfies the conditionally stable system

ao_ 6(Xo(0) 0)o.(2.8b)
dr

We used (1.3) and the assumed linearity of g in y when obtaining (2.8b). If g(x, y, t, e)
were not linear in y, the initial layer correction would satisfy a nonlinear differential
equation which would generally be difficult to solve (cf. O’Malley [22]). Indeed, it
would then be extremely difficult to specify what set of initial vectors Io(0) would
lead to decaying solutions of the boundary layer system (2.7b). Here (2.8b) is readily
integrated to give

(2.9) to(’) ea(X()’)’lXo(0).

Thus, IXo will decay to zero as r provided that

(2.10) 0(0) P(Xo(0), 0)po(0),

where P is a projection onto the k dimensional stable eigenspace of G(Xo(0), 0). The
representation (2.9) is used here and below for notational convenience, but its direct
numerical implementation is not recommended due to the conditional stability of the
matrix G.

Substituting (2.10) into (1.2a) and letting e-0, we see that the q limiting initial
conditions take the form

(2.11) a(Xo(0), Yo(0)+ P(Xo(0), 0)tto(0), 0)= 0.

Now, using the linearity of a in y, we let

(2.12) A(x, t)= ay(X, y, t, 0)

and further assume that A(Xo(0), 0)P(Xo(0), 0) has its full and maximal rank k. Then
we can uniquely determine Io(0) as a function of Xo(0) from k of the equations (2.11).
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Having done this, initial conditions for the reduced problem can be determined from
the remaining q- k conditions in (2.11). For the moment, we write these in the form

(2.13) (Xo(0)) =0.

In 3, we discuss a numerical procedure for determining P, W0(0) and (X0(0)).
The terminal layer correction can be analyzed in an analogous manner. In par-

ticular, the leading term v0(tr) satisfies

(2.14) 10(0- eG(Xo(1),l)rpo(O).

Now, Vo will decay to zero as tr-* oo provided that

(2.15) vo(O) O(Xo(1), 1)vo(O),

where Q is a projection onto the n- k dimensional unstable eigenspace of G(X0(1), 1).
Substituting (2.15) into (1.2b) and letting e 0 gives the r limiting terminal conditions
as

(2.16) b(Xo(1), Yo(1) + O(Xo(1), 1)vo(O), O) O.

We let

(2.17) B(x, t) by(x, y, t, 0)

and assume that B(X0(1), 1)Q(X0(1), 1) has full rank n k. Then we can solve (2.16)
for Vo(0) and the remaining r-n + k conditions specify terminal conditions for the
limiting problem, which we denote by

(2.18) (Xo(1)) =0.

The reduced problem consists of the nonlinear reduced differential equation and
the m separated nonlinear boundary conditions (2.13), (2.18). If it is solvable, it may
have many solutions; however, corresponding to any of its isolated solutions (Xo(t),
Y0(t)), one can expect to find a solution of the original problem (1.1), (1.2) that
converges to (X0(t), Y0(t)) on 0 < < 1 as e- 0. Sufficient hypotheses to obtain an
asymptotic solution having the form of (2.1) are provided by Hoppensteadt [16] and
others. For this reason, we shall merely indicate the considerations that are involved
in obtaining further terms in the initial and terminal layer expansions and boundary
conditions for the outer expansion. In the linear case, our hypotheses guarantee
well-conditioning of the boundary value problem (cf. Mattheij [20]).

Additional terms of the initial layer expansion (2.3c, d) are determined by equating
the coefficients of e in the nonlinear system (2.7), i.e.

(2.19)
aJ=f(Xo(O),Yo(O)+wo() 00)wi+’,/i-a(’),dr

dj._. G(Xo(O O)ILj -F- aj_ (’T),
dr

for ] > 1, where the inhomogeneous terms are exponentially decaying as --> oo because
i-1 and tti-1, i= 1,..., ], and their derivatives behave in this manner. The linear
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system (2.19) may be integrated to yield

\(
(2.20)

i(r) e(Xo()’)’lx(0)+ eG(Xo()’)(-s)gy_l(s) ds.

We see that (z) decays as r increases and I(r) will decay provided that I(0) lies
in the stable eigenspace of G(Xo(0), 0), i.e.,

(2.21) Ix(0) P(Xo(0), 0)lx(0).
Using (2.1) and (2.3a, b), we find that the coefficient of e in the initial condition

(1.2a) has the form

(2.22) a(Xo(0), Yo(0) + IXo(0), 0)X(0) +A(Xo(0), 0)[Y(0) + P(Xo(0), 0)lx(0)] [_.

Since A(Xo(0), 0)P(Xo(0), 0) has its maximal rank k, we can determine Ix(0) from/c
of these equations, and the remaining q- k equations determine linear equations for
Xy(0). The situation for the terminal layer correction is completely analogous; thus,
v(0) and the terminal conditions for Xy(1) are determined from linear equations of
the form

(2.23) b,,(Xo(1),Y0(1)+v0(0), 0)X(1)+B(X0(1), 1)[V(1)+Q(X0(1), 1)vi(0)] 0_,.

To summarize, we have shown that the jth(j> 1) term in the outer expansion
satisfies an ruth order linear boundary value problem consisting of (2.5) and a set of
m linear boundary conditions determined from (2.22) and (2.23). It is a linearization
of the problem for X0(t).

3. Numerical procedure. In this section we discuss a numerical procedure for
finding the limiting uniform asymptotic solution (2.4). It consists of solving the limiting
outer problem (1.4), (2.13), (2.18) and determining boundary layer corrections from
(2.9) and (2.14).

Our first task is to find the projections P and Q and we do this by finding the
Schur decomposition of the matrix G at 0 and 1. In particular, at 0 we find
an orthogonal matrix E(x(0), 0) such that

(31) G(x(0) 0)E(x(0)0)-E(x(0)0)[T-(x;0)’0) U(x(0),0)]T/(x(0), 0)

where T_ is k k and upper triangular with the stable eigenvalues of G(x(0), 0), and
T/ is upper triangular with the remaining n-k unstable eigenvalues. (In (3.1), x(0)
is an unspecified variable.) The decomposition (3.1) can often be obtained analytically;
however, when this is not possible or practical, it can be determined numerically by
using the QR algorithm (cf. Golub and Wilkinson [13], Ruhe [27], and Bjorck [5] for
specific procedures).

We partition E after its kth column as

(3.2) E [E_ _3
and note that E_ spans the stable.eigenspace of G at 0 and

3.3 P E_E

_
is the desired projection onto this eigenspace.
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Substituting (3.3) into (2.11) gives

(3.4) a(Xo(0), Yo(0)+ E_(Xo(0), 0)E_(Xo(0), 0)o(0), 0)= 0,

as the equation for determining It0(0) and (Xo(0)). Since A(Xo(0), 0)E_(Xo(0), 0)
is of rank k, we construct a q q matrix

(3.5a) LT" [L_r [,_r]
that reduces it to echelon form, i.e.,

(3.5b) [-_] A(Xo(0), 0)E_(Xo(0), 0) [-],
where V_ is k x k and nonsingular. Multiplying (3.4) by L, using the linearity of a in y,
(3.5) implies

L_a+ V_E_r/xo(O) =0, L_a =0.

Thus, we obtain the initial layer jump IXo(0) and the q-k initial conditions (2.13) for
the reduced problem, respectively, as

(3.6)
Io(0) =-E_(Xo(0),_ 0)V-1L_a(Xo(0), Yo(0), 0),

,I,(Xo(O)) := L_a(Xo(O), Vo(O), O) O.

We find the terminal layer jump and the r-(n-k) terminal conditions for the
reduced problem in an analogous fashion with the exception that we define E(x(1), 1)
such that

(37) G(x(1) 1)E(x(1)1)= E(x(1)1)[i’+(x(1), 1)(x(1), 1) ]0 T_(x(1), 1)

which we partition after its (n- k)th column as

(3.8) =[+ +].

In parallel with (3.1) and (3.2), the matrices "i’_, ’/, and E/ contain the k stable
eigenvalues, the n- k unstable eigenvalues, and span the unstable eigenspace, respec-
tively, of G at 1. Our reasons for switching the positions of the matrices containing
the stable and unstable eigenvalues of G is that we are unaware of a simple and stable
computational procedure for finding a set of vectors that span a given subspace and
are not in the leading columns of an orthogonal matrix like E (cf. Golub and Wilkinson
[13]).

Now, following the procedure that we used for the initial layer, we take

(3.9) Q(Xo(1), 1)= E/(Xo(1), 1)E+(Xo(1), 1)
as our projection onto the (n- k) dimensional unstable eigenspace of G(Xo(1), 1) and
construct an r r matrix

(3.10a) RT" =[R+r +3
that reduces the rank n k matrix B(Xo(1), 1)E+(Xo(1), 1) to echelon form, i.e.,

(3.10b) [R+]B(Xo(1).+,1)E+(Xo(1), 1)=[+]
where V+ is (n- k) x (n- k) and nonsingular. Multiplying (2.16) by R and using (3.9)
and (3.10), we find the terminal layer jump and terminal conditions for the reduced
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problem, respectively, as

(3.11)
Vo(0) =-E+(Xo(1),_ 1)V_IR+b(Xo(1), Yo(1), 0),

W(Xo(1)) := R+b(Xo(1), Yo(1), O) =0.

Since the reduced problem (1.4), (3.6b), and (3.11b) is not stiff, we can use any
good code for two-point boundary value problems (cf. Childs et al. [6]) to solve it,
and we have chosen to use the collocation code COLSYS of Ascher, Christiansen and
Russell [1]. The reduced problem is generally nonlinear and since COLSYS solves
nonlinear problems using a damped Newton method, we have to supply formulas for
evaluating the Jacobians of f, Y, , and with respect to X. We do this, but introduce
an error, by providing analytical formulas for these Jacobians that neglect the influence
of the derivatives of E, L, R, and G. (These derivatives will be small when the related
subspaces are nearly constant). This procedure failed to converge once on Example 2
of 4 and a minor modification to the Jacobian of restored convergence; however,
an alternative possibility would be to approximate the Jacobians by finite differences.

We start the Newton iteration with a uniform mesh and an initial guess Xo)(t)
for Xo(t). In 4, we used the default initial guess that is provided by COLSYS for
Example 1 and a constant initial guess for Example 2. This latter choice was necessary
as Example 2 has three solutions. At each iteration step, we calculate an approximation
E(X(oP)(t), t) to E(X(t), t) for 0 and 1 as the Schur decomposition of G(X(P)(t), t).
The examples of 4 were calculated using analytical formulas for E rather than the
numerical procedures of Golub and Wilkinson [13], Ruhe [27], or Bjorck [5]. Finally,
L(p) and R(p) are obtained by using Gaussian elimination to row reduce A(X(oP)(0),
0)E_(X(oP)(0), 0) and B(X(oP)(1), 1)E+(X(oP)(1), 1), respectively.

When this procedure converges to (Xo(t), Yo(t)), we calculate boundary layer
corrections Wo(r) and ,o(r), for a given value of e, using (2.9), (3.6a), (2.14), and
(3.11a), and add these to the reduced solution in order to get the O(e) asymptotic
approximation (1.4). For moderately small values of e, this approximation may not
provide a sufficiently accurate representation of the solution and, in this case, we use
it as an initial guess to COLSYS and solve the complete problem (1.1), (1.2). However,
this procedure may fail unless we also provide COLSYS with an initial nonuniform
partition

(3.12) 7r TM {0 to < tl <’’" < IN 1}

that is appropriately graded within the boundary layers. Following Ascher, Chris-
tiansen, and Russell [1 ], we seek to find 7r such that the error on each subinterval satisfies

(3.13) Ilell,--< 6(1 + Ilull,), i= 1, 2,..., N,

where 8 is a prescribed tolerance,

(3.14) U
T [xT yT],

e(t) is the difference between u(t) and its collocation approximation,

(3.15) Ilull,= max lu(t)l and lu(t)l max lu(t)l.
t_ <=tti i<=jm+n

We assume that the final partition selected by COLSYS to solve the reduced
problem satisfies (3.13) outside of boundary layer regions and we seek to refine it
within the boundary layers. We further assume that derivatives of u can adequately
be approximated by either IXo(r) or Uo(r) in the left or right boundary layer, respec-
tively.
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It is known (cf. Russell and Christiansen [28]) that if the solution of (1.1), (1.2) is
smooth,

hj+1(3.16) Ilell, cjllu(J+l)ll,.-, + O(hj+)

for collocation at the image of j Gauss-Legendre points per subinterval. Here cj is a
known constant,

(3.17) hi=ti-ti-1 and h= max hi.
l<_i<__N

In the left boundary layer we approximate u in (3.16) by Io using (2.9) and attempt
to find a partition that satisfies

(3.18) ,.i+1 (1 + nil,)

Finally, we use (2.9) and (3.1) to approximate 0 and the subinterval lengths as

(3.19) t- t_ clo(t-/ e)l

where
_

is the magnitude of the largest diagonal element of T_(Xo(0), 0). A similar
formula can be obtained for selecting subintervals in the right boundary layer.

Starting with 1, we use (3.19) to generate a partition until we either reach
1/2 or a point where a subinterval length selected by (3.19) is larger than that

used locally by COLSYS to solve the reduced problem. We then repeat the procedure
in the right boundary layer.

We have written a computer code called SPCOL that implements the algorithms
that are described in this section; thus, it (i) uses COLSYS to solve the reduced
problem, (ii) calculates and adds appropriate boundary layer corrections to the reduced
problem, and (iii) (optionally) suggests a mesh that can be used by COLSYS to solve
the complete problem.

4. Eles. In order to appraise the performance of SPCOL, we have applied
it to a problem involving the deformation of a thin nonlinear elastic beam (Example
1) and a third order model problem that has multiple solutions (Example 2).

Nxample 1. We consider problems involving the deformation of a nonlinear elastic
beam that is resting on an elastic foundation with unit spring constant and is subjected
to the combined action of a horizontal end thrust P and a unit uniform lateral load.
This problem is discussed in detail in Flaherty and O’Malley [11] and herein we only
present the governing differential equations, which in dimensionless form are

(4.1a,b,c) 1 --cos X3, 32 =sin x3, 3 Yl,

(4.1d,e) e)l -Y2, e)2 (x2-1) cos x3- Tyl,

where

(4.1f) T sec x3 + ey2 tan x3.

The slow variables (Xl, x2) and x3 represent the Cartesian coordinates and the tangent
angle of a material particle on the centerline of the beam that was at the Cartesian
location (t, 0) in the undeformed state. The fast variables Yl and Y2 are the internal
bending moment and transverse shear force, respectively. Finally, the small parameter
is

(4.2) e 2 EI/PL2,



SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS 875

where EI is the flexural rigidity and L is the length of the beam; thus, our beam is
much stronger in extension than it is in bending.

This example does not precisely fit our hypotheses since the axial force T is a
function of the fast variable Y2 and, thus, gy also depends on y. However, our theory
and methods will still apply as long as y remains bounded and IX31 < r/2 as e 0.
Flaherty and O’Malley [11] show that unbounded solutions can occur when certain
types of boundary conditions are prescribed for (4.1). In this paper we present results
for the following three sets of boundary conditions:

(4.2a) (i) Xl(0, e) x.(0, e)= yl(0, e) x.(1, e) yl(1, e) =0,

(4.2b) (ii) Xl(0, e)=0, -10x.(0, e)+ya(0, e)=0, -x3(0, e)+10yl(0, e)=0,

10xa(1, e)+ ya(1, e)=0, 10x3(1, e)+ yl(1, e)=0,

(4.2c) (iii) xl(0, e) x.(0, e)= x3(0, e)= xa(1, e)= x3(1, e)=0.

Equations (4.2a) correspond to "simple supports," (4.2c) correspond to "clamped
supports,." and (4.2b) correspond to elastic supports that are almost simply supported
at 0 and almost clamped at 1. Conditions (4.2b) could arise because, say, friction
introduces some coupling between lateral and rotational effects at the supports. As
we shall see, y remains bounded for conditions (4.2a,b), but becomes unbounded as
e -* 0 when conditions (4.2c) are applied. The problem is that the boundary conditions
for the clamped beam only involve the slow variables and the slow vector x cannot
generally satisfy all five of them without having boundary layers. This in turn forces
the fast vector y to become unbounded like O(1! e) at the endpoints. Thus, the solution
cannot have an asymptotic expansion of the form of (2.1); however, an appropriate
asymptotic expansion was obtained by Flaherty and O’Malley [11]. We do not repeat
those results here, but in order to emphasize the diverse behavior that can occur with
nonlinear singularly perturbed problems, we present solutions for xa, x3, Yl, and Ya
corresponding to each of the boundary conditions (4.2a), (4.2b), and (4.2c) in Figs.
1, 2, and 3, respectively.

Our methods apply to problems having boundary conditions (4.2a) and (4.2b)
and, in these cases, the orthogonal matrix

(4.3a) E(x(0), 0)-- (1 + 02)-1/2 [ 1 --I1]
where

(4.3b)

reduces

a 2 sec x3(0)

(4.4) G(x(0), O) -aa 0

to the Schur form given by (3.1) at t=0 while ET(x(1), 1) will reduce G(x(1), 1) to
the form given by (3.7) at 1.

We solved (4.1) with conditions (4.2a) and (4.2b) in two ways: (i) using COLSYS
to solve the complete problem with continuation from a large to a small value of e

and (ii) using our code SPCOL to compute an initial asymptotic approximation and
to recommend a nonuniform mesh and using this with COLSYS to calculate an

improved solution. All calculations were performed using double precision arithmetic
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0.00 0.20 0.40 0.60 0.80 1.00

FIG 1. Numerical solution ofsimply supported beam, Example with boundary conditions given by (4.2a).

on an IBM 3033 computer, two collocation points per subinterval, and an error
tolerance (cf. (3.19)) of 10-6 for slow variables and 10-3 for fast variables.

Our results for the normalized CP times and the number of subintervals (NSUB)
that are either used by COLSYS or recommended by SPCOL are shown in Tables 1
and 2 for the simply supported beam and in Tables 3 and 4 for the elastically supported
beam. Tables 1 and 3 contain the continuation results and Tables 2 and 4 contain the
SPCOL results with COLSYS improvement. The CP times (for all examples) were
normalized with respect to the e sequence in Table 1. Differences between our initial
asymptotic approximation and the final solution obtained by COLSYS are shown for
X2(1/2, e) and y2(0, e) for the simply supported beam in Table 5 and for X3(0 e) and
y2(0, e) for the elastically supported beam in Table 6. All of the differences are
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FIG. 2. Numerical solution of elastically supported beam, Example with boundary conditions given by
(4.2b).

decreasing like O(e) as expected. Differences that are recorded as zero are less than
10-8.

The results reported in these tables need some additional explanation. The number
of subintervals and CP times used with continuation depended heavily on the e sequence
that was used. The results in Tables 1 and 3 are about the best insofar as they gave
the smallest total CP time for the sequence. We see in almost every instance that the
COLSYS correction is using about twice the number of subintervals that were suggested
by SPCOL. This mesh doubling strategy is often used in COLSYS to estimate errors
or when the Newton iteration has convergence difficulties. Thus, in some sense our
mesh strategy is doing about as well as can be expected; however, it seems that fewer
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FIG. 3. Numerical solution of clamped beam, Example with boundary conditions given by (4.2c). Note
that Yl and Y2 are multiplied by e.

points should be necessary. We tried placing the subintervals according to a pointwise
error criteria, as suggested by Ascher and Weiss [2], [3], [4], rather than the global
criteria used in (3.19), but this gave very similar results (cf. Flaherty and O’Malley
[12]). We also tried suggesting an initial mesh to COLSYS that consisted of every
other point in the mesh suggested by SPCOL. This is clearly a risky strategy, since
collocation at the Gauss-Legendre points is known to produce oscillations unless the
mesh is appropriately fine in the boundary layers (cf. Ascher and Weiss [2]). Neverthe-
less, this did give some improvement for values of e > 10-8 (cf. Flaherty and O’Malley
[12]). Perhaps the results could be improved further by using higher order collocation
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TABLE 1
Example 1 with simple supports. Number o.f sub-

intervals (NSUB) and CP times to solve the problem by
COLSYS with continuation in e. Total CP is the accumu-

lated time for the e sequence.

10-1

10-2

10-4

10-6

10-8

NSUB

80
72
112
158
254

CP

6.1
6.3

18.4
27.2
41.9

Total CP

6.1
12.5
30.9
58.1

100.0

TABLE 2
Example with simple supports. Number of sub-intervals (NSUB) and CP times

to solve the problem by SPCOL and to improve it by COLSYS. The CP times include
the time to calculate the reduced solution, which was 1.3 time units. Total CP is the

sum of the SPCOL CP and the COLSYS CP.

10-1
10-2

10-4

10-8

SPCOL

NSUB

20
28
34
35

CP

1.3
1.3
1.3
1.3

COLSYS

NSUB

80
112
136
92

CP

5.7
8.7
9.0
9.3

Total CP

7.0
10.0
10.3
10.6

TABLE 3
Example with elastic supports. Number of sub-

intervals (NSUB) and CP times to solve the problem by
COLSYS with continuation in e. Total CP is the accumu-
lated time for the e sequence.

10-1
10-2

10-4

10-6

10-8

NSUB

80
78
78
156
100

CP

6.9
6.3

16.8
38.3
16.4

Total CP

6.9
14.6
31.4
69.7
86.1

and/or collocation at the Gauss-Lobatto points as suggested by Ascher and Weiss
[2], [3], [4].

We see from Tables 1 to 4 that for e 10-8 the SPCOL solution can be computed
in less than 5% of the time of the continuation solution and the COLSYS improvement
with the SPCOL solution as an initial guess can be computed in less than 24% of the
time of the continuation solution for both simple and elastic supports.
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TABLE 4
Example with elastic supports. Number of sub-intervals (NSUB) and CP times

to solve the problem by SPCOL and to improve it by COLSYS. The CP times include
the time to calculate the reduced solution, which was 3.8 time units. Total CP is the

sum of the SPCOL CP and the COLSYS CP.

10-1

10-2

10-4

10-8

SPCOL

NSUB

40
47
56
57

CP

3.9
3.9
3.9
3.9

COLSYS

NSUB

100
94
112
134

CP

10.2
10.5
12.8
16.8

Total CP

14.1
14.4
16.7
20.7

TABLE 5
Example with simple supports. Differences

between SPCOL and COLSYS solutions, i.e.,
a( ):=l( )s,co-( )co.svsl.

10-1

10-2

10-4

10-8

ax:(1/2, )

7.1 x 10-3

6,.7x 10-5

0
0

Ay2(0 e)

3.2x 10-2

3.6x 10-3

3.610-5

0

TABLE 6
Example with elastic supports. Differences

between SPCOL and COLSYS solutions, i.e.,
A( :"- ]( )SPCOL-- )COLSYS]"

10-1

10-2

10-4

10-8

ax3(0, e)

1.3x10-1

1.4x10-2

1.5x 10-4

0

Ay2(0, e)

4.210-2

5.2x10-3

5.410-5

0

Example 2. We consider the third order model problem

(4.5a,b,c) =l-x, e)l=Y2, eY2=a2(x)yl+8X(1-x)
with

(4.5d) a(x) 1 + 2x

and the linear boundary conditions

(4.6) x(0, e)+yl(0, e) =0, -yx(O, e)+y2(O, e)=0, x(1, e)+ yl(1, e)=0.

The matrix G(x, t) for this example is the negative of that given by (4.4) for Example
1 with a now being given by (4.5d). Thus, G has one negative and one positive
eigenvalue provided that a(x) is nonzero and G may be reduced to Schur form at
t=0 using the orthogonal matrix ET"(x(0), 0) and at t= 1 using E(x(1), 1) (with E(x, t)
given by (4.3a)).
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Flaherty and O’Malley [10] studied this problem and showed that the reduced
system is

(4.7) o 1-Xo, Y2o=0, a2(Xo)Ylo+8Xo(1-Xo) =0
with the initial condition

(4.8) (Xo(0))lEXo(0) + Ylo(0)]- yXo(0) 0.

They show that there are three solutions of (4.7), (4.8) for each value of the constant
y provided that there are no "turning points," i.e., provided that there are no values
of x(t) for which a(x) =0 on 0<= t=< 1. The three solutions can be characterized by
their value of Xo(0) which is determined as

(4.9) Xo(0) 0, [ys- 6 +4(ys-4)2+48], s=sgn (a (Xo(0)).

For y 2 the three values of Xo(0) are 0, 0.803, and -4.29 and the three corresponding
solutions for yl(t, e) are shown in Fig. 4. For Xo(0)=0, the initial layer correction
/Zo(Z) is trivial; however, the other two solutions have initial layer jumps.

I0"

0.20 0.40 0.60 0.80 1.00

0

0.00 0.20 0.40 0.60 0.80 1.00

=I0"-

0.20 O. 0. 0. 1.

FIG. 4. Numerical solution for yl(t) of Example 2 with , 2 and Xo(0) =0, 0.803, and -4.29.
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It can be easily verified that t(Xo(t)) has a zero on 0 -< t=< 1 when (-3.08)-
3e/2+l<=Xo(O)<=-1/2. In this case (4.5) has a turning point and Ylo becomes
unbounded. Our theory and methods do not apply in this case; however, if e is not
too small, the solution of (4.5) can be calculated using COLSYS. In order to contrast
solutions with and without turning points, we illustrate y(t, e) for 3’ =-2 and X0(0)=
-2.80 in Fig. 5.

0.00 0.20 0.40 0.60 0,80 1.00

FIG 5. Numerical solution for Yl (t) of Example 2 with /=-2 and Xo(0)=-2.80.

Solutions obtained using SPCOL and the corresponding COLSYS corrections are
shown for 3’ 2 and X0(0)= 0, 0.803, and -4.29 in Tables 7, 9, and 11, respectively.
The COLSYS correction failed to converge for e =< 10-6 when X0(0)=0 and -4.29.
We have no explanation as to why the solution with X0(0) 0.803 was so much easier
to calculate. The relative difference between the SPCOL and COLSYS solutions for
x(1, e) and y2(1, e) are shown in Table 13 for 3’= 2 and X0(0)=-4.29. These results
are typical of those that we obtained for all three solutions.

Using COLSYS with continuation in e and the default initial guess can find at
most one solution, and, for this example, it found the Xo(0)= 0 solution. The results
of this calculation are shown in Table 8 for 3’ 2. Although several e sequences were
tried, we were unable to obtain convergence for e =< 10-6. Again, this situation could
possibly be remedied by using collocation at the Gauss-Lobatto points as in Ascher
and Weiss [2], [3], [4]. The other two solutions when 3’ 2 can also be calculated using
continuation in e provided that we use a suitable initial guess. Results for the solutions
corresponding to Xo(0)= 0.803 and -4.29 are presented in Tables 10 and 12, respec-
tively, using continuation with SPCOL furnishing an initial guess. These results seem
to point to the possibility of using a combination of asymptotics and continuation to
solve singular perturbation problems.
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TABLE 7
Example 2 with y 2 and Xo(0) 0. Number of subintervals (NSUB) and CP

times to solve the problem by SPCOL and to improve it by COLSYS. The CP times
include the time to calculate the reduced solution, which was 0.5 time units. Total

CP is the sum of the SPCOL CP and the COLSYS CP

10-1
10-2

10-4

10-6

SPCOL

NSUB

40
44
47
47

CP

0.6
0.6
0.6
0.6

COLSYS

NSUB

88
88
192

CP

6.3
6.2

18.2
failed

Total CP

6.9
6.8

18.8

TABLE 8
Example 2 with 3,=2 and Xo(0)=0. Number of

subintervals (NSUB) and CP times to solve the problem
by COLSYS with continuation in e from e 10-1. The
default initial guess that is provided in COLSYS was
used to start the continuation sequence. Total CP is the

accumulated time for the sequence.

10-1

10-2

10-4

10-5
10-6

NSUB

40
44
264
372

CP

1.8
3.3

13.4
20.2
failed

Total CP

1.8
5.2

18.6
38.7

TABLE 9
Example 2 with 7 2 and Xo =0.803. Number of subintervals (NSUB) and

CP times to solve the problem by SPCOL and to improve it by COLSYS. The CP
times include the time to calculate the reduced solution, which was 1.5 time units.

Total CP is the sum of the SPCOL CP and the COLSYS CP.

10-1

10-2

10-4

10-6

SPCOL

NSUB

42
52
57
57

CP

1.5
1.6
1.6
1.6

COLSYS

NSUB

42
52
58
114

CP

3.0
3.0
2.6

10.9

Total CP

4.5
4.6
4.2

12.5

TABLE 10
Example 2 with y 2 and Xo(0)=0.803. Number

ofsubintervals (NSUB) and CP times to solve theproblem
by COLSYS with continuation in e from e 10-4. Total

CP is the accumulated time for the sequence.

10-4

10-5
10-6

NSUB

58
58
70

CP

2.6
2.4
4.3

Total CP

2.6
5.0
9.3
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TABLE 11
Example 2 with y 2 and Xo(0) -4.29. Number o[ subintervals (NSUB) and

CP times to solve the problem by SPCOL and to improve it by COLSYS. The CP
times include the time to calculate the reduced solution, which was 0.9 time units.

Total CP is the sum of the SPCOL CP and the COLSYS CP.

10-1

10-2

10-4

10-6

SPCOL

NSUB

44
52
59
59

CP

0.9
0.9
0.9
0.9

COLSYS

NSUB

62
84

232

CP

3.6
3.8

15.3
failed

Total CP

4.5
4.7

16.2

TABLE 12
Example 2 with y 2 and X0(0)=-4.29. Number

ofsubintervals (NSUB) and CP times to solve the problem
by COLSYS with continuation in e from e 10-2. Total

CP is the accumulated time ]:or the sequence.

10-2

10-4

10-6

NSUB

84
168
322

CP

3.8
21.3
40.8

Total CP

3.8
25.1
65.9

TABLE 13
Example 2 with 3’ 2 and Xo(0)=-4.29. Relative differ-

ence between SPCOL and COLSYS solutions with A( :=

I( )s,o,.-( )co,s’sl.

10-1
10-2
10-4
10-6

AX(1, e)
Ix(l, e)COLSVSl

9.710-3

9.6 X 10-4

9.610-6

1.010-7

Ay2(1, e)
lYE(l, e)COLSVS[

2.4X 10-1

3.9X10-2

4.310-4

4.5X 10-6

5. Discussion. We have obtained asymptotic approximations for a restricted class
of nonlinear singularly perturbed two-point boundary value problems and have shown
how to construct approximate solutions numerically and use them to suggest a nonuni-
form mesh that may be used as input to a two-point boundary value code in order to
calculate improved solutions. Clearly this approach offers some advantages over the
more standard technique of continuation in e steps; however, the picture is far from
clear and several questions still remain as to how best to use asymptotic analysis in
conjunction with numerical analysis.

In Example 2 of 4 we have shown that asymptotic methods may be used to
distinguish different solutions in problems having multiple solutions. These asymptotic
approximations may be used to provide initial guesses to a two-point boundary value
code.
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In Example 1 of 4 we have shown that unbounded solutions can result from
seemingly minor changes in the boundary conditions of singularly perturbed boundary
value problems. Other very diverse behaviors can occur when turning point problems
are considered (cf., e.g., Kevorkian and Cole [18] or O’Malley [21]). Since phenomena
cannot easily be predicted, a sensible course to follow is perhaps to use asymptotic
and numerical methods in tandem. For example, a rough numerical solution could be
obtained for several values of e which could then be used to suggest the form of an
asymptotic solution. The asymptotic approximation could then be used to refine the
numerical solution, and so on. It is also possible that singular perturbation theory
could be used to construct special methods that are appropriate for specific problems
as e.g., in Flaherty and Mathon [9] and Ascher and Weiss [2], [3], [4].
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UNDERFLOW AND THE RELIABILITY OF NUMERICAL SOFTWARE*
JAMES DEMMEL?

Abstract. We examine the effects of different underflow mechanisms on the reliability of numerical
software. Software is considered reliable in the face of underflow if the effects of underflow are no worse
than the uncertainty due to roundoff alone. The two primary underflow mechanisms discussed are store
zero and gradual underflow, although we consider other mechanisms as well. By examining a variety of
codes, including Gaussian elimination, polynomial evaluation, and eigenvalue calculation, we conclude that
gradual underflow makes it significantly easier to write good numerical codes than store zero, and that this
remains true even if extra range and precision are available for intermediate calculations.

Key words, software reliability, numerical software, roundoff, underflow, error analysis

1. Introduction and summary. In this paper we examine the effects of underflow
on the reliability of codes for solving a wide variety of numerical problems. In particular
we demonstrate the utility of gradual underflow for writing more robust codes than
are usually written when the conventional "store zero" approach to underflow is used.
This paper summarizes the work of several people over a period of several years during
which they participated in the IEEE Floating Point Standard subcommittee’s deliber-
ations about the proper way to handle underflow. In addition to the author, these
people are J. Coonen, D. Hough, W. Kahan and S. Linnainmaa. Some of the results
presented here have been published (separately) before; others have not.

When we speak of reliable software, we mean software that ideally produces
accurate results whenever they can be represented, and otherwise gives a warning.
Needless to say, such software must cope with roundoff, and that may be difficult for
many problems even in the absence of underflow. These unavoidable roundott errors
have led to diminished expectations and less stringent definitions of reliability for
different kinds of codes. For example, a Gaussian elimination code to solve a system
of linear equations is commonly called reliable if it delivers the exact solution of a
problem close to the one it received as input (we will discuss this example in more
detail below). Users have come to expect no more than these weaker forms of reliability
from many of their codes because both experience and sometimes proofs have demon-
strated that roundott errors prevent better performance.

How much further must the notion of reliability be weakened in the face of
underflow? For example, does Gaussian elimination still deliver the exact solution of
a problem close to the input if underflows occur during the computation? If so, and
in general, if we can show that the effects of underflow on a code are no worse than
the uncertainty due to roundott alone, then we consider that code no less reliable in
the face of underflow than in the face of roundott. Thus, our approach during our
investigations has been to decide if underflow contributes nothing worse to a code
than the uncertainty from the expected effects of roundott errors which must be
tolerated anyway.

To explain our approach and conclusions, we need some notation. A more complete
discussion of the following terminology may be found in 2 of this paper. We describe

* Received by the editors December 14, 1982, and in revised form May 5, 1983. This work was
supported by the U.S. Department of Energy, contract DE-AM03-76SF00034, Project Agreement DE-
AS03-79ER10358, the Office of Naval Research, contract N00014-76-C-0013, and IBM, contract
82007PLP0446. The author holds an IBM Fellowship. This paper contains an expanded version of "Effects
of Underflow on Solving Linear Systems", by Dr. James Demmel, appearing in the Proceedings of the 5th
Symposium on Computer Arithmetic, Ann Arbor, MI, May 18-19, 1981, pp. 113-120. Copyright (C) 1981
IEEE.

Computer Science Division, University of California, Berkeley, California 94720.
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floating point arithmetic with two parameters" e and A. e denotes the difference between
1 and the next larger floating point number; thus e bounds the rounding error in the
operations /, -, * and/. , denotes the underflow threshold, i.e. the smallest positive
normalized floating point number. The two basic underflow mechanisms we have
compared are store zero and gradual underflow. Store zero, the standard response to
underflow, simply replaces any result that would be smaller than , in magnitude by
0. Gradual underflow, on the other hand, returns an unnormalized floating point
number less than , in magnitude which approximates the tiny result. These unnormal-
ized numbers form an arithmetic progression between 0 and A with common separation
Ae, and are called denormalized to emphasize that they occur only at the bottom of
the exponent range. Gradual underflow will henceforth be abbreviated by G.U. and
store zero by S.Z.

There are actually many more mechanisms available to the system architect; all
underflow mechanisms will be discussed further in 2 below. For reasons also explained
there we selected the following variations on G.U. and S.Z. for analysis in this paper:

We compared using the same precision and range for intermediate calculations
as are used to represent the inputs and outputs with using extra precision and range
for intermediate calculations.

We compared using gradual underflow with the underflow flag being set by a
threshold test (which signals underflow whenever the result is denormalized) with using
gradual underflow with the flag being set by an accuracy test (which signals underflow
only if the denormalized result has a numerical value different from that of the correctly
rounded result).

We compared using underflow flags which are sticky (which, once set, remain set
until explicitly reset by the user) with underflow flags which are nonsticky (which are
reset prior to each floating point operation).

We have compared the effects of these mechanisms on the robustness of codes
written without attention to over/underflow problems, but we occasionally consider
highly robust, expert codes as well.

Our main conclusions are given below:
(1) For many algorithms written without attention to over/underflow, only if

G.U. is used instead of S.Z. is the algorithm as robust in the face of roundoff and
underflow as it is with roundoff alone. More specifically, as long as the data is normalized
(> A in magnitude) the results are as good as can be expected just with roundoff when
using G.U., but when using S.Z. the data must be at least A/e to expect the same
performance.

(2) For some computations, one can claim more than in (1). Suppose we measure
backwards error in the following combined relative/absolute way"

the change in x is comparable to
eA if Ixl < A,

for G.U., and
if Ixl> A/e,

the change in x is comparable to
A if xl < A / e,

for S.Z. For G.U. this means the change in x is comparable to a few units in the last
place stored of x, no matter if x is normalized or not. For S.Z., on the other hand,
numbers near A contain almost no significant digits. Then with respect to this new
distance function, many algorithms always deliver the exact solution of a problem close
to the input problem, no matter if underflow occurs or not. This statement is true of
Gaussian elimination as long as the results themselves do not underflow and lose



UNDERFLOW AND RELIABILITY OF NUMERICAL SOFTWARE 889

accuracy, of polynomial evaluation, and of computing the eigenvalues of a symmetric
tridiagonal matrix, for example. In other words, these algorithms always have a small
backwards error with respect to this new definition (and subject to easily testable
constraints), no matter what the inputs are. For G.U., this means nearly every bit
stored in a number is significant, whereas in S.Z. almost no bits in any number of the
problem may be significant, if all the numbers are too close to h.

(3) In addition to extending the effective exponent range of the system by -log2 e
as described in (1), G.U. preserves certain mathematical relationships (such as x =y
if and only if fl (x-y)=0) over the entire range of floating point numbers. These
relationships may occasionally fail with S.Z. Their failure can lead to strange and
elusive bugs in codes (see 4 below), whereas it is easier to write reliable code if these
relationships can be depended on.

(4) Availability of extended precision and range does not always obviate the
advantage of G.U. over S.Z. For some computations, such as polynomial evaluation,
an extended format does eliminate almost all worry about intermediate over/underflow,
but for others, such as Gaussian elimination and Cholesky decomposition, as long as
the solution itself and the triangular factors of the matrix are stored in the basic format,
the conclusions in (1) above remain valid even if all intermediate results are computed
exactly. Thus, G.U. is of advantage to a system with an extended format as well as to
a system with just’ one format.

(5) There are computations for which the accuracy test for G.U. is preferable to
the threshold test and computations for which the threshold test is preferable, but the
relative advantage is not very great for either type of test. The only advantage of the
accuracy test over the threshold test we discovered was in the underflow flag being a
false alarm less frequently. These potential false alarms arise from the assignment
statement a := b when b is denormalized, negation (a :=-b when b is denormalized),
addition, subtraction, multiplication when one factor is an integer, and remainder
(a mod b). The only potential advantage of the threshold test over the accuracy test
was in helping to automatically verify the constraint that inputs be normalized (> h in
magnitude) mentioned in (1) above. It was not clear that this could be used easily in
practice (see the discussion of Gaussian elimination in 8 below).

(6) The sticky underflow flag is much more useful than the nonsticky kind, although
there are several applications of nonsticky flags in expert codes (see the discussion of
Gaussian elimination below). The sticky flag can be used to simulate a nonsticky one
at the cost of resetting it before each relevant operation, a cost which may be severe
if resetting requires an expensive system call in a tight loop.

(7) Highly robust, expert codes for problems like polynomial root finding are
easier to write using G.U. than S.Z. However, as soon as any scaling is done it is
usually as easy to scale to avoid S.Z. underflows as G.U. (see the discussions of Gaussian
elimination, Cholesky decomposition, and eigenvalue computations in [2]).

We believe that the evidence weighs clearly in favor of G.U. over S.Z. Presumably
that is why gradual underflow is required by the proposed floating point standard.

The evidence shows neither the accuracy test for G.U. nor the threshold test to
be uniformly superior to the other, but the choice depends on whether the floating
point designer also has control over how the compilers implement assignment and
negation statements (see 5). If he does have control, he should insist on simple bit
copying (nonfloating point) operations; if not, choosing the accuracy test over the
threshold test eliminates the possibility of spurious underflow messages during assign-
ment and negation. The proposed standard incorporates the accuracy test for lack of
control over compiler design.
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The sticky underflow flag is preferable to the nonsticky kind if there can be only
one; a friendly system would make both available. The proposed standard requires
sticky flags or all exception conditions, including underflow.

The rest of this paper is organized as follows. Section 2 presents underflow from
a system architect’s point o[ view. We discuss number formats and the options available
for handling underflows, both when the underflow occurs and when the result is used
later. Section 3 discusses underflow from a numerical analyst’s point of view and shows
how to extend conventional error analyses to include underflow. Sections 4 through
14 elaborate on the above results (without proofs) for the eleven computations listed
below. Sections 4 through 14 may be read independently of one another:

tests and comparisons
the accuracy test versus the threshold test for G.U.
complex arithmetic
inner product calculations
Gaussian elimination
Cholesky decomposition
iterative refinement o linear systems
polynomial evaluation and root finding
eigenvalue computations for symmetric tridiagonal matrices
numerical quadrature
accelerating the convergence of sequences

2. A system architect’s view ot underflow. In this section we have two goals, first
to describe the mechanisms available to the system architect for handling underflow,
and second to describe the mechanisms we compare in this paper and why we have
chosen them. We will introduce much notation in this section; when a new term is
defined it will appear in italics.

The design questions facing the system architect are of two kinds: what value
should be returned in the destination word when underflow occurs, and what side
effects (if any) should underflow have? Options for the destination value are G.U.,
S.Z., and several other conventions such as exponent wraparound [10] and nonnumeric
symbols like UN [4] and NAN [8]. Possible side effects are raising an underflow flag
and continuing execution, invoking a trap handler that may execute any code of the
system’s or user’s choice, waiting until an underflowed quantity is to be used to decide
what to do, or most simply doing nothing. In case the architect decides to have flags
or traps, the efficiency of his implementation will affect how the programmer writes
codes to use the flags or traps (see the discussion of Gaussian elimination in 5, for
example). Other side effects arise from design decisions made in the compiler; these
are discussed below and in 4 and 5. We will first discuss the different values that
can be returned from an underflowed operation, and then possible side effects.

To describe the values that can be returned we need to refer to a specific floating
point format which we now describe (the conclusions of this paper apply to similar
formats as well). It contains three fields: a sign bit tr, a significand f, and an exponent
e, and represents the value x (-1).f 2e. The exponent e satisfies emin =< e =< emax.
The binary point follows the leading bit of f.

We call f (and the entire floating point number) normalized if its leading bit is 1
(or if e 0 and f 0, which represents 0). This means 1 -< f < 2. Otherwise 0 =< f < 1 and
is called unnormalized.

The rounding error of the arithmetic is the largest possible value of

Ifl (a b)- a bl
labl
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where [] denotes one of the operations {+, -, *,/}, and a and b are such that a [] b 0
and fl (a [] b), which denotes the floating point result of the operation a [] b, is normalized
and nonzero. As long as fl (a b) is the first floating point number greater than or
equal to a b or the first number less than or equal to a b (e.g. if the arithmetic
truncates or rounds), then

e 2l-n,

where n is the number of bits used to represent f, is a bound on the rounding error.
In other words, e is the difference between I and the next larger floating point number.
Note that e is twice as big as the rounding error if fl (a [] b) is the nearest floating point
number to the true result a [] b.

The largest normalized number has e emx and f 1.1... 1 (n bits long); it is
called the overflow threshold and denoted by

A 2emax(2 e) 2emax+l.

The smallest normalized number, which has e emin and f 1, is called the underflow
threshold, and is denoted by

A ’2emi".

Even though h is called the underflow threshold, we will see that underflow might not
always be signalled whenever a result is less than h in magnitude.

When e emin and f < 1 we call the number denormalized. Denormalized numbers
are also called subnormal [6], a name which is perhaps more descriptive than denormal-
ized. The denormalized numbers, which are a subset of the unnormalized numbers,
form an arithmetic progression between 0 and h with common separation he. Not all
floating point systems allow denormalized numbers, or any unnormalized numbers at
all. If denormalized numbers are not allowed, we typically handle underflow using
store zero (S.Z.). This means that if the rounded value of a computation x would lie
strictly between +h so that we could not represent it as a normalized nonzero number,
we return zero. If denormalized numbers are allowed then we can use gradual underflow
(G.U.), which means rounding such an x to the nearest denormalized number and
returning that instead of zero. Gradual underflow is also called graceful underflow [6].

Exponent wraparound [10] is another possibility which only makes sense on a
system which does not trap on over/underflow but which increments/decrements a
counter designated in advance by the user (cf. Kahan’s Counting Mode [10]). When
a result would underflow, the value returned has the normalized significand of the
result stored in f and the result’s exponent biased upward by a constant (such as
-3. emin/2) stored in e. (The analogous technique applies to overflow). By examining
the counter the user can keep track of the powers of two contributed by wraparound.

Finally, the system may return a nonnumeric symbol such as UN [4] or NAN (Not
A Number) [8]. A NAN is encoded in the IEEE proposal by an exponent e emax q- 1
and a nonzero significand f that may contain or point to diagnostic information about
where and when the underflow occurred. This technique allows the user to defer
deciding what to do about an underflow until later when he has more information (this
is discussed further below). For more detail on floating point formats and representing
underflowed quantities see [1].

The architect also has many options for side effects. Side effects of underflow may
be generated on two occasions: when an underflowed quantity is created, and later
when it is used. First we describe creation time side effects and then use time side effects.

The creation time options are raising a flag/not raising one, trapping/not trapping,
and doing nothing. Doing nothing is the most common response of systems today
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because underflow is generally presumed to be harmless (were that true, this paper
would not have been written).

One attribute a flag can have is "stickiness". An underflow flag is sticky if, once
set, it remains set until explicitly reset by the user (as in the proposed standard);
otherwise it is nonsticky, that is reset prior to each operation. A sticky flag is generally
much more useful than a nonsticky one because it allows the user to ask if any
underflows have occurred anywhere in a section of code (since the last time the flag
was reset). This is the proper type of flag for debugging or when underflows are not
anticipated. A nonsticky flag, which can always be simulated by a sticky one, is useful
only when analysis has shown that underflow in only a certain few operations can
matter. This is the case in certain expert codes (see 8 below) but is rare.

Another attribute a flag can possess is available only with G.U.: it can be set
either by a threshold test or an accuracy test:

Threshold test. Signal underflow if the exact result would have been less than A
in magnitude and not zeio, and

Accuracy test. Signal underflow if, in addition to the computed result being no
more than A in magnitude, it is different from what would have been the result had
exponent range been unbounded.

The reason for the option is as follows. Just because a result of an operation must
be represented as a denormalized number does not mean accuracy has been lost. It
may be that the error incurred by denormalization is no worse than what roundott
would have caused had exponent range been unlimited. For example, /2 is represent-
able exactly as a denormalized number. In such cases, the architect may decide not to
signal underflow, since the error is no worse than what roundott alone would have
caused. This more restrictive definition of underflow has the advantage of signalling
underflow less frequently than the threshold test and therefore generates fewer false
alarms. For example, the accuracy test will never signal underflow on copy (assigning
a := b), negation (a :=-b), addition, subtraction, multiplication where one factor is
an integer, or remainder (a mod b) [16]. On the other hand, a threshold test may be
better for an application where any nonzero result less than in magnitude causes
problems later in the code. In the friendliest system, the user would be able to choose
the definition depending on his application. For example, when debugging a new code
in which underflow is not expected to occur, a threshold test with a smart trap
handler/debugger would be useful, whereas a clever, robust code might exploit the
more restrictive definition. We give examples of codes which use both types of flags
below.

There are at least as many options available to the designer of a trap handler,
because in principle a trap handler can contain any code of the system’s or user’s
choice. For example, one may want a smart trap handler/debugger which lets the user
examine his operands and code when underflow occurs, or one which keeps a record
of where and when all underflows occur and lets the user examine them at the end of
the program, or even one which attempts to perform the computation in a totally
different way to avoid underflow. Actually, any given underflow mechanism can be
implemented using a trap handler if a trap occurs on every underflow, although this
may be slow. Obviously these possibilities involve compiler and operating system
questions which would be difficult and interesting even without raising any numerical
issues; we will not consider traps further in this paper.

Finally, the system (or user) can decide at the time of use what to do about
underflow. This option is not available in an S.Z. system because there is nothing
unusual about an underflowed S.Z. value (it is zero) that lets us detect when it is used;
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with G.U., however, denormalized numbers mark themselves as underflowed quan-
tities. By delaying a reaction until time of use, the user can defer judgement about
the harmfulness or harmlessness of an underflow until he has more information available
to help him decide. If a denormalized number is to be added to a much larger number,
for example, little or nothing is lost. If it is to be multiplied by a large number, accuracy
lost in denormalization might become significant later, especially if cancellation occurs.
In general these decisions can better be made when the denormalized number is to
be used rather than when it is created. Again, it is advantageous to give the user a
choice in response. One approach considered by the IEEE committee was to have two
modes: warning and normalizing. Warning mode caused a trap whenever

the uncertainty in a denormalized operand (+,e/2) would be magnified relative
to the result by multiplication or division by a normalized operand, or
dividing a finite nonzero dividend by a denormalized divisor, or
taking the square root of a denormalized number.

Normalizing mode does not trap in these cases. As with the different definitions of
underflow, warning mode may be useful for debugging new codes, and normalizing
mode for writing clever, robust ones. We again give examples of such clever codes
below. The committee chose not to include warning mode in the standard.

Given this bewildering array of options, how do we intend to compare G.U. and
S.Z. systems? It is obviously possible to compute anything using S.Z. that can be
computed with G.U. (and vice versa) by testing and scaling each pair of operands
before use, but this is hardly a fair comparison since one code may be much harder
to write or take much longer to run than the other. One fair comparison is to ask if
for a given level of system support and given level of effort the code using G.U. has
substantially different reliability than one using S.Z. For the comparisons in this paper,
we chose the least effort possible, meaning that we want to compare codes written
without regard to underflow at all if possible, or sight modifications of such codes.
Furthermore, we chose the least possible system support short of doing nothing:
providing a user testable underflow flag (and, of course, not trapping on underflow).
We also consider the two ways to raise the G.U. flag described above: the threshold
test and the accuracy test (in what follows we will often use the phrase "inaccurate
underflows" to refer to both S.Z. underflows and G.U. underflows according to the
accuracy test). Applications of nonsticky flags will be noted when they exist; unless a
flag is explicitly called nonsticky it should be assumed sticky. In addition to these
underflow options, we examine the utility of performing intermediate calculations with
extra precision and range to avoid as many underflows as possible.

Finally, a writer of clever library routines may well be interested in how much
reliability he can get for a fixed execution time, code size, etc., independent of
development cost. We believe several of the codes discussed in this paper (and in more
detail in [2]) will provide a basis for such a comparison.

3. A numerical analyst’s view of underflow. In this section we show how to extend
traditional floating point error analyses to take underflow into account. Let be one
of the operations {+, -, *,/} and let fl (a b) denote the floating point result of the
indicated operation. Traditional error analyses use the formula [23]

(1) fl (a b) (a b) (1 + e) unless a b underflows or overflows,

where lel e. To take underflow into ccount, we write [13]

(2) fl (ab)=(ab)(l+e)+ unless ab overflows.



894 JAMES DEMMEL

In the case of G.U. there are the following constraints on e and

(3) lel-<e and IIA,
(4) /.e- 0 (i.e. at most one of / and e is nonzero), and

(5) r/= 0 if [] is either addition or subtraction.

In the case of S.Z. we have the following somewhat different constraints on e and

(3’) lel <- e and Inl--< ;, and

(4’) r/. e =0.

Let us examine the differences in constraints. The different bounds on Itl in (3)
and (3’) mean that the error contributed by underflow for S.Z. can be 1/e times as
large as for G.U. (5) means that there can be no underflow error in addition or
subtraction for G.U., whereas underflow can cause complete loss of relative accuracy
for S.Z.

Formula (2) gives a combined relative/absolute error bound on the error in
floating point. For G.U. we have a bound e on the relative error as long as the true
result is bigger than a threshold A, and an absolute error bound Ae for smaller results.
The bounds match, in that for results at the underflow threshold A, the absolute
magnitude of the largest relative error (e. result) is equal to the largest absolute error
(e. A) (see Fig. 1). This property of (2) means that when doing a G.U. error analysis,
we are really doing both a floating point and fixed point analysis simultaneously, because

fl a [] b a [] b + q

is the error formula used in fixed point analyses.
For S.Z. on the other hand, the error jumps at A. For results just bigger than A,

the largest possible error is Ae as with G.U., but for smaller results the error leaps up
to nearly A (see Fig. 2). In order to analyze errors in S.Z. arithmetic as in G.U. (relative
error above a threshold, absolute below, and at the threshold the errors match), we
must raise the threshold to h / e (see Fig. 3). Said another way, G.U. reduces underflow
errors to the size of roundoff for all normalized results, but S.Z. underflow errors are
roundoff size only for results greater than A / e in magnitude. This explains why so many
of the results to be presented later read as follows:

(6)
When using G.U., as long as the data is normalized (> h), the results are as good as can be
expected just with roundott, but when using S.Z. the data must be at least h ! e to expect the
same performance. Furthermore, as the data decreases below the threshold (A or A/e) G.U.’s
results degrade smoothly rather than abruptly, as do S.Z.’s.

h is a much more natural threshold (and easier to test for, depending on the definition
of underflow) than h/e for the range of application of a code.

For some codes one can make a backwards error bound independent of input
values if one measure backwards error in the way suggested in conclusion (2) of 1.
For G.U., this measure means every number is viewed as uncertain in the last few
places stored, whether denormalized or not. For S.Z., it means some numbers near h
are viewed as uncertain in nearly all their places. Gaussian elimination without inaccur-
ate underflows in the solution components themselves, polynomial evaluation, and our
algorithm for eigenvalues of symmetric tridiagonal matrices have backwards error
bounds of this form. For these codes, G.U. more than extends the apparent exponent
range by -log2 e over S.Z." it asserts the significance of nearly all bits in every number
in the machine.
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Horizontal axis: True result of operation a,b. (Tic marks represent floating point numbers.)
Vertical axis: Error in computed result a, b-fl (a b). (Arithmetic is binary and chopped with

e maximum rounding error, A underflow threshold)
Error bound.

Denormalized Normalized

(absolute error -_< Ae) (relative error_- e)

FIG. 1. Error with gradual underflow (see (2), (3), (4) for error bound).

0 A 2A 4A 8A

FIG. 2. Error with store zero (see (2), (3’), (4’) ]:or error bound).

0 X 2X 4A 8A =Ale

(absolute error -< A (relative error

FIG. 3. Store zero error bounded in same way as gradual underflow error.

If all G.U. did were to extend the apparent exponent range of the system, then
the argument for G.U. over S.Z. would become weaker as the actual exponent range
grew larger. As we have just seen, however, there are certain mathematical relation-
ships, preserved by G.U. but not S.Z. over the range of all floating point numbers,
which make codes that are to work over the range of all inputs easier to write. Other
useful relationships preserved by G.U. but occasionally violated by S.Z. include [1]:

(7) x=y if and only if fl(x-y)=0,

(8) fl ((x- y) + y) x (to within a rounding error in the larger of x and y),

and assuming the exponent range [emin, emax] is nearly symmetrical about 0 (as with
the proposed IEEE standard), then if no overflow occurs

(9) fl (1/(1/x))= x to within a few rounding errors in x.

Failure to satisfy statements like (7) to (9) can induce strange and elusive bugs in
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codes (see 4 and [10]). Their validity makes it much easier to write and maintain
codes by eliminating the need for tests for the very rare cirumstances in which they fail.

The combined relative/absolute error measure given in (2) arises naturally in
several ways. When solving linear equations with iterative refinement, we stop when
the relative error in the solution vector is (hopefully) small. This means large com-
ponents are known to high relative accuracy, and small components to an absolute
accuracy of the same magnitude. In physical problems there is often a noise level which
means that only measurements above it can be made relatively accurately, and below
it only with absolute accuracy equal to the noise level.

4. Tests and comparisons. To analyze codes containing tests like

(10)

or

if x y then r :=
f(x)-f(y)

else if 100 x 100 y then print why?

(11) if x 0 and Ix- Yl-<-.001lxl then z SORT (1.5- yx)

the first of which can produce a divide by zero error and the second of which a square
root of negative number error, we must not only know how underflow is handled, but
how the compiler implements tests like "x y?". There are two possibilities for this:
a fixed point (bitwise) comparison of x and y, and a comparison of fl (x-y) with 0.

Let us first analyze (10) and (11) using S.Z. With the first (fixed point) implementa-
tion of "x y?", any choice of x and y such that 0 < Ix- Yl < A (such as x 1.25A and
y 2A) will pass the test "x y?" and cause a divide by zero error in the expression
for r in (10). In (11), the same choice of x and y passes both tests but causes 1.5- y!x
to equal 1 and gives a square root of negative number error. Using the second,
floating point implementation of "x y?" the same x and y causes why? to be printed
by (10). Thus, both implementations and even the more robust looking test in (11)
can cause strange results using S.Z.

With G.U., on the other hand, the two implementations of the test "x y?" are
equivalent (barring overflow of fl (x-y)), and neither divide by zero nor why? nor
square root of negative number messages are possible from (10) or (11). Any underflow
flags raised by the threshold test should be ignored in these examples because if an
addition or subtraction underflows in G.U. arithmetic, it must give the exact result
(thus no underflow flag would be raised with the accuracy test).

The pitfalls of using extended range and precision in comparisons have been well
documented in [15].

5. The accuracy test versus the threshold test for G.U. When an operation a [] b
underflows, the denormalized result need not have a different numerical value from
the result that would have been returned had the exponent range been unbounded.
For example, the results of A / 2, A !4,. , A ! (1 / e) are all denormalized yet represent-
able without error. The accuracy test for G.U. will not raise the underflow flag for
these operations, or for any others where the denormalized result is identical to the
result that would have been returned had the exponent range been unbounded. In
contrast, the threshold test raises an underflow flag whenever a nonzero result is less
than A in magnitude (there are slight variations possible on this definition, but they
do not effect the results of this analysis).

The accuracy test has the advantage over the threshold test, that if the only bad
effect of underflow is its abnormally large loss of accuracy, then it avoids raising the



UNDERFLOW AND RELIABILITY OF NUMERICAL SOFTWARE 897

underflow flag unnecessarily, whereas the threshold test raises the flag whenever the
result is small even if accurate. If, on the other hand, it is the size of an underflowed
result that can cause difficulty later, the threshold test is more useful. We have found
examples where both definitions of underflow are useful.

First we discuss examples where the threshold test appears advantageous. In
conclusion (1) of the 1, we stated that for many algorithms as long as the inputs
were normalized (> h in magnitude), they would perform as well as expected with
roundoff. This seems like an ideal use for the threshold test, but as described in the
section on Gaussian elimination, for example, what we need to test is if any entry of
the input matrix is normalized, a weaker condition on the matrix, but one requiring
testing the underflow flag (and resetting it as well if it is a sticky flag) for each matrix
entry. If testing, or more likely resetting, involves an expensive system call, we would
not want to include it in such a tight loop. Similar input constraints apply to Cholesky,
iterative refinement, inner product calculations and others: we would need to test and
possibly reset the underflow flag in a tight loop. If these are expensive operations, the
usefulness of the threshold test is undermined. Furthermore, some of these codes
satisfy a combined relative/absolute error bound independent of the input values (see
conclusion (2) of 1).

Now we discuss the situations in which the accuracy test appears more useful. In
Gaussian elimination, iterative refinement, and complex divide we may use the accuracy
test to test intermediate and final results for underflows we know can be harmful only
if they are inaccurate. There are also the simple assignment statement a := b and
negation a :=-b. If b is denormalized, and the compiler implements these statements
as floating point operations, then the accuracy test will raise no flag, but the threshold
test will. If they are implemented as fixed point operations, then of course no flags
will be raised, but in the unhappily common situation where one designer designs the
floating point and another the compiler, the floating point designer may have no control
over the compiler design decisions. One may counter that one could just test and reset
the underflow flag after assignments and negations, but if this incurs the overhead of
a system call, it may not be a good solution. These examples of assignment and negation
may well be the major contributor of false alarms on threshold underflow.

6. Complex arithmetic. In order to make error analysis in complex arithmetic as
similar as possible to the analysis in real arithmetic, we would like to have formulas
describing the error in complex addition, subtraction, multiplication and division that
are nearly identical to (1) to (5) and (3’) and (4’) which describe the error in real
arithmetic.

6.1. Complex addition and subtraction. Here the situation is most satisfying:
formulas (1) to (5) and (3’) and (4’) all remain true as long as "ab overflows" is
interpreted as "overflows in either component". We repeat these formulas for com-
pleteness. In the absence of overflow or underflow we have

(12) fl (a+/-b)=(a+b)(l+e) unless a+/-b underflows or overflows.

To take underflow into account, we write

(13) fl (a +/- b) (a +/- b) (1 + e) / 7 unless a +/- b overflows.

In the case of G.U. there are the following constraints on e and rt"

(14) [e[_-<e and t=0.
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In the case of S.Z. we have the following somewhat different constraints on e and

(15) lele and Ir/l<-h.
It is not true that at most one of e and can be nonzero, as it was with real addition.

6.2. Complex multiplication. Multiplication is not quite so satisfactory as addition
and subtraction because of the possibility of intermediate overflow in the obvious
algorithm"

(16) (a+i.b).(c+i.d)=(ac-bd)+i.(ad+bc)=-pr+i.pi,

even though the final product may be a representable number. Since this can only
happen if one of pr or pi is within a factor of 2 of the overflow threshold A anyway,
we accept this slight loss of robustness since formula (16) is otherwise so satisfactory,
as we now discuss.

In the absence of overflow or underflow (in the intermediate or final results)

(17) fl (a, b) (a, b)(1 + e)

where a, b, and e are all complex quantities, and [el < 2/e. To take underflow into
account we again write

(18) fl (a b) (a b)(l + e) + n in the absence of overflow.

For G.U. we have the following constraints on e and 7 (to first order in e):

(19) [el <_- 2/e and

For S.Z. we have the following slightly different constraints:

(20) lel <- 2x/e and Irtl-<_ 2x/h.
Thus, complex multiplication can be analyzed in the identical way as real multiplication
but with slightly larger bounds on e and ft.

Hence, analyses of algorithms which use only +,-, and operations (such as
inner product) and the error bounds in (2) extend immediately to the complex case.

It is no longer possible to test for underflow in multiplication with S.Z. by
comparing the product to zero as in real multiplication. Indeed, it is possible for a
nonzero product computed with S.Z. to be wrong in the second bit in both components
due to underflow. For example, consider the product of 2.,/-+ i. 0.5.,/- and x/-+ i. 4-.
The correct product, produced with G.U., is 1.5 + i. 2.5, but S.Z. delivers 2 + i. 2.
The underflow flag, however, may also be raised spuriously, for S.Z. or G.U., accuracy
test or threshold test, even though the product is exemplary.

6.3. Complex division. This case was originally analyzed by Hough [7]. The
algorithm is due to Smith and can be found in Knuth [17, p. 195] and avoids almost
all unnecessary intermediate overflows in the calculation. We want to compute the
quotient (a + i. b)/ (c + i. d) q + i. q:

a+b(d/c) b-a(d/c)
if ]d] < [cl then compute q + i. q + i.

c+d(d/c) c+d(d/c)’
(21)

b + a(c/d) -a / b(c/d)
else compute q + i. qi

d + c( c/ d)
+ i.

d + c( c/ d)
As with complex multiplication, it is possible to have intermediate overflows even if
qr and qi are exactly representable, but this can only happen if either the a and b or
c and d are both within a factor of 2 of A anyway.
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If no overflows or underflows occur, then the relative error in the quotient is
bounded by 7x/e, where e is the error in the underlying arithmetic. In contrast to
addition, subtraction and multiplication, however, it is not possible to bound the error
in the presence of underflow simply in terms of a few units in the last place of the
correct result plus a few underfiow errors. If either the dividend a + i. b or divisor
c + i. d is entirely denormalized, it is possible to get a normalized quotient that may
be wrong in most of its places. If both dividend and divisor are normalized in at least
one component, however, then with G.U. the computed quotient does indeed agree
with the correct quotient to all but a few units in the last place of Iqr + i" qil. With S.Z.
both divisor and divided have to be at least A! e to be assured of the same accuracy.
We write these conclusions as follows"

(22)

where

(23)

fl(a/b)=(a/b)*(l+e)+’o if both [al and [bl are bigger than

[el <= 7x/e for both G.U. and S.Z.

and

r=a and rt=4ae forG.U.(24)

and

(25) r=A/e and r/=x/A forS.Z.

Thus, when analyzing algorithms with complex division, more care must be taken than
with real division to make sure the constraints given by r above are satisfied.

Here are some examples to show what happens when the constraints given by r

are violated. We use 6 decimal arithmetic for ease of presentation. First, let a + i. b
2, +i. 1a and c+i.d=4a + i.2a. The correct quotient (a+i.b)/(c+i.d)=.5, but in
S.Z. the term ;t(l/2) underflows to 0 and we get the quotient .4 instead of .5. With
G.U. we get .5. If we now multiply both dividend and divisor by e so they are
denormalized, G.U. suffers the same fate as S.Z. and delivers .4 instead of .5.

Unfortunately, an underflow flag may be raised even though the product is very
accurate. This is true for S.Z. or G.U. with either accuracy test or threshold test.

With extended precision and range both the multiplication and division routines
can underflow (or overflow) only when storing the final results, thus avoiding all false
alarms.

7. Inner product calculations. Consider the two vectors a (A, A, 1/2, a, 0) and
b (0, 1/2, A, 1, A). If we compute their inner product Y.i--1.s aib in the straightforward
way

sum :-- 0
for := 1 to 5 do sum := sum+ ai * b

we get very different answers if we use G.U. than if we use S.Z. With G.U. we get
the exact answers 2;t whereas with S.Z. we get a because both a2b2 and a3b3 are less
than a and so flush to zero in a S.Z. system. The difference is large in the forward
sense (a is relatively much different than 2A) and the backward sense as well, because
it cannot be explained by saying that the result obtained from S.Z. is the exact result
of a different inner product whose vector components differ from the original ones by
a few units in the last place. Note also that there are no scale factors a and/3 such
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that the inner product can be calculated as

1 5

Ol[

without underflow or overflow.
We can state the following propositions about inner products which generalize

the above example [2].
PROPOSITION 1. Let g’ be a bound on the partial sums and individual terms of the

inner product Y i= aibi

(26) g’= max (fl( a,bj),aibi).
l<=i<=n j=l

We can bound the error in computing E i=I aibi as follows: In the absence of
underflow we have

(27)

where g g’/ (1 e ).
In the case of G.U. we have

(28)
fl aib aibi

i=1

where g g’/(1- e).
In the case of S.Z. we have

fl(i=a aibi)-i=l aibi
(29)

<=(2n-1)eg

<= (n- 1)eg + ne max (h, g)

<=(2n-1)eg ifg->A

<= (2n-1)e max (, g)
<=(2n-1)eg ifg>-

8

where g=(g’+A)/(1-e). Note that the g used in equation (28) may differ from the
g used in equation (29) because g depends on the kind of arithmetic used (G.U. or
S.Z.). Also, g depends on the order of the terms aibi.

The proof is a straightforward extension of the usual error analysis of inner
products [23] using formula (2) of 3.

The significance of this proposition is the following: (27) states the well-known
result that the error in an inner product subject only to roundoff errors can be as large
as about 2n rounding errors in the largest intermediate result g’. The second line of
(28) says that the same is true for G.U. as long as the largest intermediate results g’
is normalized. In particular, if the final result is normalized, then underflow is no worse
than roundoff. (If g’ is not normalized, then we have effectively computed the inner
product in fixed point and we get only an absolute error bound from the first line of
(28) as expected.) If we use the accuracy test with G.U. and the underflow flag is not
raised, then (27) holds independent of the size of g. For S.Z. on the other hand (29)
says that g’ must exceed ;t ! e for the same claim to hold. This is an example of statement
(9) in 3.

To analyze the backwards error in an inner product, we need another expression
for the error.
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PROPOSITION 2. Thefloatingpoint result ofthe innerproduct i= aib may be written

(30) fl (i=1 a,b)= i=1
abi(l+E)+rl.

In the absence of underflow we have

(31)
IEll<=ne’
[El <= (n + 2-j)e ifj>l.

In the case of G.U. we have the same bounds on the levi, and

(32) I’ol <= nAe.

In the case of S.Z. we have the same bounds on the IE, I, and
(33) It/l-< hA.

The proof is again a straightforward extension of the usual error analysis [23]
using formula (2).

(31) means that in the absence of underflow, an inner product can be computed
with small backwards error; in other words the computed result is the exact inner
product of two vectors whose components differ by at most n rounding errors from
the components of the original vectors. (32) means that with G.U., as long as some
intermediate result fl (ab) is normalized (> h), then the backwards error is also small,
because r/can be absorbed into the aib(1 + E) term, increasing E by at most ne. In
particular, if the final result is normalized, underflow is no worse than round off. (33)
means that some intermediate term must be as large as h ! e for a similar claim to hold
for S.Z.

Of course, if we are using the accuracy test with G.U. and no flag is raised, then
r/= 0 and the roundoff only error bounds in (31) hold.

These two propositions may be used to extend the results of error analyses for
many matrix computations to include underflow. The next three sections present the
results of such analyses for Gaussian elimination, Cholesky decomposition, and iterative
refinement.

8. Gaussian elimination.
8.1. Summary. The algorithm we analyze for solving the system of linear

equations Ax b is a standard form of Gaussian elimination"
(1) Decompose A LU- (lower triangular) (upper triangular) using pivoting,

so that the diagonal of L contains all l’s and no entries of L exceed 1 in absolute value;
(2) Solve Ly= b for y (forward substitution);
(3) Solve Ux-y for x (back substitution).
What kind of reliability do we expect from this algorithm in the absence of

underflow? It is well-known that even though we can not expect an accurate solution
if the input matrix is ill-conditioned, we can expect to get a residual A-b ( is the
computed solution) that is small in a sense made precise later. We also expect a small
backwards error: will be the exact solution of a problem slightly different from the
original, again in a sense to be made precise later.

It turns out that as long as one component each of the matrix A and right-hand
side b are normalized, then the only gradual underflows that can possibly contribute
significantly to the residual or backwards error are inaccurate underflows in the final
solution vector . Here we are using the accuracy test for underflow (see 3), but our
conclusions are also valid with the threshold test, though we get more false alarms.
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This is a situation where the proper choice of underflow test depends on the application:
if the output of the Gaussian elimination routine is input for another call to it, the
user may choose the threshold test to see if he is passing normalized data to the second
call as required for the conclusions above to apply. This may not be easy to do in
practice, of course, but it shows that the accuracy test might not be best for all situations.

In contrast, unless one component each of the A and b is greater than A/e in
magnitude, intermediate underflows with S.Z. during any stage of solution can introduce
significant errors, possibly producing reasonable looking results whose error greatly
exceeds the uncertainty attributable to roundoff alone (see the examples).

The measure of backwards error on which these conclusions depend is the follow-
ing" in trying to solve Ax b we really compute where (A + ,A) b + 6b and

(34a) [[6all is comparable to e. Ilall
and

(34b) 6b is comparable to e.

[[A[I is a measure of the size of a (similarly for lib[l), and "comparable to" means not
larger by more than a factor f(n) which is a low order polynomial in the dimension
n of A (this will be made more explicit later). In other words, under the conditions
stated above, Gaussian elimination has an error no larger than f(n) rounding errors
in the largest entry of A or b.

If we weaken our measure of backwards error in (34) and ask how much larger
[[a[I (l]6b[[) can be than ella[l+ eh (el[b[[ + e)instead of ella[[ (ellb[[), then as long
as the solution itself does not underflow inaccurately, we can prove that Gaussian
elimination using G.U. always has a small backwards error no matter how big ][All or
[[b[[ is. In other words, 6A changes A (6b changes b) in the last few places of the
largest entry, no matter if the largest entry is normalized or not. This robustness is
not shared by S.Z." almost all the bits in all the entries of A or b can be insignificant
using S.Z. if the entries are too close to h in size.

Gaussian elimination using G.U. with a warning of (inaccurate) underflows in the
solution appears to be a robust enough program to deserve inclusion in a library. If
we insist on the traditional measure of backwards error in (34a) and (34b) above, and
if we are willing to include an explicit scaling test ("are the largest entries of A and
b at least h in magnitude?") then G.U. offers no great advantage over S.Z. because
changing the test threshold from h to h/e makes an equally ironclad program in S.Z.
with an only slightly smaller range of application, and eliminates the largest potential
advantage of G.U." making robust code faster to execute or easier to write. Note that
we want to test whether any input component of A and b exceeds the threshold
and whether any output component of underflows inaccurately. The most efficient
test on the inputs would use a nonsticky flag based on the threshold test, since a sticky
flag would have to be reset after each entry was tested. The most efficient test on the
outputs would also use a nonsticky flag but be based on the accuracy test instead.
Since each component of is computed in a loop with other computations, a sticky
flag would have to be reset within the loop just before the last operation yielding .

It is very important to point out that use of extended range and precision for
intermediate results does not invalidate the results just discussed. As long as the entries
of L and must be stored in the basic format the conclusions remain valid, because
it is possible underflows in these entries that undermine the code’s reliability. Thus,
the conclusions of this section are as relevant to a system with just one precision and
range available as to one with extended precision and range.
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Section 8.2 contains examples and 8.3 presents the theorems and offers con-
clusions. This material has been published before [3].

8.2. Examples of Gaussian elimination. IIAIl(llbll) denotes the infinity norm
of the matrix A (vector b):

IIAIl--m.axYlA,l and Ilbllo-m.axlb, I.

IAI (I bl) denotes the matrix (vector) whose entries are the absolute values of the entries
of A(b). Inequalities like IAI < IBI are meant componentwise.

We denote the usual condition number of the matrix A by

k(A) IIAoll" IIA-II,
and a new set of condition numbers by

fond (A, x) IA-I IAI Ixl I1
Ilxll

Cond (A) IA-I IAI I1.
These new condition numbers, due to Skeel [20], will be discussed more fully below.
Note fond (A)=> Cond (A, x) for all x.

In this section we present four examples of the effects of undertow on performing
Gaussian elimination. The first example shows how store zero can produce a reasonable
looking but completely inaccurate decomposition of a well conditioned matrix, whereas
gradual undertow either produces the correct decomposition or correctly decides the
matrix is singular. (There are no rounding errors nor pivot growth in this example.)
The second example shows that G.U. produces the correct decomposition of a well
conditioned matrix which S.Z. incorrectly decides is singular. Third, we present an
innocuous looking ordinary differential equation and show that the linear system arising
from trying to solve it numerically leads to undertow which is handled correctly by
G.U. and not by S.Z. Finally, we present an example which shows that regardless of
whether we use G.U. or S.Z., Gaussian elimination can only guarantee small residuals,
not an accurate answer, even when the matrix A is well conditioned in the sense that
fond (A) is small.

8.2.1. Example 1. Consider the family of matrices A(x) where

(35) A(x) A.

2 1
2 1

2 1
2

1 1 1 1

(blanks denote zero entries). The LU decomposition obtained by G.U. is

(36) LGO(x). u6U(x)

1 2 1
1 2 1

1 .A. 2 1
1 2 1

5 .5 .5 .5 x-

=A(x)
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exactly, and by S.Z. is

(37) Ls.z.(X)" uSZ(x)=

1 2 1
1 2 1

1 .)t. 2 1
1 2 1

x.5 .5 .5 .5 1

where the error matrix E equals

(38) E=A.

=A(x)+E,

We see S.Z. causes a relatively large error in the U(x)55 entry, whereas G.U. gives
the correct decomposition. When x 2, using S.Z. leads us to conclude that the matrix
is far from singular, when in fact it is exactly singular. Note that the matrix A(x) is
well conditioned when x is far from 2, and if x is a smaller integer no rounding errors
occur in either decomposition.

8.2.2. Example 2. Let

(39) A=[2 3]X 2X

a well conditioned matrix. Using G.U. we obtain

LG.U.. uG.U. 1
(40)

.5

but by using S.Z. we obtain

41) LSZ. uS.Z. F 1
.5

1 A/2

Thus, G.U. correctly decomposes the matrix A, whereas S.Z. incorrectly makes the
matrix look singular.

8.2.3. Example 3. Consider the ordinary differential equation

1-(t/T)M
(42) (t)= x( t), x( To) C.

T-t

We try to solve this equation numerically by replacing x(t) by the truncated power
N

series Yn=l Xntn, the function (1-(t! T)N)/(T-t) by its (finite) power series, and then
equating coefficients of equal powers of on both sides of equation (42). After we
scale the last row (which represents the initial condition) down to have the largest
entry equal to 1, we get the linear system Ax b, where

-N -lIT -lIT2

N-1 -lIT
N-2

(43) A=

1
1 l/To 1/To 1/T-1

-lITN

_lITN-1

_lITN-2

-lIT
a/rg
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bT" (0, 0, c/T), and xT"=(xN, Xo).
We chose M 15, N 14, T 512., To 500., and c 100. for this example. We

used a single precision implementation o the IEEE Floating Point Standard [8] on a
VAX 11/7801 for which e was 2-23 1.191o-7 and A was 2-126 1.181o-38. There
was a switch on the compiler to enable/disable G.U., so we were able to obtain
numerical results using both G.U. and S.Z.

L and U have a simple structure. L will be zero below the diagonal, except for
the last row, which is graded from L15.1 7.1428510- 2 down to L15,14 5.3472610- 35.
U is identical to A in all but its last row.

(44) L

(45) U

1
0 1
0 0

0 0

L15,1 L15,2
1

L15,14 1

-lIT -1/T2 lIT
N-1 -1/T 1/T-N-2 1/T-

1 -lIT
U15,15

A’s columns are badly scaled, although this is not obvious bcause no row nor column
is drastically smaller in norm than any other; nonetheless, bad scaling causes A to
appear very ill conditioned, and this ill conditioning shows up in the last row of U,
making U15,15 very small, barely above the underflow threshold. S.Z. and G.U. compute
all elements of L and U identically except for U15,15. In fact, all additions in the
computation of L add normalized numbers with like magnitudes and like signs, so no
cancellation, loss of significance, nor underflows occur. If the exponent range were
unbounded, so underflow never happened, the correct value U15,15 2.0926110-37
would be computed. This is the value computed using G.U. But when S.Z. is used
instead, the computed value is s.z.U15,15 1.727631o-37, a relative difference of .174
from the correct value. All additions in the computation of U15,15 involve numbers of
like magnitude and sign, so cancellation cannot be blamed for the discrepancy. This
relative difference in the last entry of U is very important, because one divides by
Ul5,a5 in the course of solution. Thus, the computed solution xu is very close to the
true x, and the relative difference in solution vectors is

xO.U._ xS.Z. ]1oo
.211"

Thus, G.U. obtains markedly better results than S.Z. This example is very interest-
ing because there is nothing obviously wrong with the matrix. All its entries are
unexceptional normalized numbers, and every row and every column contains at least
one number no tinier than 1/T.00195 and none larger than N= 14, yet 11 out of

* U in the sum for U15,15 underflow just slightly below the underflow14 products L15,j 5

VAX is trademark of the Digital Equipment Corporation.
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threshold. Since the true value of U15,15 is itself not much larger than the underflow
threshold, this makes for a large relative error.

This example was chosen to be simple and realistic; even though it can be solved
analytically, it could be changed easily into a two-dimensional problem without an
explicit solution, but with the same sensitivity to underflow.

We repeat that even though A appears very ill conditioned, since k(A) 1/A (i.e.
near the overflow threshold in most arithmetics), it is also well conditioned in the sense
that Cond (A, x) 5.5. We will discuss the significance of this example later in 8.4.

8.2.4. Example 4. Let

A=[G G] A_I= [ 2/G -1/g1
g 2g [.-1/G 1/g J’

where g/G underflows to 0 using either S.Z. or G.U. The L obtained is thus the
identity matrix since L2,1 ---fl (g/G)--0, and so the L and U obtained are the exact
factors of the matrix

0 2g

which is a very different matrix than A. If b r =(G, 0), then x=A-b=(2,-1) r,
whereas 2 (A + E)-b (1, 0) r, so 2 does not resemble x at all. The residual r is
however guaranteed to be small, in the sense that Ilrllo/lllAIll+lbl I1 is small:

=< glal -<g-< Ae/2.

Of course A is an exceedingly ill conditioned matrix in the sense that k(A) 2G/g
is beyond the reciprocal of the underflow threshold, so we would be inclined not to
trust our results anyway. However, Cond (A) is only 7. This is true because Cond (A)
Cond (DA) for any nonsingular diagonal matrix D, so A has the same condition
number as the utterly tame matrix

IN-1 ] [1 1]g-lA= 1 2"

Needless to say, in the absence of underflow we would compute a very accurate solution.
We will return to this example later to explain why we can get inaccurate results from
a matrix with a small condition number Cond (A).

8.3. Results of error analysis.
8.3.1. Approach. As stated in the introduction, we use backward error analysis.

Thus, when Gaussian elimination is used to solve

(46) Ax b

for x it generates instead an approximation x + 6x which satisfies some perturbed
problem

(47) (A+6A)=b+b.

The task of backwards error analysis is to infer bounds on 6A and 6b from the details
of the arithmetic used to implement the elimination process. These bounds can be
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used in turn to bound the residual

(48) r A- b -A:+b A,x

and then the error x.
Wilkinson’s approach [22] is to determine a bound tOw on the errors

(49) 8A =< tOw A and 8b w IIb
whence

and then it will follow that the error 8x is bounded:

(5)
[[xll+ I111

wk(A).

The detailed derivation of w from the details of the arithmetic is given elsewhere
[2]. Theorem 1 below states simple requirements on A and b that ensure w will be
scarcely worse if underflow occurs than if it does not.

Skeel’s approach [20], modified slightly here, is to determine a bound on the
relative error in each entry of A and b:

(52) IAIIA[ and [bllbl.

From these inequalities follows a bound upon the error x"

(53)
[lxll IA-I[AI[xI+IA-IIb[IIIlxll" 1-IIIA-aIIAI II)llxll

(provided the denominator is positive). This motivates defining the following condition
numbers:

(54a) Cond (A, x) IA-I IAI Ixl I1
Ilxll

(54b) Cond (A) [A-I Iml
Cond (A) is an upper bound for Cond (A, x) for all x; the error bounds are useful
only if Cond (A) < 1.

Following Oettli and Prager [19] and Skeel [20] we use an expression for
obtainable from (48) in terms of the residual r:

(55) mx (IAI I + Ib[)
where the max is over those for which the denominator is nonzero. Following Skeel,
we overestimate by analyzing the elimination process to infer an inequality

(56) Ilrll 111AI I1 + [bl I1
from which we compute the overestimate as

max, (IAI I1 + Ibl),
(57) ’min(lA[ I1 + Ibl)

(where the min in the denominator is over the nonzero values of (IA[[I) only).
Unfortunately can be a gross overestimate of , as we will see when we return to
Example 3 later.
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The detailed derivation of to’s is given in [2]. Theorem 2 below states requirements
on A and b that ensure to’s will be scarcely worse if underflow occurs than if it does
not. These requirements on A and b are nearly identical to the requirements in the
Wilkinson style analysis.

8.3.2. Results.
THEOREM 1. Wilkinson style error analysis of solving Ax b with Gaussian elimi-

nation in the presence of underflow: Let amax--maxij IA,I, and g [largest intermediate
result appearing in the decomposition]/amax, g is the "pivot growth factor" and is _-<2 n-1.

Then a bound tow for which

(50) rll -< ’OwEilA IIll11/ IIb I13
is given as follows. In the absence of underflow, we have

(58) tow n3eg/2.

If underflow occurs then

(59) tow 3naeg/2

provided certain conditions are met. For G.U. these conditions are:

gamax >= A if there are any underflows during triangular decomposition,

(60) b I1 > _A /f there are any intermediate underflows during
n forward and back substitutions,

b
>

amax n2 if the solution , itself underflows in some component.

For S.Z. the above conditions still apply but A must be increased to A/e.
Proo See [2].
THEOREM 2. Skeel style error analysis of solving Ax b with Gaussian elimination

in the presence of underflow: Let aj =max/IAil, and gc =max ([largest intermediate
result appearing in the decomposition in column j]/a), gc is the "columnwise pivot
growth factor" and is <_-2 n-1.

Then a bound to’s for which

(56) rll < to’sll Iml I1 / Ibl IIo
is given as follows. In the absence of underflow we have

(61) to’= n3egc.

If underflow occurs, then

(62) to’s= 3n3egc/2
provided certain conditions are met. For G.U. these conditions are:

gca >- a

A
(63) Ilbll >=2n

A

amax /,/2

for all j, if there are any underflows during triangular
decomposition,

if there are any intermediate underflows during
forward and back substitutions,

if the solution itself underflows in some component.
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For S.Z. the above conditions apply with except A must be increased to A/e.
Proof. See [2].
The theorems indicate how to write software that will solve Ax b reliably despite

underflow, and how the requirements for G.U. differ from those for S.Z. To keep the
residual small in the sense o a Wilkinson style error analysis, we appeal to Theorem
1. With G.U., as long as one normalized number appears during the decomposition
(gamax -->-- A), residual with underflow has a bound not much worse than residual without
underflow. If there are intermediate underflows while solving the triangular systems,
as long as some component of b is normalized (11 b [Iv--> A), residual with underflow has
a bound scarcely worse than without underflow. If the answer itself underflows, we
can either issue an error message (which would be very reasonable since the first goal
of reliable software is only to compute an answer if it is representable) or test to see
if b ll/amax is not too small.

All these requirements are natural ones to make, since they say that when a
problem’s inputs and its computed solution are normalized numbers, we should expect
the residual to be scarcely worse with underflow than without. Thus, the only gradual
underflows which can cause concern in a problem with normalized inputs are underflows
in the solution itself. The scaling condition bll/amax >---- h / n2 arises naturally; consider
solving the scalar equation ax b by the division x b a.

In contrast, the bounds for S.Z. are all higher by a factor of 1/e. Thus, using S.Z.
we can neither solve as many problems as the G.U., nor decide so easily which
underflows matter. Thus, from the point of view of a Wilkinson style error analysis,
G.U. makes writing reliable software easier.

Theorem 2 shows that Skeel style bounds for the residual are scarcely worse with
underflow than without provided conditions are satisfied that are almost the same as
in Theorem 1. Therefore the previous paragraphs’ comments remain valid provided,
when underflow is gradual, at least one normalized number appears in each column
of A, rather than just somewhere is A, before or during the decomposition process.

8.4. Examples 3 and 4 revisited. We wish to emphasize that we have only derived
conditions under which with underflow are about the same as without underflow. There
is no way using this analysis to say how closely this bound will be approached with
and without underflow, or how accurate the computed solution will be.

In Example 4 above, the matrix A and vector b satisfy all the conditions of
Theorems 1 and 2 for G.U. as well as S.Z., so the residual is small, but the answer
is totally inaccurate. This inaccuracy can be explained either by the huge condition
number k(A)overflow threshold, or the large backwards error in equation (55)"
to- 1. In this case to’s upper bound aS in (57) is also 1. Thus, having a small value
of Cond (A) is not sufficient to guarantee accuracy given a small residual to’ ((56)),
although a small value of k(A) combined with a small residual tow is enough, as can
be seen from (51).

Example 3 is another case where the conditions of Theorems 1 and 2 hold, but
now G.U. successfully computes the last pivot U1.1 and an accurate solution while
S.Z. does not. Again, we have a problem where k(A) is huge and Cond (A, x) is small.
Now the to of equation (55) is 5.2310-8, verifying the high accuracy of solution.
Unfortunately the bad scaling of the matrix causes the upper bound t of equation
(57) to be 2.01020. This example demonstrates the occasionally intense pessimism of
Skeel’s approach.

In summary, the significance of Examples 3 and 4 is to show that maintaining a
small residual in the face of underflow does not guarantee an accurate solution ,
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although we conjecture that for not terribly ill conditioned matrices G.U. will provide
answers at least as accurate as provided by S.Z.

We have proven something quite unremarkable: if underflows are gradual, then
we continue to get what we have come to expect from Gaussian elimination. That is,
we get a small residual as long as the inputs and outputs are all representable
(normalized) numbers and there is no indication of singularity or excessive pivot
growth. If, however, underflows are handled in the usual way and set to zero, then no
such simple guarantee can be made, and some kind of testing on the scaling of the
problem is necessary. These results demonstrate that gradual underflow makes it easier
to write reliable linear equation solvers than "store zero."

9. Cholesky decomposition.
9.1. Summary. The algorithm we discuss is analogous to Gaussian elimination,

but is applicable only to positive definite symmetric matrices A:
(1) Decompose A LL:r where L is lower triangular;
(2) Solve Ly= b for y (forward substitution);
(3) Solve LT"x =y for x (backward substitution).
We expect the same kind of reliability from this algorithm in the absence of

underflow as we do from Gaussian elimination: a small residual A-b where is the
computed solution, and that is the exact solution of a slightly different problem than
the original.

With G.U., as long as one component each of the matrix A and right-hand side
b are normalized the only harmful underflows are underflows in components of x and
y (recall that with Gaussian elimination the only harmful underflows were in the
solution x). Intermediate gradual underflows contribute an error with a bound scarcely
worse than the bound for the error contributed by roundoff alone. As with Gaussian
elimination, the accuracy test for underflow (see 3) leads to fewer false alarms than
the threshold test, although the threshold test might make it easier to test the inputs
to the Cholesky routine ("are the largest components of A and b at least , in
magnitude?") for the applicability of this analysis.

In contrast, with S.Z. intermediate underflows during any stage of solution can
introduce significant errors, possibly producing reasonable looking results whose error
greatly exceeds the uncertainty attributable to roundoff alone (see the examples). In
fact, one can show that S.Z. can only produce a decomposition of a matrix when G.U.
fails if the matrix is so ill conditioned that the computed solution cannot be trusted,
or if it is not positive definite at all (see 9.2.2).

As with Gaussian elimination, the results of this section remain true even if
intermediate products are computed to extra range and precision, as long as the entries
of L, y and 2 are stored in the range and precision of A and b.

Section 9.2 contains examples and 9.3 contains theorems and conclusions. Proofs
of these results can be found in [2].

9.2. Examlfles.
9.2.1. Example 1. Let m be the smallest floating point number >_- x/-, so that m2

does not underflow. Consider the family of symmetric matrices:

4 2 1 1A(x)= m2. 2 2 1
1 1 x
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which has the exact lower triangular factor

L(x)-m. 1 1

.5 .5

L6"V’(x), the factor provided by Cholesky using G.U., is the same as L(x) except for
the rounding error incurred by having to represent (x-.5) 1/2. LSZ(x), the factor
provided by S.Z., is

LSZ(x)=m. 1 1
.5

where

L.3Z.(x)={oX-1 if x=>2,
if 2> x=> 1

so S.Z. computes a totally wrong value for L33(x), incorrectly labelling the matrix
singular for 2 > x >- 1 when in fact it is well conditioned.

9.2.2. Example 2. Let m be as before. Consider the family of matrices

A(x)=m2.

4 1

4
4

1 1 1 1

Its correct factor L(x), if it exists, is

L(x)=m.
2

2
2

.5 .5 .5 4x-2

This matrix is positive definite if x > 2, positive semidefinite if x 2, and has both
positive and negative eigenvalues if x < 2. Both G.U. and S.Z. compute all entries of
the factor L(x) except the (5,5) entry correctly (using Cholesky decomposition). G.U.
obtains the correct value (x-2)m2 for its value of L525, whereas S.Z. computes xrn2.
Thus, as x decreases from 3 to 2 to 1, G.U. correctly decides the matrix is positive
definite when x 3, and becomes nonpositive definite when x---2. S.Z., on the other
hand, produces an (incorrect) decomposition all the way down to x 1. Thus, S.Z.
cannot only produce an inaccurate decomposition, but produces it after G.U. has
correctly decided no such decomposition exists.

S.Z. can produce a decomposition of a matrix when G.U. fails only if the matrix
is either 1) so ill conditioned that the decomposition cannot be trusted, or 2) not
positive definite at all. Here is the reason. Assume amax > A, since otherwise the matrix
is identically 0 in S.Z. arithmetic. G.U. fails when its computed value of L. either
rounds to 0 or is negative for some j. L rounds to 0 when Li < Ae. It is easy to see
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that ama Amax(A and L/=> Amin(A), because

1 1(Amax(t-1))2 < [t-l[ IA-1la
mini L} Amin(n)"

Therefore

ka(A) max amax 1

/min Ljj e

which means that the matrix is so ill conditioned as to make it difficult to even recognize
an accurate inverse, let alone compute one. If L is in fact negative, the matrix is not
positive definite.

9.3. Results ot error analysis.
9.3.1. Approach. Our approach is essentially identical to the one we used to

analyze Gaussian elimination with the following additions. The Cholesky decomposition
uses the square root operation which Gaussian elimination does not. We model the
error in square root as follows:

(64) SQRT (x)=x/. (1 / e) for all x

where lel < e. (SQRT denotes the floating point square root.) (64) holds because SQRT
compresses the exponent range, making overflow and underflow impossible. We make
an extra assumption about A and e we did not need before; it also arises from the use
of square roots in the Cholesky decomposition. This relationship is satisfied by all
single precision arithmetics known to the author (but not by a number of double
precision arithmetics, such as D format on the VAX, for example) and is only needed
to analyze Cholesky decomposition using S.Z.: A < e3.

9.4. Results.
THEOREM 3. Wilkinson style error analysis of solving Ax= b with Cholesky

Decomposition in the presence of underflow. Let amax maxi ]Ail. Then a bound w for
which

(50) Ilrll wEllmllllll+ bll]
is given as follows. In the absence of underflow, we have

(65) w=n3e/2.

If underflow occurs then

(66) w=4n3e/2
provided certain conditions are met. For G. U these conditions are:

amax >- A.

Ilbll >(67) /ama n

b I1 > 2_A
amax n2

if there are any underflow during Cholesky
decomposition,

if there are any intermediate underflow during
forward substitution,

if some Yi underflow or there are any
intermediate underflows during back substitution,

if the solution , itself underflows in some component.
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For S.Z. the above conditions still apply but h must be increased to h /e.
Proof. See 10].
The above theorem shows how to write software that will solve Ax b with

Cholesky reliably despite underflow just as Theorems 1 and 2 in 8.3.2 did for Gaussian
elimination. With G.U., as long as there is one normalized component in A (ama > A
residual with underflow has a bound scarcely worse than without underflow. If there
are intermediate underflows during forward substitution, the residual bound is again
scarcely worse than without underflow as long as some component of b is normalized
(1[ b I1 >- h). Intermediate underflows during back substitution or in y require a scaling
condition (11 b Iloo/amax -> X / n) to be satisfied, as do underflows in the final solution
(llbll/amax -> 2A/n2). It is’clear that some such scaling condition needs to be satisfied
from considering the n 1 case (i.e. solving the scalar equation ax b by two divisions
x (b/x/-d)/x/-d). If there are underflows in the back substitution, y, or x, then we can
either issue an error message or check the scaling.

For S.Z. all the bounds are higher than the ones for G.U. by a factor of 1/e.
The situation with Cholesky is not as satisfactory as for Gaussian elimination,

where only underflows in the final solution x could matter for G.U.

10. Iterative refinement. We study the following algorithm for refining the sol-
ution of the linear system Ax b. The phrase "in precision (e, A )" means that particular
computation is to be done in arithmetic with rounding error e and underflow threshold
A. x0 is an arbitrary starting vector.

i:=0
repeat

ri := Axi- b in precision (er, At)
solve Adi =ri for d in precision (e, A)
X+l := xi- d in precision (e, X)
i:=i+1

until convergence.

Double precision computation of the residual (the traditional algorithm) corresponds
to e e2, and single precision to e e. We also assume A <-A.

In order to understand the effects of underflow on this algorithm, we need a
theorem due to Skeel [21] which shows, contrary to popular belief, that computing r
in single precision (er e) does improve the solution in a significant way.

THEOREM 4. Analysis of iterative refinement in the absence of underflow ]’or both
single and double precision computation of the residual: As long as the condition number
Cond (A) IA-1l IAI Iloo is sufficiently less then 1/e, then

1) If er e2 (double precision residual computation) then

(68) lim sup IIx- x, 2 llxll 

where x denotes the exact solution;
2) If E E (single precision residual computation) then

(69) lim sup IAxi bl <= 4nelAI Ix, I.

Furthermore, this inequality is almost always attained afterjust one application of iterative

refinement.
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Proof. See [21].
This last inequality means that for large enough i, xi is the solution of a slightly

perturbed problem

(A + A)xi b

where IAI < 4nelAjl. In other words, the perturbed problem agrees with the original
problem up to a few rounding errors in each component [19]. This is a very strong
notion of backwards error, and so Skeel’s theorem shows that single precision iterative
refinement does lead to a significantly more reliable code than no refinement at all.

How does underflow effect this reliability? For G.U., we can say the following:
If the inputs A and b and the output x are normalized and if either double or

single precision residuals are computed, then gradual underflows can degrade the
algorithm’s performance to the level of single precision residual computation but no
worse. To guarantee double precision performance, both b and x need to exceed A ! e.
Specifically, it is underflow in ri Axi-b that contributes to the lower bound on b
and underflow in d that contributes to the lower bound in x. Using this information,
the accuracy test for G.U. could be used to decide when underflow might degrade the
performance more precisely than the threshold test. For S.Z., all thresholds are
increased by 1/e.

The use of extended range and precision in intermediate computations does not
change these conclusions. Assuming r and d are stored in the same format as A, b
and x, underflows in r and d have the same potential effects on performance as they
did when they were not computed in extended range.

We have not yet considered underflow’s effect on the rate of convergence of the
iteration. There are matrices for which the iteration converges only if underflows do
not occur, but the matrices are so ill conditioned as to make the computed solution
untrustworthy anyway. It follows from the analysis of 8 that as long as some entry
of A is large enough (A for G.U. and A ! e for S.Z.) then underflows will have an effect
on the convergence rate comparable to round-off.

11. Polynomial evaluation and root finding.
11.1. Horner’s rule for polynomial evaluation. We consider Horner’s rule for

evaluating the polynomial Y-i=0 ax for real a and x:

(70)
sum := an
for := n- 1 to 0 do sum := sum*x + a.

We have the following very satisfying theorem.
THEOREM 5 (Analysis of Horner’s rule for polynomial evaluation). Let P denote

the result of applying Horner’s rule to the polynomial Y ax above. Then in the absence
of underflow and overflow we have

(71) P= E ai(1 +E,)x’
i=0

where

(72) IE,,l<2ne and IEl-<-(2i+l)e ifi<n.
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In the presence of underflow we write

(73) P= (ai+rli)(l+Ei)x
i=0

where Ei has the same bound as in (72), r/ =0 ]:or both G.U. and S.Z., and

(74) I,,1 <= he for G.U. and Iris[ <= 2, for S.Z.

fori<n.
The proof is a straightforward extension of the usual error analysis of Horner’s

rule [23] using formula (2) of 3.
Thus, in the absence of underflow and overflow, Horner’s rule delivers the exact

value of a new polynomial each coefficient a of which differs by a few rounding errors
from the corresponding original a. This is a strong backwards error bound.

For G.U., we can make the same kind of statement providing we define backwards
error as motivated by the last paragraph of 3" a relative error no greater than e for
values > h and an absolute error no greater than he for smaller values. Thus, for
example, we treat the value 0 as indistinguishable from any value in the interval
I-he/2, he/2]. By this definition of backwards error, Horner’s rule with G.U. delivers
the exact value of a new polynomial each of whose coefficients differs by a small
relative/absolute error from the corresponding original coefficient. We can further
guarantee each new coefficient has a small relative error with respect to the original if
each a is a nonzero normalized number.

For S.Z. all thresholds in the last paragraph increase by 1! e to be able to make
corresponding statements.

Here, extended range and precision is extremely beneficial, eliminating most
concerns about over/underflow. Indeed, any overflows in extended range would have
occurred with the original range, and any underflows in extended range would con-
tribute an uncertainty far less than a unit in the last place of even the smallest
denormalized number to any ai.

11.2. Polynomial root finding. Linnainmaa [18] has analyzed Newton’s method
for root finding and shown that it is much easier to write an underflow!overflow proof
code if G.U. is available than if it is not. An essential feature of his code is evaluating
a_iz at z 1/x instead of ax when x > 1. This changes almost all potential

overflow problems to underflow problems, which are handled by G.U. The advantage
of evaluating polynomials at points x < 1 is that any rounding or underflow errors
made early in Horner’s recurrence are multiplied down by factors of x. In particular,
underflow errors, already at the level of roundoff in the smallest normalized number,
only decrease in significance so that if the final value P is normalized we know that
any gradual underflows must be completely harmless.

12. Computing eigenvalues of symmetric tridiagonal matrices. Given the sym-
metric tridiagonal matrix:

(75) 7

al b
be a b3

bn an
how do we compute its eigenvalues? One way is to use the following program which,
given a real value z, computes (in exact arithmetic) v(z)= the number of eigenvalues



916 JAMES DEMMEL

of T that are <z:

(76)

u:--1
v:=0
for]:=l tondo

u := aj z bj/ u bj
if u < 0 then v := v + 1,

where we define bl 0. We assume bi 0 for > 1, since otherwise T is block diagonal
and its eigenvalues are those of its diagonal blocks. We also use the conventions
+ 1/0 + and 1!+c 0 (which are part of the proposed IEEE floating point stan-
dard). A proof that this algorithm computes what we claim is based on Sylvester’s
inertia theorem and can be found in [5]. It can be used to obtain eigenvalues to any
desired accuracy by bisecting an interval in which v(z) increases (which means the
interval contains an eigenvalue) until the interval is narrow enough.

What does this algorithm compute when implemented in floating point? There
are two interesting questions:

Is v(z) a monotone increasing function of z as it is in exact arithmetic?
Do we compute accurate eigenvalues either of our original matrix or a matrix

very close to our original matrix?
In the absence of overflow and underflow, the answer to both questions is yes [11]:
The function v(z) computed by algorithm (76) in the absence of overflow and

underflow is an increasing function of z. Furthermore, the value of v(z) computed is
the exact value of v(z) for a matrix T’ whose diagonal entries al are identical to the
diagonal entries ai of T, and whose off diagonal entries bl satisfy b hi(1 + e) where
levi =< 2e. T’ will in general depend on z.

This is a very strong backwards error bound. It says we can compute the exact
number of eigenvalues less than z of a matrix differing from the original by a small
relative error in the off diagonal entries, and with no difference on the diagonal.

What can be said in the presence of underflow? Barring overflow, v(z) remains
monotonic using either S.Z. or G.U. The only property of the arithmetic needed to
prove v(z) monotonic is monotonicity of the arithmetic: if a => b are the exact results
of two different arithmetic operations, then fl (a) must be =>fl (b) as well.

The monotonicity of v(z) is an appealing property but not necessary for the
correct functioning of a bisection algorithm for determining one eigenvalue [22]. Lack
of monotonicity could lead to lower bounds exceeding upper bounds in codes for
determining such bounds for all eigenvalues at once, but since v(z) is monotonic, we
will not discuss this possibility further.

Kahan [11] discusses an ironclad version of (76) which scales the problem and
inserts tests against carefully chosen thresholds into the inner loop to guarantee that
overflow and underfiow (G.U. or S.Z.) cannot degrade the results appreciable more
than roundoff. Here, we discuss the robustness of the unadorned code in (76) which
differs from the most obvious algorithm only in using (b/u)bi in the inner loop instead
of bell u. At the end we will say why this change is important. We assume we have a
balanced exponent range, i.e. ,A cannot be larger than a small integer m (m 4 in
the proposed IEEE standard). The backwards error in (76) is given as follows:

The function v(z) computed by algorithm (76) is the exact value of v(z) for a
and b satisfy"matrix T’ whose entries a

(77)
ai ai + "Oi where Ir/il < (1 + m)h.e

b bi(1 + el) where leil-<- 2e
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when using G.U., and

(78)
a ai + rt where I,1 < (3 + m)

b bi(1 + ei) where le, 2e

when using S.Z.
Thus, in order to claim that we are computing the exact v(z) for a matrix T’

which differs from T by at most a few rounding errors in each component, which is
the case in the absence of underflow, we need to make the following constraints on a"

lal>{ for G.U.,
/ e for S.Z.

If we adopt the relative/absolute error measure suggested in the last paragraph of 3
and discussed further in 11.1 in connection with polynomial evaluation, then there

’differs from ais no constraint at all on the ai if we ue G.U. in order to claim that a
by a small error.

These backwards error bounds are so strong that it does not seem the accuracy
test for G.U. could be of much more use than the threshold test, if indeed it is of any
use at all.

A weaker form of backwards error often used in analyses of matrix computations
[22] is

(79) max,, Tb- T[.
maxi. Ti]

With respect to this definition, underflow is insignificant if

h for G.U.
max Ti[ >

i,j h/e forS.Z.

What would happen if we used b2/u instead of (b/u)b in the inner loop? In that
case, any bl smaller than /->> h would underflow to zero when squared whether
we used G.U. or S.Z., and the resulting perturbation could not always be explained
as a small change in either b or ai. Thus, a seemingly small change in the code effects
the robustness a great deal.

If extended range and precision are available, then almost all concerns with
over/underflow vanish, as with Horner’s rule for polynomial evaluation.

13. Numerical quadrature. Quadrature, along with the matrix algorithms dis-
cussed earlier, benefits from the ability to compute inner products more robustly with
G.U. than S.Z. This is because most quadrature codes, when asked to compute

a+h

(80) w(x)f(x) dx

evaluate an inner product

(81) h. Y w,,f(x,,).
i=1

From the analysis of inner products in 6, we see that as long as the inner product in
(81) is a normalized number, the effects of gradual underflows are no worse than
roundoff, but that some intermediate result in the inner product must exceed h ! e to
make the same claim about S.Z. All the benefits of extended range and precision to
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inner products also accrue to numerical quadrature. A more detailed analysis can be
found in [14].

14. Accelerating the convergence of sequences. Methods to accelerate conver-
gence of sequences often do so by extrapolating an estimated error to zero. This
requires taking the ratio of differences of successive elements in the sequence. If the
sequence is converging to a value near the underflow threshold, these differences can
underflow to zero using S.Z. but not G.U. We illustrate with Aitken’s method.

Given a sequence {x} which converges to a finite nonzero x, Aitken’s 82 method
produces a new sequence {x’,}

(82) Xtn-"Xn (Xn+2__Xn+l)__(Xn+l__Xn)
(Xn+l--Xn)

which will converge to x faster than {x,} under certain conditions [9]. We have written
the term following x in (82) (the correction term) as it appears instead of as in

(Xn+l--Xn)2

(83) X,,=X,,--
Xn+2 2Xn+l + Xn

because of the latter’s much greater susceptibility to over/_underflow. (83) is likely to
cause over/underflow if [xl is much outside the range [/A, /]. (82) is much more
robust. In fact, if N is large enough so that

for n > N and we use G.U., then the correction term in (82) will be computed to
within 2 rounding errors in x if A-<lxl--< A and to within +Ae if Ixl < . In contrast,
Ix[ must exceed A/e to make the same claim for S.Z. The use of extended range and
precision would not make S.Z.’s disadvantages disappear, since if Ix] is very close to
A, the correction term, even if calculated to extra precision, may make x’, underflow.
A more detailed analysis can be found in [14].

15. Acknowledgments. The results in this paper are the culmination of several
years of discussions among all the members of the P754 Floating Point Subcommittee,
not just the author and the four others mentioned in the introduction, so thanks are
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A COMPARISON OF SEVERAL FORMULAS ON
LIGHTLY DAMPED, OSCILLATORY PROBLEMS*

C. A. ADDISONf

Abstract. We examine members of three different formula families in an attempt to find a set of
formulas that could be the basis of a code suitable for lightly damped, oscillatory problems. We first obtain
estimates for the number of arithmetic operations per integration step required by a member of each family
and then use these estimates to help us compare the performance of several trial codes, which are based
on certain members from each family.

Key words, ordinary differential equations, lightly damped, oscillatory

1. Introduction. Consider the first order linear ordinary differential equation
(ODE)

(1.1) y’=Ay/R(t), y(a) yo fort[a,b],

where A is a constant n by n matrix and R (t) is a forcing term. We assume that (1.1)
is a stable system, in the sense that the eigenvalues of A have negative real part, but
that some of the eigenvalues could have large imaginary parts. We urther assume that
such high frequency components are significant for only a small portion of the overall
range of integration.

These assumptions present a difficulty similar to stiffness (see Lambert (1980))
when attempting to solve such a problem numerically. The ability of a numeric code
to handle problems such as (1.1) depends largely upon certain properties possessed
by its underlying formulas. We now define the properties that will be mentioned in
our discussion.

DEFINITION 1.1 (Dahlquist (1963)). The region of stability of a given formula is
defined to be the set o all hA, A complex, such that the formula, applied to the scalar
problem y’= Ay with a constant step-size h, produces a sequence (y) such that
limi_ Yi 0.

DEFINITION 1.2 (Dahlquist (1963)). A formula is said to be A-stable if its region
of absolute stability contains the entire left half of the hA-plane (i.e. Re (hA)- 0).

DEFINITION 1.3. The asymptotic damping rate o a ormula is defined to be

limlhl-o lY/xl/lYI. If this limit is zero, then we say that the formula is strongly stable
at infinity. We refer to an A-stable formula that is strongly stable at infinity as being
strongly A-stable (or equivalently, L-stable (see Lambert (1980))).

The particular solution to (1.1) has the form

(1.2) y(t) et ea,tsj + 4’(t),
j=l

where A1, A2," , An are the eigenvalues of A, Sl," , sn are its eigenvectors,
al,’", an are scalars determined by the initial conditions and q,(t) is a particular
integral. When the high frequency components, associated say with ,t,"" ", A, are
significant, then, in order to follow the solution accurately, the step-size, h, used in
our numeric code would have to be sufficiently small so that IhAtl,’’ ", IhA,.I are all
smaller than one.
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As these components are damped, their contribution to the true solution, y(t),
will be sufficiently small that we would like [hAl, , Ihh.l to all be much larger than
one. That is, we do not want to follow these components accurately, but we only want
such components to be damped. Thus both A-stability and an asymptotic damping
rate less than one can be seen as desirable properties.

Unfortunately, many of the widely available ODE codes, such as LSODE
(Hindmarsh (1980)) seem to be inappropriate when used on such problems. This is
due in part to the fact that LSODE’s higher order formulas are not absolutely stable
on problems such as (1.1) unless the step-size either is very large, in which case the
computed solution may be inaccurate, or is very small, in which case the time necessary
to obtain the computed solution may be excessive.

We therefore examine members of three different formula families in an attempt
to find formulas that may be the basis of a code suitable for problems such as (1.1).
The three formula families which we consider are linear multistep formulas, second
derivative formulas and singly implicit Runge-Kutta formulas. From the members of
each family, we select a subset for a trial code. For each such code, we estimate the
cost involved in performing one step of the integration and then use this estimate to
help us assess the performance of the trial codes on a few test problems. In our analysis
we do not consider the nontrivial issues involved in the iteration schemes for nonlinear
problems. Instead, our trial codes are designed for the linear problem, (1.1) so that
no iteration is required. For completeness therefore we also briefly consider the
additional complications which would be involved in solving the general nonlinear
problem y’ =f(t, y) using extensions of the methods programmed in our trial codes.

2. Linear multistep ormula. The general form of members of the family of linear
multistep formulas is

E (ajYi-j + hbjy_j) O.
j=0

Part of the appeal of formulas of this type is that they have a low amount of
computational overhead associated with them and also that many of the discussions
on how to implement the backward differentiation formulas, BDF’s, (e.g. Byrne and
Hindmarsh (1975)) can be adapted to this more general form. They are also easily
modified to handle implicit problems such as My’ f(t, y). The major difficulty, as far
as our discussion is concerned, is that only the first and second order implicit formulas
(that is with b00) can be A-stable (Dahlquist (1963)). As we will illustrate in our
numerical testing, a code based on such lower order formulas is often not as cost
effective in producing an answer to a given accuracy as a code that includes higher
order formulas from the same family. We therefore need to consider the importance
of the property of A-stability. We observe that if a formula is not A-stable then, for
a given step-size, errors associated with certain solution components may grow. The
way in which this instability manifests itself is illustrated by considering the problem
y’ Ay. For a given step-size, h, the stability properties associated with A are determined
by the zeros of the characteristic polynomial

p(hA, w) , (a + hAb)w ,
(see Hall and Watt (1976)). If the largest zero of p(hA, w) has a magnitude greater
than one, then hA will lie in the region of instability and any errors made in previous
steps will grow.
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Note that as hA approaches infinity, p(hA, w)/(hA) approaches Yj0 bJwin-j, so
that the asymptotic damping rate of the formula is the magnitude of the largest zero
of this polynomial called b(w). The BDF’s are obtained by defining b(w)= bow" for
m 1, 2,... so that all the BDF’s have an asymptotic damping rate of zero.

The first and second order BDF’s are A-stable but as mentioned earlier, the
higher order formulas are not. Figure 2.1 shows the relevant portion of the instability
region for the fourth order BDF, which is plotted in the complex hA plane. The
instability region is symmetric about the real axis and the stability boundary is formed
by finding those values of hA such that

p(hA, eit) 0 for 0

While the location of the stability boundary is important, so is the rate of error growth
within the region of instability. One way to assess the error growth pattern of a formula
is to plot boundaries of several growth rates. In order to do this for an error growth
rate x > 0.0, we plot the values of hA such that

p(hh, (l +x) eit)=O forO-<O<2r.

The boundaries for the growth rates of 2, 6, 12 and 20% have been computed in this
fashion and are shown in Figs. 2.1, 2.2 and 2.3 to illustrate the difference among
formulas.

As an illustration, consider the problem y’= Ay, where one of the solution
components is related to the eigenvalues -10+/- 200i so that it has the form

exp (-10t) x (u x cos (200t) + v x sin (200t)).

Suppose we try to solve this problem using the fourth order BDF with a step-size of
2 10-2. The hA o interest is then ---.2 + 4i, which is marked on Fig. 2.1. At this point
there will be about a 4% error growth. After a sufficiently large number of steps, the
error growth associated with this component will be detected by the error control and
the step will be rejected.

The standard approach in most codes, including LSODE, is to reduce the step-size
with the extent of the reduction based only on accuracy considerations. Thus, the

h%-plane
O

Imag(h%) I

-0.50 -0.30 -0.10 O. 10 0.30

FIG. 2.1. Fourth order BDF.

0.50

Real(h%)
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hk’-plane Imag (hX)

1"0./4.01

-0.70 -0.50 -0.30 -0. I0 O. lO O. 30 0.50

FIG. 2.2. Third order BDF.

change in step-size may increase rather than decrease the rate of error growth. In our
example, any decrease in h will result in a new hA value that lies along the line between
-.2 + 4i and the origin. Therefore, if the step size is halved, the rate of error growth
is increased to about 15%, making the difficulty even worse. Indeed it would be
necessary to reduce the step-size to about 7 10-4 before there was no error growth
associated with this component.

A better strategy in the presence of numerical instability, is to reduce the order
of formula used, and perhaps to leave the step-size unchanged. From the stability
region of the third order BDF, in Fig. 2.2, we can see why this might be advantageous
even though the third order formula is not A-stable. Of course a reduction to second
order would eliminate the instability problem altogether but then a much smaller
step-size may be necessary to achieve the required accuracy.

As Skelboe (1977) has discussed, there are heuristics available for detecting a
point at which instability is becoming a problem so that it is possible to know when
decreasing the order is to be preferred to decreasing the step-size. These checks are
inexpensive, expecially if the error estimate is based upon difference approximations
to higher derivatives but, as we will see in a later section, they are not perfect and the
presence of numerical instability may not always be detected.

The likelihood of instability being a difficulty is reduced if we use multistep formulas
with regions of instability superior to those of, the BDF’s. By superior we mean that
for a given formula, both the area of the r6gion and the maximum error growth rate
in the left half plane are smaller than they are for the corresponding BDF. Addison
(1980) describes an attempt to derive a suitable set of formulas. In these new formulas,
the zero asymptotic damping rate of the BDF’s is traded-off to obtain better stability
properties. The idea used there is to incorporate measures of several of the desirable
properties in an objective function and then to use a minimization routine to find a
suitable set of coefficients. There are two major difficulties with this approach. It is
not clear what objective function is "best," in the sense of giving useful formulas, and
for any chosen objective function it is difficult to show that the solution found yields
a global minimum. Despite these disadvantages, formulas with superior regions of
instability were obtained; the stability plot for the fourth order formula derived by
Addison is shown in Fig. 2.3.
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h%-plane Imag (h)0

-0.70 -0.50 -0.30 -0.10 0

(stability boundary)

10 0.30 0.50
Real(hX)

FIG. 2.3. Addison’s fourth order formula.

Our trial code for linear multistep formulas, MSF14, is based on a set of formulas
found by this technique. In selecting this particular set only formulas up to fourth
order are used on the assumption that the modest accuracy obtainable will suffice. The
leading error terms of the first through third order formulas are smaller than those of
the corresponding BDF and that of the fourth order formula is a factor of about a
third larger. The asymptotic damping factor for each formula is between .6 and .9.
The local error estimates are difference approximations to higher derivatives and the
code is organized so that the order selection strategy incorporates stability checking.

We now consider nonlinear problems briefly. Each step of the integration involves
predicting the trial value of y, obtaining the derivative associated with this predicted
value and then iterating, using a modified Newton scheme. The system of equations
that is solved on each iteration is shown below

(2.1) (1- hboJ)(yl)- yl 1-1)) _y/-1)4- Z (ajy,_j+ hbjy_j)+ hboyl(l-1),

where the matrix J is an approximation to the Jacobian, of/Oy and where we assume
that the matrix on the left-hand side of (2.1) is updated and refactored when the
step-size, h, or the order, and hence the coefficient b0, change. If the difference between
successive iterates is sufficiently small and if the iteration is converging, then the last
iterate may be taken as the trial y-value and its associated derivative is calculated so
that the formula is satisfied exactly. If the iteration is not progressing satisfactorily,
then the iteration matrix may be updated or the step may be rejected outright (for
further details of the strategy that may be used, see Shampine (1980)). The cost per
iteration is dominated by a function evaluation and a backsubstitution.

The additional issues involved in handling the general nonlinear problem y’=
f(t, y) are well detailed in the literature. In our implementation, we use a predictor
based on past y-values (as suggested in Robertson and Williams (1975)) combined
with an iteration scheme based on the suggestions of Shampine (1980). While not
explicitly designed for solving regular stiff problems, we have found this code to be
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competitive with LSODE for solving the STIFF DETEST problems (Enright, Hull
and Lindberg (1975)) at the less stringent error tolerances.

On problems of the form y’= Ay+R(t), only a single iteration is required and
we can use zero for the predicted y-value as convergence is guaranteed for any initial
guess. This saves a matrix-vector multiplication but might be more sensitive to rounding
errors in the Gaussian elimination process than if we predict normally and carry out
some sort of correction as a form of iterative refinement. If we assume that the forcing
function, R, is available as a separate function call, then the cost per step is roughly
n2, the cost to solve the system of equations by backsubstitution. Step or order changes
involve an additional matrix factorization, which requires about n3/3 operations. It
should be noted that the cost per step of a code based on linear multistep formulas is
the lowest of all the trial codes.

3. Second derivative formulas. The general form of the members that we consider
from this family is

(3.1) Yi Yi-1 + h . bjy_j+ h2(coy + cly’.’,_).
j=0

The set of order m + 2 formulas obtained by setting Cl to zero has been studied in
Enright (1972) and implementations are discussed in Addison (1979) and Sacks-Davis
(1980). These formulas have many desirable properties. The third and fourth order
formulas are A-stable, all of them are strongly stable at infinity and all have good
accuracy properties as the step-size, h, approaches zero. What then are the difficulties
with them? Consider the problem y’-Ay. Equation (3.1) can be written as

(3.2) (i- hboA- h2coAE)y g,

where g contains the necessary information from past steps. Notice that this equation
requires us to square A, but that this is an expensive operation and may destroy any
special structure that A possesses. Two ways of avoiding this operation are discussed
in Enright (1974). The first approach is to factor the matrix on the left-hand side of
(3.2). For Enright’s set of formulas, these factors are complex, so that we obtain

(3.3)

where

-co(hA rI)(hA H) Yi g,

2c0
+ iSQRT

and g is as before. By using complex arithmetic, we can solve the system of equations

-co(hA- rI) z g,

and then, observing that hA and y are both real, we have

and

Yi imag (z)/imag (r),

hAyi real (z) + real (r) Yi.

The additional cost of using complex arithmetic is highly machine dependent. The
LINPACK Users’ Guide (Dongarra et al. (1980)) suggests that complex arithmetic
may be as much as eight times slower than real arithmetic on IBM equipment, but
only 2.5 times slower on CDC equipment. On machines such as the IBM, it may be
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preferable to use real arithmetic to carry out the complex arithmetic operations (see
Duff (1981)). Four real multiplies are used for each complex multiplication and, in
FORTRAN, the differences can be transparent to the user. Therefore the cost of
solving a complex system of equations should be no worse than 4 times more than
solving a comparable real system.

An alternative approach is to use formulas such that the matrix on the left hand
side of (3.2) is a perfect square. This occurs when Co =-(b0)2/4 which allows us to
write (3.2) as

( hb )
2

(3.4) I----a y g.

This can be solved in about 2nz real operations once (I-(hbo/2)A) has been factored.
Unfortunately, by requiring our formulas to have such properties, we lose a great deal.
There are one-step, third order formulas that have the above perfect square property
and are A-stable but they are less accurate and are not strongly stable at infinity (see
Lambert (1973), pp. 245-246). One-step, second order formulas that are both A-stable
and strongly stable at infinity do exist, but their higher order analogues are not A-stable
(see Enright (1974)). Therefore, if we want to use third and fourth order perfect
square formulas, we must be content with formulas processing poorer asymptotic
properties both in terms of the leading error coefficient and the asymptotic rate of
damping, than Enright’s original formulas.

One of our trial codes, SDFR34, is based upon the one-step, third order perfect
square formula and a three-step fourth order formula which we have derived. The
other code, SDFC34, employs complex arithmetic so that Enright’s original formulas
can be used. Our order changing strategy is extremely simple--we use the third order
formula to start and then switch to the fourth order formula as quickly as possible.

For the problem y’= Ay + R (t) matters become a little more complicated. Notice
that y"= A2y+ AR(t) + R’(t). It turns out that AR(t) need never be formed explicitly.
If we let g be as before for equation (3.2), then at each step we need to solve the equation

(I- hboA- h2coA2)y g + h2co(AR t) + R’( t)) + h2c(AR t_l) + R’(t_l)).

Using Enright’s formulas, where Cl 0 and where complex arithmetic is used we need
to solve

-co(hA- rI)z g + h2co(AR(ti)+ R’(ti)),

which can be written

-co(hA-rI)(z+ hR(t))= g+ hco(rR(t)+ hR’(t)).

Since hR(ti) is real, imag (z) =imag (z + hR(ti)) and hence Yi
imag (z + hR(ti))/imag (r). A similar rearrangement of terms can be used with the
perfect square formulas.

The main issue involves computing R’(t). Asking the user to provide the analytic
form of R’(t) may be too demanding. Alternatively, an approximation to it could be
obtained, for example

R’( ti) - (R t + tr) R ti) )/ tr,

where tr is the square root of the unit roundoff. This approximation does not give the
correct order of accuracy and may not be appropriate for a production code. The most
effective way of approximating R’(t) to obtain the correct order of accuracy in a
general setting is an open question. Some alternatives are discussed in Addison and



LIGHTLY DAMPED, OSCILLATORY PROBLEMS 927

Gladwell (1982). If we again assume that the evaluation of R(t) and R’(t) take roughly
n operations, then the cost per step is dominated by the solution of one complex
system of equations or two real systems of equations.

For the problem y’ Ay there are several classes of formulas which can be written
as second derivative formulas and so our earlier discussion can be applied to them.
These formulas begin to differ from true second derivative formulas when considered
for the problem y’ Ay +R (t) since R’(t) is only approximated and not used explicitly.
On nonlinear problems, y’ =f(t, y), these formulas differ considerably from second
derivative formulas; nevertheless, the ideas discussed earlier concerning the handling
of the system of linear equations that arise on each iteration are still relevant.

As an illustration, consider the blended formulas of Skeel and Kong (1977). These
can be given by

(3.5) y-y_-h by_+h/J cy_+hy =0,
y=o ]=o

where the first half of the formula is an Adams-Moulton formula of order tn + 1, the
portion in parenthesis is a backward differentiation formula of order tn and J is an
approximation to the Jacobian evaluated at (ti, Yi). On the problem y’ Ay, with J A
and with an appropriate choice of Tin, these formulas are the same as an tn-1 step
second derivative formula of Enright (Skeel and Kong (1977)). By varying %, different
tn step formulas of order tn + 1 with differing stability and accuracy properties can be
obtained. If a forcing term, R (t), is included, then the blended formulas are equivalent
to a second derivative formula where R’(h) is approximated by the tn step Adams-
Moulton formula.

On nonlinear problems, second derivative formulas can be difficult to implement
and expensive to use if terms involving and y are coupled. Existing second derivative
codes (see for example Sacks-Davis (1980)) can really only be used if the problem is
written in autonomous form (where an additional equation for is added to the system
of equations) and if the analytic Jacobian is available. Blended formulas offer less
restrictive possibilities and can be employed in much the same way as any multistep
formula. The difficulty here is that the effects of using an approximation to the Jacobian
on the properties of the blended formulas have not been analysed and they could be
severe, particularly on problems with strong nonlinearities. This potential difficulty
with blended formulas is not present in regular multistep formulas such as the BDF’s.
In the former case, J is an intrinsic part of the formula itself. In the latter, J is used
only to form the iteration matrix and need only be updated if the rate of convergence
of the iteration is not satisfactory.

Another alternative is to exploit the fact that on the autonomous problem y’= Ay,
second derivative formulas are equivalent to certain Runge-Kutta or hybrid formulas
(Norsett (1979)). (For example, the third order perfect square formula given in
Lambert (1973) is equivalent to a third order semi-explicit formula (see Hall and Watt
(1976, pp. 148-151).) These related formulas do no require the analytic Jacobian and
could probably form the basis of a code suitable for the problem y’= f(t, y).

4. Singly implicit Runge-Kutta formulas. The standard form of implicit Runge-
Kutta formulas is

Yi Yi.- -t- h E blf ti- 4r c,h, Yl
/=1

YI Yi-I "t- h E atjf ti-1 -t- cjh, ).
]=1
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For our special first order problem, such a formula would require the solution of a
system of equations of order mn per step. The singly-implicit Runge-Kutta formulas
(see Burrage (1978)) are designed so that the coefficient matrix (a0) is similar to a
matrix having an m-fold eigenvalue 0. Thus each step involves the solution of m
equations of the form

(4.1) (I- hOA)dl a.
This requires approximately mn2 operations and the necessary similarity transforma-
tions require about 3mZn operations. Furthermore, m evaluations of R are required.
As Burrage has shown, an error estimate can be obtained by adding one additional
stage to the step. These formulas all possess good stability properties (there are A-stable
formulas for orders one through six and for some higher orders as well) and all are
strongly stable at infinity.

Our trial code, SRK45, is a modified version of STRIDE (Butcher, Burrage and
Chipman (1979)), which is itself a preliminary implementation of these formulas. The
modifications which we carried out were designed to make the code more efficient on
linear constant coefficient problems. Rejected steps are expensive in STRIDE and
great care was taken by the original authors to avoid wasted effort. Theoretically, at
each order m, there are m possible values of 0, each with its associated formula, that
can be used. Some of these 0 values yield formulas with unacceptable regions of
instability but there are at least two useful 0 values for any of the second or higher
order formulas. Thus, there are at least two step-sizes that can be used at each step
for a given matrix (I-hOA) in (4.1), and STRIDE checks each useful 0 value, from
smallest to largest, to find the largest step-size that yields an acceptable error estimate.
(We refer to the formula associated with the smallest 0 value as the principal formula.)
If an acceptable step-size using the current order cannot be found, then step-sizes
associated with lower order formulas are checked. A similar procedure is used to
predict the step-size and hO to be used on the next step.

To obtain.SRK45, the step selection part of STRIDE is modified so that only
step-sizes associated with the current order are considered. In addition, an order
decrease is not allowed on a successful step and the step-size is only allowed to change
on a successful step (after the selection process described above) if the increase to be
made is greater than 20%. As well, the matrix on the left-hand side of (4.1) is updated
whenever hO is changed, so that one iteration of Newton’s method is sufficient for
each stage and the initial guess is chosen so that the cost of the transformations needed
is only mZn operations. Another point is that SRK45 uses only fourth and fifth order
formulas. On our test problems, SRK45 was the fastest and most accurate modified
version of STRIDE that we tested (we tried various combinations of starting and
maximum orders using the first through sixth order formulas). Originally, we had
planned to use the fourth order formulas alone, but the principal fourth order formula
used in STRIDE is not A-stable and this caused difficulties on some problems. These
difficulties were overcome by including the fifth order formulas, as the principal one
of these is A-stable. While we have concentrated on this particular type of Runge-Kutta
formula, there may be semi-explicit formulas (where aj is zero if < j and a, 0, for
i, ] 1 to m) of the same order that are equally useful (see Norsett (1974)).

On nonlinear problems, where usually at least two iterations per step are needed,
a production implementation of this formula family may not always be competitive
with LSODE because of its high cost per step. As we will see, however, such a code
has a great deal of potential on problems where the solution contains lightly damped
oscillating components.
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5. Testing. In the previous three sections, we have described formula families
that could form the basis of a code for lightly damped systems. In Table 5.1 we
summarize the cost per step associated with the four trial codes which we compare.
We assume that the problem is linear with a constant n by n matrix A and that an
ruth order formula is used. The miscellaneous column includes estimates for the
overhead associated with the error control as well as that associated with the transforma-
tions in the singly-implicit formulas. The "c" in the costs column indicates the additional
cost of complex arithmetic. Our estimates for the number of operations per step are
not precise; they assume that A is a full matrix and that R is inexpensive to compute.
We have also assumed that n is large relative to m and have therefore only considered
the O(n2) terms. This assumption must be kept in mind in the pursuant discussion
because the O(n) terms in the operation counts can be significant on small problems.
Nevertheless, these estimates do provide some guidance. For example, we see that the
cost per step of using an ruth order singly implicit Runge-Kutta formula is about
(m + 1) times the cost of a step using an ruth order multistep formula. A useful rule
of thumb therefore is that a code that uses an ruth order Runge-Kutta formula is
superior to one that uses an ruth order multistep formula only if it requires fewer
than 1! (rn + 1) times as many steps as the multistep code to achieve the same accuracy.

We present detailed test results for two problems. The results are representative
of those obtained on a larger set of eight test problems, which consists of several
variations on the two reported problems and some test problems contrived to test the
influence of high frequency, low amplitude components with different forcing terms.
All of this testing was carried out on a CDC-7600 computer using single precision.
Identical results were obtained using an IBM 4341 and double precision. Both of the
reported problems have appeared in the literature. For each problem we present two
sets of results. The first set gives the results for a specific local error tolerance. The
second set are normalized results which indicate the cost if the maximum global error
permitted is a certain value. The normalized results for the first problem were obtained
using STIFF DETEST (see Enright (1979)) and those for the second problem were
obtained by piecewise linear interpolation (and not from STIFF DETEST, for reasons
discussed below). For each set, we include the number of steps attempted, the number
of backsubstitutions performed, the number of matrix factorizations performed, and
an estimate of the normalized overall cost, based on Table 5.1 and an estimated cost
of n3/3 + n2 operations for a matrix factorization. The normalized cost is obtained by
dividing the actual cost by n2. The cost associated with a matrix factorization is
consistent with our stated assumptions that A is full.

Our first problem is B5 from the STIFF DETEST set of test problems (Enright
et al. (1975)).

Problem 1.

y’ Ay, y(O) Yo on the range 0, 20],

where

-10 100 0 0 0 0
-100 -10 0 0 0 0

0 0 -4 0 0 0
0 0 0 -1 0 0
0 0 0 0 -.5 0
0 0 0 0 0 -.1



930 . A. ADDISON

and

yo=[1 1 1 1 1 1]r.
This problem has received a great deal of discussion in the literature (see for

example Gattney (1981) or Skelboe (1977)) partly because it is one on which BDF
based codes tend to have a great deal of difficulty in providing an accurate approxima-
tion to the solution in a reasonable number of steps. An important feature of this
problem is that none of the components active outside of the transient region are
oscillatory. Once the oscillatory components are sufficiently small, the step-size used
by all of our trial codes increases rapidly.

TABLE 5.1
Cost per step of ruth order formulas from each family.

Formula

Linear multistep

Second der. (complex)

Second der. (perfect sq.)

Back-solves Evals of R Misc. Approx. cost

m2n
n2

2

2 cn
2

2 2 2n

Singly im. Runge-Kutta

2

m+l m+l man (m+l)n

The results for Problem 1 are shown in Tables 5.2 and 5.3. The results in Table
5.3 are the ones from which comparisons between codes will be made. We see that
SRK45 and MSF14 have roughly the same cost--(276 + 7n) units, 43 steps, as opposed
to (293 + 12n) units, 258 steps, while the second derivative codes are somewhat more
expensive; SDFC34 requires (99+6n)c units, 80 steps, and SDFR34 (472 + 7n) units,
225 steps. (When n is small, forming Ae and using real arithmetic in SDFC34 would
make it competitive in cost with the other two codes.) The formulas used in SDFR34
have leading error coefficients that are similar in magnitude to those of the formulas
used in MSF14 and consistent with this, the two codes require about the same number
of steps. At the larger tolerances, MSF14 uses the second order formula for a large
part of the integration. Not surprisingly, the code MSF12, formed by restricting the
maximum order in MSF14 to two, requires roughly the same number of operations
as MSF14 to obtain a global error of 10-2. When the global error is 10-3, however,.
MSF12 requires over (700+ 13n) units, which compares poorly with the (457 + 12n)
units required by MSFI4.

As mentioned in 2, MSF14 uses formulas that are not A-stable. On Problem
1, this shortcoming leads to few difficulties but such is not always the case. Consider
a modified version of this problem where the eigenvalues associated with the oscillating
components are -10+ 1000i. When used with a local error tolerance of 10-2, MSF14
has a maximum global error of .66. Even more sgnificant observations are that the
code requires over (2500+2n) units to reach t= 1.0 and at this point it is using a
step-size of 3.5 * 10-4 and has a global error of .24. The oscillatory components are
not being damped. By way of a contrast, SRK45 with a local error tolerance of 10-2

requires about (900 + 6n) units, 141 steps, to complete the problem and has a maximum
global error of .23. When the local error tolerance is decreased to 10-3, SRK45 requires
about (1920+ 8n) units, 314 steps, with a maximum global error of 4.2.10-2.
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TABLE 5.2
Unnormalized results for Problem 1.

Tolerance is 10-2

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factors Max. global error Cost

176 176 33 4.2 10-2 209+ 11n
81 81 19 9.3 10-3 (100 + 6n)c
172 344 22 1.9 10-2 366 + 7n
34 200 19 2.4 10-2 219+ 6n

Tolerance is 10-3

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factors Max. global error Cost

310 310 38 5.2 10-3 348 + 13n
124 124 23 1.4 10-3 (147+8n)c
256 512 23 4.7 10-3 535 + 8n
54 320 23 4.210-3 343+8n

Tolerance is 10-4

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factors Max. global error Cost

459 459 37 5.7 10-4 496+ 12n
221 221 24 1.4 10-4 (245 + 8n)c
441 828 26 9 10-4 854 + 9n
86 511 27 6.2x 10.4 539+9n

These results call into question the use of formulas that are not A-stable for
solving this type of problem, yet the second order linear multistep formulas are not
wholly satisfactory either. Again, considering the modified problem, MSF12 requires
about (1215+ 10n) units, 1197 steps, to obtain roughly the same global accuracy as
SRK45 when used with a tolerance of 10-2. When MSF12 is modified to use the
second order BDF it requires about (2040+ 12n) units, 2004 steps, at a specified error

TABLE 5.3
Normalized results for Problem 1.

Max. global error is 10-2

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factor Cost

258 258 35 293 + 12n
80 80 19 (99+6n)c

225 450 22 472+7n
43 256 20 276+7n

Max. global error is 10-3

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factor Cost

420 420 37 457 + 12n
155 155 23 (178+8n)c
410 820 26 846+9n
78 465 25 490+ 8n
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tolerance of 10-3 to match SRK45’s results. LSODE, restricted to second order,
performs similarly to MSF12 in this case. Thus, our implementation of these formulas
for solving this particular problem is inferior to SRK45.

Our second problem is a model for the second order systems encountered in
vibration studies and is taken from Trujillo (1977) (it has also been used by Enright
(1980)). It is an inhomogeneous problem and its Jacobian has only pure imaginary
eigenvalues. The high frequency components are not appreciably excited by the forcing
term so that we would prefer a code that uses step-sizes which are essentially indepen-
dent of these components.

Problem 2.

where

and where

kl =-1,

y(0) Y0 on the range [0, 40],

kl+k2+k3 -k2 -k5 -I
K -k2 k2+k3+k4 -k3

-k5 -k3 k3+k5

The forcing term is

k2=-lO0, k3---lO000, k4=-2, k5=-200.

R(t)=[0 0 0

f(t)= 20-2t
0

0 0 f(t)],
if0--<_t<5,
if5=<t<10,
if 10=< t--<40,

The results for this problem are given in Table 5.4 and 5.5. The unnormalized
results show that the cost of solving this problem rises sharply at some value of the
local error tolerance for each of the codes. This sharp rise occurs when the error
tolerance is sufficiently small that the step-size is appreciably influenced by the high
frequency components in y’. The precise tolerance at which these components become
significant depends upon several factors. Amongst these factors are the accuracy
properties of the underlying formulas, the rate at which high frequency components
are numerically damped by the formula, the type of error control used (Enright (1980)
illustrates the change in performance when the local error in hy’ rather than y’ is
controlled) and the way in which the error estimate is computed.

Such dramatic changes in the computational effort needed for a code to solve a
problem make it difficult to obtain meaningful normalized results from three widely
spaced data points (error tolerances) as we used in problem 1. We had planned to use
piecewise linear interpolation on the results in Table 5.4 to obtain those in Table 5.5.
This was not sufficiently accurate to determine a normalization so we ran each code
on a narrower range of tolerances and then used a piecewise linear fit to this more
closely spaced data.

At a global accuracy of 10-2, MSF14 performs well, requiring about (286 + 5 n)
units, 272 steps, (versus (386+7n) units and 62 steps for SRK45). If the global

and the initial conditions are

y(0)=[0 0 0 0 0 0].
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TABLE 5.4
Unnormalized results ]’or Problem 2.

Tolerance is 10-2

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factor Max. global error

141 141 9 .33
74 74 15 .10

143 286 19 .10
30 175 10 .12

Cost

150+3n
(89.+5n)c
305+6n
185+3n

Tolerance is 10-3

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factor Max. global error

277 277 14 910-3

133 133 18 3.510-3

444 888 23 810-3

50 293 16 1.6x 10-2

Cost

291 + 5n
(151+6n)c
1111+8n
309 + 5n

Tolerance is 10-4

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factor Max. Global error

1445 1445 30 2.0x 10-3

535 535 26 1.2 10-4

1502 3004 22 5.0 10-4

149 880 35 1.6 10-3

Cost

1475+10n
(561 +9n)c
3026 + 7n
915+12n

TABLE 5.5
Normalized results for Problem 2.

Max. global error is 10-2

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factor Cost

272 272 14 286+5n
110 110 17 (127+6n)c
383 766 22 788+7n
62 366 20 386+7n

Max global error is 10-3

Code

MSF14
SDFC34
SDFR34
SRK45

Steps Back-solves Matrix factor Cost

1932 1932 27 1959+9n
164 164 21 (185+ 7n)c

1316 2632 16 2648 + 5n
179 1067 44 1111 + 15n

accuracy is required to be 10-3, MSF14 requires about (1959+9n) units, 1932 steps,
while SRK45 requires about (1111 + 15n) units, 179 steps, so that MSF14 is the more
expensive for moderate sized n. Again, if real arithmetic is used with Enright’s strongly
A-stable formulas (forming A2 in the process), the resulting code is competitive as
SDFC34 requires (127+6n)c units to obtain a global error of 10-2. Even with the
additional expense of complex arithmetic, SDFC34 is very competitive at the more
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stringent accuracy requirements. For example, it only takes about (185+ 7n)c units,
164 steps, to obtain a global accuracy of 10-3.

6. COlaelusions. Of the four codes we have tested, the singly-implicit Runge-Kutta
code, SRK45, has consistently been one of the most accurate and efficient for a variety
of test problems and tolerances. Furthermore, we have seen that codes based on
Runge-Kutta formulas can be almost as flexible as codes based on linear multistep
formulas. A major exception to this flexibility concerns implicit problems of the form
My’= f(t, y). Most Runge-Kutta formulas would yield a system of the form

Myi Myi-1 + h Z btf(ti-1 + cth, YI),
/=1

MY Myi- + h Y ajf ti_ + cjh, Y.).

Thus, the Y values could be easily obtained (the associated system of equations would
involve matrices of the form (M-hOJ), where J is the Jacobian of f, rather than
(I-hOJ)). Obtaining yi at each step would be expensive unless one of the Yl’S
corresponded to y. Our error control would therefore need to be in terms of My but
we would still need to obtain an approximation to y at output points. One way to do
this would be to factor M and solve the appropriate system of equations, which is
expensive in terms of storage.

By contrast, when using linear multistep formulas, the cost per step for an implicit
problem is greater than for a regular one, but the modifications needed are not
complicated. To see this, consider the problem y’= M-if(t, y), form the associated
system of equations that is needed on each iteration and then multiply each side of
the system by M. Second derivative formulas can be similarly modified to solve
My’= Ay+ R(t), but difficulties arise for nonlinear problems, where y" is expicitly
computed (see Addison and Gladwell (1982)). On nonlinear problems a suitably
modified code for the blended formulas should be used.

MSF14 has proved the most unreliable code. It performed well on some problems
and at certain tolerances but poorly at other times. Part of the reason for this difficulty
can be attributed to the heuristics used to detect the presence of instability as there
were problems on which these heuristics failed. If it was possible to derive checks that
could be proven to detect the presence of instability for a practical range of problems,
then a reliable code based on linear multistep formulas could be written. Also, our
testing has led us to believe that our code based on the second order linear multistep
formulas is not sufficiently accurate to be competitive with codes such as SRK45.

The inadequacies of the lower order multistep formulas are compounded by the
fact that, stability issues aside, we have found it more difficult to write a good
variable-step, second order code than to write a variable-step code that also uses
higher order formulas. For example, in most of our codes, a reduction in the tolerance
by a factor of ten, say, led to a similar reduction in the global error. Such was not the
case in MSF12, where reducing some values of the tolerance by a factor of ten only
led to a small reduction in the global error. (Part of the reason for this is that the step
control is designed to preserve efficiency rather than to maintain a smooth relationship
between global and local error.) This is clearly undesirable behavior. It means that
given an estimate of global accuracy obtained by runs at large tolerances, the user
would have little to guide him on selecting the appropriate tolerance to obtain his
desired global error.
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The difference in performance between the two second derivative codes is pro-
nounced. Part of the reason for this difference can be attributed to the difference in
the formulas themselves. The formulas used in SDFC34 have very small leading error
terms whilst those in SDFR34 are relatively large. This implies that SDFC34 will take
fewer steps to solve a given problem than SDFR34, at the expense of using complex
arithmetic, but it also suggests that SDFR34 will take roughly the same number of
steps as a linear multistep code so that there is little compensation for the additional
cost per step.

The above conclusions are based on tests involving linear, constant coefficient
problems and experimental codes designed to exploit the special properties such a
problem possesses. It is therefore prudent to consider some of the implications of
solving nonlinear problems with an appropriate code. Rather than one iteration per
step of a Newton-like scheme, there would probably be two or more iterations. A
multistep method would require a function evaluation and a forward-back substitution
per iteration. Methods based upon blended formulas would have a similar increase in
cost per step while a code like STRIDE would require the solution of rn systems of
equations and rn function evaluations per iteration for an mth order formula. Addi-
tionally, for even moderate sized n, the cost of performing the transformations in
STRIDE can be significant.

Our goal throughout has been to obtain a code, which can handle problems with
lightly damped oscillatory components, that is suitable for inclusion in a library. An
interesting discussion of some of the implications of this can be found in Hull (1980).
As outlined there, we would like a code to be consistently accurate, in the sense that
a reduction in the local error would produce a similar reduction in the global error.
We would also like the code to be robust, so that it can solve problems with awkward
forcing terms and extreme user requirements (such as large error tolerances). Because
a code cannot possibly solve all of the problems that might be put to it, part of our
robustness criterion would be that the code be able to identify situations when it is
experiencing difficulty and pass this information onto the user. An implementation of
any of the formulas discussed here could be made robust, but not all of the formulas
could lead to a code that is simultaneously efficient and robust. On the basis of our
testing, a part of which we have presented here, when solving linear constant coefficient
problems, we feel that a code based on a small set of A-stable singly-implicit or
semi-explicit Runge-Kutta formulas could meet these requirements and might in fact
be superior to any other production code on many practical problems. The case is not
as clear for nonlinear problems and for these the best choice in general may well be
a code based on the blended formulas.
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LEAST SQUARES ESTIMATION WITH QUANTIZED INTEGRATED
SAMPLES*

ARTHUR DAVID SNIDERt

Abstract. A method for estimating the slope of a linear function from quantized, integrated samples
of the function in noise is analyzed, together with error estimates.

Key words, least squares, discretization, approximation, stochastic estimation

1. Introduction. The customary theory of least squares estimation of linear data
buried in random noise is premised on the knowledge of sampled functional values
{f(ti); i= 1,2,..., n}. However, for a large class of instrumentation devices, par-
ticularly systems designed to operate in a "nulling" mode, the random signal is
analog-integrated before data processing is initiated. For example, a typical inertial
accelerometer has a readout which indicates the time integral of acceleration, rather
than acceleration itself [1]. The readout is canceled, or nulled, by feeding back and
recording (in effect) known acceleration levels over certain periods; thus the net integral
of the external acceleration over these periods is determined. The extension of the
customary least squares estimation techniques to the case of integrated sample data
is straightforward.

The present paper is concerned with the effects of quantization in the nulling
process. Often the feedback mechanism does not possess the flexibility to provide
arbitrary levels of nulling control, but instead delivers the nulling signal in quantized
units. In other words, the integral of the input signal is not compensated until its
intensity reaches a certain level, at which time a "quantum" of feedback signal is
delivered (and recorded) to null the readout. The data available for least squares
processing, then, constitutes a discrete time series of "quantized integrated samples."
In the next section we illustrate this effect with a realistic model and demonstrate how
this nonlinear discretization can play havoc with the determination of the slope or
"drift rate" when the latter is small. The remainder of the paper is then devoted to
the analysis and resolution of this problem in both stochastic and deterministic contexts.

2. The quantized integrated sample model. For concreteness, consider the sim-
plified model of a pendulous accelerometer depicted in Fig. 1.

FIG.

Gravity or inertial forces tend to rotate the pendulum off of the "null" point, but
the pellets fired by the pistol serve to maintain its position. In effect we can say that
the external forces work on the pendulum over a period of time until it acquires enough
momentum to cross the null point. This crossing is detected by a sensor which commands

* Received by the editors May 21, 1982, and in revised form July 29, 1983.

" Department of Mathematics, University of South Florida, Tampa, Florida 33620.
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938 ARTHUR DAVID SNIDER

the pistol to fire, imparting a fixed quantum of momentum to the pendulum and driving
it back. Of course the pulse rate must be high enough to overcome the external force,
while the individual pulse intensity must be low enough so as not to drive the pendulum
too far beyond the null point. Thus the pendulum is essentially maintained fixed, and
our assignment is to deduce the external force from the time series record of the pulse
firings. (Here we are simplifying the mechanics of the process in an attempt to provide
a concrete visualization.)

The mathematical generalization is this. We have an unknown function f(t) and
a known function g(t) expressed as a sum of delta functions with constant amplitude

(1) g(t) = ,it(t-ti), ITil-- ,.
The supports {ti} of the delta functions are located so that

" f(t) dt= rli,
ti-

while

f(t) dt < r/ for ti_

See Fig. 2.

g(t)

=t

FIG. 2

Thus the pulse function g(t) "cancels" f(t) in a "quantized integral" sense; i.e.
for any interval

(2) f dt- g dt <- r.

We want to estimate f from a knowledge of g. In particular, we seek values for the
intercept a and slope b so that the linear function a + bt is the best approximation to
f in a least squares sense.
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It is instructive to compare this problem with the usual situation where sampled
data {f(tj); j= 1,2,..., n} are available. Expressions for the values a and b which
minimize If(t)-a-btjl ("/a-norm") are easy to determine, and estimates of their
accuracy have been derived. Naturally the accuracy improves as the number and density
of sample points increase, and in the limit we would obtain highest accuracy if we
could minimize

If(t)- a- btl 2 dt ("L2-norm").

In the present context we do not have sampled data of f available, but we do
have (approximate) data for integrals of f. Thus we anticipate that the extra accuracy
afforded by the L2 approach will work to our advantage.

f(t)

g(t)

FIG. 3

On the other hand, we can see the difficulties that confront us for the case of
functions with low drift rates (b) in Fig. 3. In fact, if f(t)= bt and the pulser g(t) is
synchronized with f at 0, then the support points ti are given by

ti 2r/ because bt dt iT

For low values of b q these points are sparse and very nonuniform, and one must
integrate g over very long intervals to observe the linear trend in f. Indeed, note that
the effect of doubling f is to intersperse more support points in g, as indicated by the
dashed arrows in Fig. 3; the mapping from f to g is extremely nonlinear, and unless
g is integrated over long intervals, one will misinfer the nature of f Just how long the
intervals must be will be determined in this paper.

In fact our main result will demonstrate that one can use g(t) to construct
approximations for unbiased estimators of the intercept and slope to within O(r//T)
and O(rl/T2), respectively (for an interval of length 2T). The variances of these
estimators will also be determined.

The fact that we shall be considering the linear least squares fit in the L2 sense
adds an interesting interpretation to our analysis. On the one hand, if we regard f(t)
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as a sum of a linear function plus a stationary random process [2]

(3) f(t)= a + flt + e(t),

then we are dealing with a statistical estimator of a and of ft. On the other hand, if
we regard f(t) as deterministic, it has an expansion in terms of Legendre polynomials

(4) f= E AP.
j=0

Since {P} form an orthogonal basis for the Hilbert space L2, and since Po(x)= 1 and
P(x) x, the theory implies that AoPo+AP is the best linear fit to f (in L2). Thus
our computations can also be interpreted as projecting f into the subspace spanned
by the first two Legendre polynomials. This effect will be included in the analysis.

3. Survey of sampled data theory. Our technique for constructing and analyzing
estimators for the "linear part" a +/3t of f in terms of the quantized-integral approxima-
tion g will be based on comparisons with the classical estimators. Thus it is convenient
to consider a brief survey of the latter.

To keep the notation simple, we presume f(t) is defined on I-T, T], and we have
sampled values at the n equidistant points

T
(5) t,=-T+(2i-1)-, i=1,2,... ,n

n

so that t+l- t- At 2T/n. Then the formulas for a and b minimizing If(t)-a- btil 2
are given by [4]

(6) a-

(summation limits understood to be i= 1 to n).
For the stochastic interpretation, if we assume that

(7) I(t)=+t+e(t),

where e(t) is a stationary random process with mean zero and autocorrelation

e(t) =0, e(tl)e(t2)--p(tl--t2)=P(ltl--tz[),

then a and b are unbiased estimators of a and/3"

(8) a=,
(It follows that a and b are exact for linear functions.) The variances of a and b are
computed to be

(a_ a)2 1
=-E E e(ti)e(ti)

1 2(n-1)
---p(O)+ 2 p(ht)+O(p(pAt)), p>=2

(9)
9

(b- fl)2=
(n_ l/n)2T4 E titie(ti)e(ty)

3n
(n2_l)Tzp(O)+

6(n-3)
n2-1) T2pkAt!’ + O( p(pAt)).
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On the other hand, if f(t) is deterministic and has the Legendre polynomial
expansion

(10)

then

f(t)= E A.,P =Ao+AI-+ E AmPm,

(11) Ao f t) dr, A -f if(t) dr.
T T

The estimator a in (6) is then a composite midpoint rule approximation to the integral
for Ao [5], and has accuracy

1 At3 T2

(12) IA0- al--< n fill f"ll2T 24 6n2

The estimator b is not a midpoint rule approximation for All T; in fact it has higher
precision, since it integrates linear f exactly (the midpoint rule’s degree of precision
is 1, and (tf) has degree 2 for linear f). A tedious computation, similar to one we
sketch in the Appendix, shows that for large n

(13) A1

We summarize as follows.
LEMMA 1. If f(t)= a +t+ e( t), where e is a stationary random process, then a

and b in (6) are unbiased estimators for a and fl with variances given roughly by

(14) (a-a)a-[p(O)+2p(at)] (b-13)
3

n -(a- a)2"

LEMMA 2. If f(t) C2[-T, T] and f E=0 A,Pm(t/T) in L2, then a and b in
(6) are estimators of Ao and A1/ T, with errors bounded roughly by

T2

(15) [A0-al <- f"llO6n2,
A1 4___T

o//2"

4. Extension to integrated samples. Again for notational simplicity we take the
domain to be I-T, T], and we have N integrated samples F,

(16) F= [ f(t) dt, ]= 1,2,. ,N,

with

(17) A [--, +-] =-T+
(2j-1)-T A3-= 2---T
N N"

(We presume N # n in 2, since we will be comparing the estimates.) The estimators
we propose are constructed by analogy with (6):

(1) 3
(18) A= Nad EFt, B=(N_I/N)A3_T2E.F
(summation understood for ] 1 to N).
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For a stochastic f as in (7) it is easy to show that these, too, are unbiased estimators
for a and/3 (and hence are exact for linear functions). Their variances are calculated
analogously to (9), with e(ti) replaced by Ej aj e(t) dt"

1

1 2(N- 1)
EoEI+ O(EoEp) p 2,(19) NAf2Eo 4

N2Af2

(B-) 3NE
(N- 1)TAf

6(N- 3)
1) f2 Af2EoE1

+ O(EoEp).
(N

In terms of the autocorrelation function,

(20)

Similarly,

(21)

E e(t)e(t’) dt’ dt p(t- t’) dt’ dt

io iop(t- t’) dt’ dt 2 (Aft- t)p(t) dt.

EoE1 e(t)e(t’) dt’ dt p(t- t’) dt’ dt

2Aff

[A--[t-Arl]p(t) dt.
dO

In the deterministic case, A is precisely the first Legendre coefficient Ao (11), since

(22) E F f(t) at.
T

In the Appendix we sketch the tedious computation leading to the following accuracy
estimate for B:

(23) A1 TII f"llol(N- 1).

To summarize"
LEMMA 3. Ill(t) t +t+ e( t) as in Lemma 1, then A andB in (18) are unbiased

estimators for a and , with variances given roughly by

(24)
(A-a)2NAf2 (Af-t)p(t) at+ [A--lt--A-I]P(t) at

dO

3
(B-fl)=-(A-a).

LEMMA 4. If f(t) C2 [") L2 as in Lemma 2, then A in (18) equals Ao precisely
and B approximates A1/ T with an error bounded roughly by

(25) A1
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5. Comparison o| point and integrated sample estimators. The superiority of the
integrated sample estimators in the deterministic case is clearly expressed in Lemmas
2 and 4, and we shall not dwell on this.

For the stochastic case the superiority may not be so clear; for example, if the
autocorrelation function p is constant, Lemmas 1 and 3 reveal no difference between
the estimators (for n N). Of course this is physically unreasonable, since we expect
p(t) to decrease with it. As a result, the integrals in Lemma 3 "soften" the factor p(0)
in Lemma 1 and demonstrate the superiority of the integrated sample estimators. For
example, if O(t)= 0-2 e-t(y > 0), then the variance of the point sample estimator (14)
is

(26) (a- a)2 =[1 + 2 e-2Vr/"]0-2,
n

while the integrated sample estimator (24) has a variance given by

(27) (a-a)2-
2-2 {Z$ e-)’TIN }NZ r [1- e-’r/]

For large 3’ the difference is quite pronounced:

0.2 0.2
(28) (a- a))

n

For small 3’ (and n N) both variance estimates approach 30.2/n, but the justification
for dropping terms in (9) and (19) is no longer valid.

Equations (28) indicate another advantage of the integrated sample approach.
Since the asymptotic forms for the variances of the integrated sample estimators are
independent of N, one can possibly achieve a given tolerance level for the variances
with a value of N much lower than the corresponding n required by the point sample
approach, when the noise autocorrelation is weak. This feature will surface in another
context in the following section.

6. Accuracy ot the quantized integrated sample estimators. Of course one would
expect the integrated samples to yield superior estimates, since they contain so much
more information about f. Note that the integrals must be performed exactly, e.g. by
analog, for the estimates in 4 to hold; if Riemann sums or interpolatory quadrature
are used we are back in the point-sample mode. The analysis of the quantized integrated
sample data will be developed by comparison with the integrated sample approach.

Thus in accordance with the model of 2 we are given intervals/j and approxima-
tions bj to F satisfying (recall (2), (16) and (17))

(29) b (. g(t) at, <--

We approximate A and B of 4 with the formulas

1 3
(30) A’-NA.., d,b, B’-(N_I/N)aT2Z ..-fib.

The accuracy of A’ is easy to assess. Although each b can differ from F by
the sum of the b equals the integral of g, and by (2),

fdt- gdt <___ r(31) Ie-e’l Na_IEF-E6I NA--T T NA-2T"
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For B’ we have
3

(32) ]B- B’I (N- 1/N) AWT IZ )(F- ,)l.

Acknowledging the constraints (derived from (2))

(33) Y. (F-b) _--<r/, I<-jl<-jE<-N,

one can derive with a little combinatorics that the sum in (32) is maximal when
F1 bl + r/, Fn bn 7, F bj 0 otherwise. Thus

(34) 3Nr/ 3n
IB-B’I=(Na_I)A3rT2(I-’[+I-.I) (I+I/N)T2<T2,

and we summarize the observations of this paper as follows.

Summary. If f(t)= a +/3t + e(t), where e(t) is a stationary random process with
autocorrelation p(t), then A’ and B’, as formed from quantized integrated samples
via (30), are within rl/2T and 37/T2, respectively, of unbiased estimators for a and
/3 possessing variances governed by (24). If f(t) C2 CI L2 on [- T, T], then A’ approxi-
mates the zeroth Legendre coefficient of f to within r/2 T, and (B’ T) approximates
the first coefficient to within 3rl/T+ T’llf"llo/N.

7. Conclusion. The derivation of (34) vindicates an empirical observation made
by the author in 1981 while analyzing accelerometer data for the Honeywell Corpora-
tion. The fact that the accuracy estimates (31) and (34) depend only on T (and r/) is
fortunate. It shows that the quantizing effect depicted in Fig. 2 can be compensated
by the proper choice of T alone. N can be chosen subsequently for noise control in
accordance with (24) (keep in mind A= 2T/N). Thus, for example, if one wishes
to detect a very low drift rate/3 to within 25% in low-noise data, one would choose

r--

Similarly, if the data accumulation intervals Aft are fixed, the error equations
(31) and (34) specify a lower bound on T, and hence on N 2T/Z. N (and T) can
then be increased if necessary to reduce noise in (24).

The analysis herein can be modified to cover the situation where the Aj are uneven,
and the IIf"ll estimates can be replaced by IIf"ll estimates, but the results are not
particularly illuminating.

Appendix. Sketch of derivation of (23). From (11) and (18) we have

(35) ---B =3E tf(t) dt-(N2_l)2T32 f(t) dt.

Writing f(t) f(0) + tf’(O) +0 f"(:)(t- ) d: f(0) + tf’(0) + G(t), we find that the
constant and linear terms cancel in (35) (as they must for unbiased estimators!). Then
by adding and subtracting the same term we find

(36) ----B =3 1 /V 1 E G(t)tdt

3 N fA" 2T3 g2-1 E a(t)(t- 3r) dt.



LEAST SQUARES ESTIMATION WITH QUANTIZED INTEGRATED SAMPLES 945

In the first term we estimate G(t)l Ilf"llot2/2. In the second, using the Taylor
form

we estimate

G(t) G()+ G’(’)(t- ),

Aff-3
f,,

A;-3

_-<max II Z
Assembling these in (36) we derive (23). (Q.E.D.)
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NUMERICAL SOLUTIONS OF THE GOOD BOUSSINESQ EQUATION*

V. S. MANORANJAN]., A. R. MITCHELL]" AND J. LI. MORRIS,:

Abstract. The "good" Boussinesq equation is studied numerically using Galerkin methods and soliton
solutions are shown to exist. An analytic formula for the two-soliton interaction is presented and verified
by numerical experiment.

Key words, soliton, Boussinesq equation, Galerkin methods, blow up

1. Introduction. In recent years a remarkable development has taken place in
the study of nonlinear evolutionary partial differential equations. It is the realization
that many such equations possess special solutions in the form of pulses which retain
their shapes and velocities after interaction amongst themselves. Such solutions are
called solitons. The reader interested in the theory behind soliton solutions should
consult texts such as Whitham [16], Lamb [9], Ablowitz and Segur [1], etc.

An example of a soliton producing equation is the Boussinesq equation

(1.1) u,, uxx + Uxxxx + (uZ)
which describes shallow water waves propagating in both directions. Unfortunately,
due to the presence of exponentially growing Fourier components, (1.1) is linearly
unstable and so numerical computations based on (1.1) are at best unreliable. If,
however, we change the sign of the fourth order space derivative in (1.1), we obtain

(1.2) u,,=Ux-(U)xx+(u2)x
an equation which is linearly stable and computations are now possible. An alternative
method of obtaining (1.2) is to transform (1.1) according to the formulae x iX, iT
(i= /--i-), thus obtaining (1.2) with x and replaced by X and T respectively.

It is the aim of this paper to show that numerical studies of the Cauchy problem
based on (1.2) with certain initial conditions produce soliton solutions. In so doing the
existence of "blow up" inherent in the problem is also demonstrated. So far theory
involving (1.2) has been restricted to periodic boundary conditions on a circular region
in space (McKean [10]), the Cauchy problem with specific initial data (Tomei [15]),
the Cauchy problem with general initial data and a specific initial boundary value
problem (Kalantarov and Ladyzhenskaya [8]). None of these authors offer soliton
solutions for (1.2), with Tomei deriving nonreal solutions, and Kalantarov and
Ladyzhenskaya predicting blow up in most cases unless possibly for short time solutions.

Equation (1.2) is the nonlinear string equation (Zakharov [17]) or the "good"
Boussinesq (G.B.) equation (McKean [10]). In contrast, (1.1) is referred to as the
"bad" Boussinesq (B.B.) equation. Closely related to (1.1) is the Korteweg-de Vries
(K.d.V.) equation

(1.3) u, + U2)x + Uxx O.

This equation models shallow water waves propagating in a single direction and has
the same order of dispersion relation as (1.1) if the wave number is small. It has soliton

* Received by the editors October 1, 1982, and in revised form June 2, 1983.
]" Department of Mathematical Sciences, University of Dundee, Scotland.
/Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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solutions but unlike (1.1) is linearly stable and so numerical calculations can be carried
out (Mitchell and Schoombie [12] and references therein).

Before proceeding to numerical studies of (1.2), we show that the linear term Uxx
can be removed from (1.2) by putting

(1.4) u=v-
resulting in the equation

(1.2a) vtt -Vxxx + v2)
It is immaterial with numerical methods whether we use (1.2) or (1.2a), although in
theoretical considerations, it may be simpler to use (1.2a).

2. Petrov-Galerkin method with linear "hat" trial lunctions. We now consider
numerical schemes for the Cauchy problem consisting of (1.2) together with the initial
conditions

u(x,O)=f(x),
(2.1) -<x<+c.

u,(x,O)=g(x),

We approximate u(x, t) by

(2.2) U(x, t)=Y Ui(t)@,(x)

where the trial functions {bi(x)} are the usual piecewise linear "hat" functions, and
determine the unknown functions U(t) from the system of ordinary differential
equations

(2.3) (U,- Uxx+ Uxxxx-(U2)xx, q,(x))=0 Vj

where {4,(x)} are suitably chosen test functions. As far as the continuity of the test
functions is concerned, the important term in (2.3) is (U,xx, q,(x)) which after two
integrations by parts and neglecting boundary terms gives (Ux,,, (q’)xx). This suggests
either C2 cubic B-splines or shifted C’ quadratic splines (Mitchell and $choombie

[12]), and for ease of application, we choose the former. With standard time discretiz-
ation, we arrive at the following predictor-corrector (P.C.) numerical scheme based
on (2.3).

e: ( - + ,4, +

d" =0-- ((un)2), I/t 2 "(2.4)

d," =0+
2

q’}
2 "*

where nk, n O, 1, 2,. .. In arriving at (2.4), we have used product approximation
on the nonlinear term i.e.

(2.5) { U(x, t)}2= Y { U,(t)}2cb,(x).
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Product approximation was first suggested by Swartz and Wendrott [14] and further
details of it can be obtained in Chin et al. [2] and Christie et al. [3]. Once again we
remind the reader that the trial functions {4i(x)} are linear "hat" functions and the
test functions {qj(x)} are cubic B-splines.

Numerical calculations are carried out using (2.4) together with a selection of
initial conditions f(x) and g(x). The aim is to obtain soliton solutions which so far
have not been shown to exist from theoretical analysis of the "good" Boussinesq
equation.

3. The single soliton solution. Direct verification shows that

(3.1) u=Asech2{/A/6(x-ct+xo)}+(b-1/2), c= +,,/2(b+A/3)
(Xo gives the initial position of the pulse)

exactly satisfies the B.B. equation (1.1), where b is an arbitrary parameter and A is
the amplitude of the pulse and that if b > -A, (3.1) is a real soliton solution (cf. the
case b=1/2 given by Scott, Chu and McLaughlin [13]). For the G.B. (1.2) an exact
solution is

(3.2) u=-Asech2 {/A/6(x-ct+xo)}-(b+1/2), c= +/-/-2(b+A/3)

which is real if b <-A, where again b is an arbitrary parameter and A is the pulse
amplitude. Tomei [15], whose analysis was based on (1.2a), chose (3.2) with b=0
leading to c -t-(-A)/2 and so showed the existence only of imaginary solutions.
We choose for our numerical experiments b -- and so c + (1-A)a/z, giving in
theory real solutions for A _-<-32. The relevant theoretical solution becomes

(3.3) u =-a sethz {/a/6 (x+x/1-a t+ x0)}.

We now solve the G.B. equation (1.2) by using the numerical cheme (2.4) together
with the initial data (see (2.1)) f(x) and g(x) taken from (3.3) for the case c=0, viz.

f(x) =-A sech2 {x/A/6 (x + x0)}, g(x) =0.

This is carried out for a range of values of A mainly in the vicinity of A 1.5, the
theoretical value of the amplitude for c =0 (see (3.3)), and a variety of mesh lengths
h and k in the x- and t-directions respectively. As time evolves the initial pulse either
splits into two pulses moving in opposite directions or "blows up" according to A % As.
A typical set of values for As is given in Table 3.1 where the extrapolated value of
As as k0 is 1.5017, which is approximately 1.5, the value corresponding to the
theoretical steady state solution. In Fig. 3.1, we show an initial stationary pulse of
amplitude 1.5165 (h 0.5, k 0.05) breaking up into two pulses moving in opposite
directions and each having eventually a steady speed of 0.8639 and an amplitude of
0.3816 (note that c (1--A)1/2= 0.8635---0.8639). The shape and behaviour of each
pulse agrees with the theoretical solution (3.3) of the single soliton.

TABLE 3.1

-100-< x=<100, h=0.5, x0=0

k 0.100 0.050 0.025
As 1.5169 1.5165 1.5109
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FIG. 3.1. Break up of the pulse. -100 -< x =< 100, 0 =< <= 40, h 0.5, k 0.05, amplitude 1.5165. Initial
position of the pulse is x O. No radiation loss is observed.

FIG. 3.2. Interaction of two pulses. --100 <= x <=100, 0=<t--<60, h=0.5, k=0.05, A=0.369. lnitial
positions of the pulses are x 0 and x 50. "Blow up" is observed when A > 0.3691.
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As a second numerical experiment we allow two solitons of the same amplitude
(of the form (3.3)) placed reasonably apart to move towards each other. After
interaction the pulses emerge with their original shape and speed (see Fig. 3.2).

Finally we choose the initial data for the numerical scheme (2.4) from the single
soliton solution of the B.B. equation ((3.1) with b 1/2). As time evolves the amplitude
of the pulse drops while the breadth increases (+_ u dx is conserved with time). Also
small pulses of increasing amplitudes appear in front of the main pulse, and the complete
picture (Fig. 3.3) is similar to the dispersive wave train that arises from the K.d.V.
equation (1.3) subject to the initial condition u(x, 0) =< 0 for all x (Hammack and Segur
[5]). Another interesting aspect of this solution is that when two dispersive wave trains
of the above form collide, the waves seem to emerge from the collision and propagate
in their respective directions as if the collision had not taken place (Fig. 3.4).

02

0o0

-02

-0.-5
-40 -20 0 20

OoL.

0,2

0.0

-0,2

-0.5 --:0

FIG. 3.3. Dispersive wave trains of G.B. and K.d.V. equations.-50<=x<=50, h =0.25, k=0.1, t=30.
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FIG. 3.4. Collision of two dispersive wave trains.-100-<x-<_100, 0=<t-<_40, h=0.5, k=0.2, initial
amplitude 0.2. Initial positions of the pulses are x 0 and x 50.

4. The two-soliton solution. Following Hirota [6] who obtained a multi-soliton
solution for the B.B. equation, we obtain for the G.B. equation the two-soliton solution

u -6{logef(X, t)}
Ox2

where

(4.1)

with

(4.2)

and

f(x, t) 1 + exp (r/l) + exp (r/2) + a exp r/1 + r/2)

rli=Pi{x-ei(1-p2i)l/2t+rli} (ei +1),

a {(/1Vl 82/)2)2- 3(P1-p2)2}/{(elv e2v2)2- 3(P + P2)2}

vi (1- p2i 1/2.

In the above 1, 2 and we note that

(4.3) u -6(ffxx _f2)/f2
and

(4.4) P=A,
where Ai is the amplitude of the ith soliton. (See 3 for the single soliton.)

From now on we consider the case of two solitons travelling towards each other
and so we put el= +1, e2=-l. From (4.3), the solution u will not "blow up" if f
retains the same sign for all x and t. This will certainly be true if a =>0 (see (4.1))
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which from (4.2) leads to either

(4.5) (i) (vl / v2)2 > 3(P1 / P2)2,

or

(4.6) (ii) (vl / v2)2 -< 3(P1- P2) 2.

Note that, when (vl +/)2)2- 3(P1 + P2)2, the solution u becomes undetermined. The
inequality (4.5) gives

(4.7) 4(31 +AE)+ax/A132-3<x/(a-EA1)(3-232)
which covers the range - < a < o. For real solitons however, the values of A1 and A2
must lie in the shaded region in Fig. 4.1 in which 1 <- a < oo. The inequality (4.6) which
is valid for 0_-< a < does not lead to real solitons and so can be ignored. Finally,
although it may not seem obvious from Fig. 4.1, it is easy to show that "blow-up"
always occurs for a < 0. Numerical experiments confirming the theoretical results for
two solitons are now carried out using the numerical method outlined in (2.4) along
with appropriate initial data.

A2 t9/8

3/8

A1 A2

3/8 9/8
a=l

FIG. 4.1

Let us choose the initial data f(x) and g(x) from (4.3) with

P1 P2 0.4 (i.e. A1 A2 0.24), el 1, e.=-l.

The constants r/(i 1, 2) are chosen in such a way that the pulses are well separated
initially. After the nonlinear interaction the waves emerge without any change in shape
and with an eventual speed of 0.9156 (- (1--x 0.24) 1/2 =0.91652). Figure 4.2 illus-
trates this interaction, whilst Table 4.1 gives the L2 and Loo errors at different times
for various mesh sizes h and k. We observe that no significant improvement in the
solution is obtained with the reduction of h. However, the reduction in k increases
the accuracy of the numerical solution even though the number of time steps increases.

For the rest of the numerical experiments in this section f(x) is chosen to be the
linear superposition of two solitary waves of the form (3.3) moving towards each other,
but placed well apart initially, and g(x) the corresponding deri,vative.

When the initial amplitudes of the waves are equal (A, say) "blow up" of the
solution is witnessed for A greater than some value A,,. A typical set of values for
A, is tabulated in Table 4.2 and the extrapolated value of A, as k 0 is obtained as
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FIG. 4.2. Interaction oftwo pulses. Initial conditions chosenfrom the exactformula (4.3). 100 =< x =< 100,
0=<t=<60, h=0.5, k=0.1, A=0.24. Initial positions of the pulses are x=0 and x=50. No difference is
observed between this interaction and the two-soliton solution from (4.3) (cf. Table 4.1).

TABLE 4.1

-100_-< x_-<100, 0_<-t_<-60, ,/=0,=-50,
A A2 =0.24

Error x 10

h =0.5
k =0.2

h =0.5
k =0.05

2
20
40
60

2
20
40
60

2
20
40
60

L2

0.2586
3.1664
6.8686
9.0379

0.1359
1.3447
3.1411
4.0386

0.0747
0.5635
1.5595
2.0550

Zo

0.0648
0.8419
1.4182
1.8051

0.0343
0.3503
0.6442
0.7976

0.0192
0.1417
0.3172
0.3859

TABLE 4.2

-100 <= x -<_100, h=0.5, Xol=0, Xo2.=-50

k 0.05 0.10 0.25
A,,, 0.3691 0.3630 0.3425
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0.37486, which agrees with the "blow up" condition that can be obtained from (4.5),
namely A>-38=0.375. Unlimited growth of the amplitude for an initial sinusoidal
disturbance for an equation related to (1.2) has been shown to exist by Kako and
Watanabe [7] in the context of a beam-plasma system near the marginally stable state
for periodic boundary conditions. This however is unrelated to the "blow up" men-
tioned above which is due to the singularity in the analytical expression and not due
to any linear instability of the equation as was the case in Kako and Watanabe [7].
(Xol and Xo. give the initial locations of the solitary waves.) It is also observed during
these numerical experiments that the joint amplitude (Aj) of the interacting solitons
when they collide and overlap is greater than twice the amplitude of the individual
solitons which of course agrees with the analytical result; this is very different from
the case of the B.B. equation where the joint amplitude is less than twice the amplitude
of the individual solitons. Table 4.3 gives the values of Aj for a set of values of A.
Numerical interactions of solitary waves of unequal amplitudes which do not satisfy
the "blow up" conditions are performed as well and Figs. 4.3 and 4.4 illustrate these.

TABLE 4.3

--100 <_-- X <--100 0<_--t<_--60, h=0.5,
k =0.1, Xol --0, X02 "---50

A 2A Aj

0.05 0.100 0.103
0.10 0.200 0.213
0.24 0.480 0.592
0.30 0.600 0.829
0.35 0.700 1.177

FIG. 4.3. Interaction of two pulses o] unequal amplitudes. Both the amplitudes are less than 0.375, (cf.
4) -100 <_- x <- 100, 0 <- _-< 60, h 0.5, k 0.1, amplitudes 0.24 and 0.135. Respective initial positions are

x O and x=50.

5. The "good" Boussinesq equation as a system. As an alternative, the Cauchy
problem involving the good Boussinesq equation (1.2) can be written in the form of
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FIG. 4.4. Interaction of two pulses of unequal amplitudes. One amplitude is greater than 0.375, while
the other is less than 0.375. -100 <- x -<_100, 0=<t-<-60, h=0.5, k=0.05, amplitudes 0.54 and 0.135.
Respective initial positions are x 0 and x 50.

a Schr&dinger type system

(5.1) w, Uxx- uz, u, =-Wxx,

with initial conditions

(5.2) u(x,O)=f(x), w(x, 0)=-II g(x)dxdx.

In vector notation, (5.1) can be rewritten as the Schr6dinger type system

u, + BUxx + F(u) 0(.3)
where

[ 1] F(u) [0, u2]Tu=[u,w]T, B=
0

We discretize (5.3) in space using a Galerkin finite element procedure based on linear
"hat" basis functions and obtain the system of ordinary differential equations

(5.4) MdU 1+- SU+MF(U) 0
dt

where

1

-21 1 0
I 41 I

I 41 I
0 I 21

-B B (Y

B-2B B

B-2B B
B -B
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with I the 2 2 unit matrix and h the grid spacing in x. The lower order of the system
(5.3) compared to the scalar equation (1.2) allows us to use piecewise linear trial and
test functions for the space discretization. In order to solve (5.4) we introduce a uniform
time step k and use a two stage algorithm

MU. * [M- rS]U. kM.F( U. "),
(5.5) n =0, 1,2,...,

[ r ] [ r ]U" (U*+-U)M+- S .U"+’= M-- S -kM.F 2

where .U" is an approximation to U.(nk), is an arbitrary parameter and r k h2 is
the grid ratio. Complete details of the above numerical procedure for solving a system
of the type (5.3) can be found in Griftiths, Mitchell and Morris [4].

When some of the numerical experiments carried out in 4 are repeated using
the scheme (5.5), the solutions are found to behave similarly except for some minor
differences. As in the scalar case reduction of k gives more accurate results and for a
sihgle soliton, the value A, the bound on the amplitude, below which the pulse splits
into two, is [ound to be 1.5150 for h =0.5 and k =0.0625 (compare with Table 3.1
where A 1.5165 for h 0.5 and k 0.05). The results for the dispersive wave trains
are also similar. However, in the case of two solitons of equal amplitudes the "blow
up" amplitude 0.375 is approached from above as k is reduced, whereas in the scalar
case it is approached from below (see Table 4.2). Figures 5.1, 5.2 and 5.3 illustrate
some of these findings. In all these experiments/3 1.

FIG. 5.1. Break up of the pulse.-50-<x=<75, 0-< t-48.75, h=0.5, k =0.0625, amplitude= 1.5150,
1.0. Initial position of the pulse is x O. (Compare with Fig. 3.1.)

FIG. 5.2. Collision oftwo dispersive wave trains. -50 -< x <- 75, 0 =< _-< 48.75,/3 1.0, h 0.625, k 0.25,
initial amplitude=0.2. Initial positions of the pulses are x =-15 and x 30. (Compare with Fig. 3.4.)
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FIG. 5.3. Interaction of two pulses. --50 <-- x --< 75, 0 --< <= 48.75,/3 1.0, h 0.5, k 0.0625, A 0.376.
Initial positions of the pulses are x =-15 and x 30. "Blow up" is observed when A > 0.380. (Compare with
Fig. 3.2.)

Acknowledgment. The authors are indebted to Professor B. D. Sleeman for a
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FINITE DIFFERENCE SOLUTIONS FOR
INTERNAL WAVES IN ENCLOSURES*

HOWARD R. BAUMf AND RONALD G. REHM:

Abstract. Finite difference approximations to the set of partial differential equations governing internal
waves are investigated. Analytical solutions describing waves in an enclosure in two and three dimensions
are obtained. The schemes considered are second order accurate in space and include first order explicit
and second order time differencing. The solutions are used to investigate the temporal stability and long
term accuracy of all schemes. The mode frequencies and wave shapes obtained from each difference scheme
are compared with the solutions both to the corresponding partial differential equations and to equations
obtained by discretizing in space only. The solutions have been used by the authors to help develop a finite
difference code designed to compute nonlinear buoyancy driven flows of the type that arise in enclosure fires.

Key words, analytical solutions, finite difference equations, internal waves, numerical solution, stability,
stratified fluid

1. Introduction. Development of finite difference solutions to nonlinear partial
differential equations requires great care. Generally, assessment of the stability and
accuracy of numerical solutions represents a major task, because no independent
solutions are available against which to make comparisons. Solutions to linearized
versions of the differential equations then become a major analytical tool for determin-
ing stability and accuracy. When analytical solutions of equations representing finite
difference approximations to the linearized equations can be found, these solutions
represent a very valuable tool with which to test computational procedures and
programming.

In this paper solutions to finite difference approximations to the linear equations
describing internal waves in a stratified fluid are given, and the properties of these
solutions are discussed. In 2 the continuous problem, both the linear partial differential
equations and their solutions, is presented. This problem and its solution is well known,
dating back to the turn of the century; several excellent texts discuss internal waves
[4], [6], [7], [11]-[13], and areas of application in which they arise. Discrete approxima-
tions to the linear equations are given in 3, and the corresponding solutions are
presented in 4. These schemes are dispersive but not dissipative; an interesting review
of the features of dispersive schemes has recently been published [10]. In 5 the
solutions to the discrete problems are discussed and compared with the solution of
the continuous problem. These analytical results have been compared with results
obtained by straight numerical solution of one set of discretized equations; in the
concluding remarks, 6, this comparison is discussed.

The comparison represents one of the most valuable reasons for conducting such
an analysis: it provides a basis for assessing both the stability and accuracy of several
candidate difference schemes for the solution of time dependent nonlinear problems.
In particular, it tests all the transient terms, the convection of density, and the buoyancy
force. Moreover, it provides a test case for the computation of the pressure perturbation,
which required the development of a nonseparable elliptic equation solver [5]. Finally,
the interaction of all these terms is tested in the context of a physical phenomenon
(internal wave motion) which is widely encountered in the study of buoyancy driven
flows.

* Received by the editors April 5, 1983, and in revised form August 2, 1983.
t Center for Fire Research, National Bureau of Standards, Washington, DC 20234.
t Center for Applied Mathematics, National Bureau of Standards, Washington, DC 20234.
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2. Formulation of continuous equations and continuous solution. The problem
may be stated as follows: Consider a room of unit height 0 <- y <- 1 and of rectangular
planform 0-< x _-< l, 0 _-< z-< d. The gas in the room is stably stratified vertically with a
known density P0(Y), normalized to unity at the floor (see Fig. 1). If the height is not
too large, the hydrostatic pressure variatiqn associated with the density p0(Y) is small
compared with the ambient pressure. The low frequency fluid motion induced by a
small disturbance may then be determined from the solution of the system [4]:

(1)

Op dpo Ou ov Ow
--+v =0,
Ot dy Ox Oy Oz

pos++p =o, Ow Op
P-o--+-- O"oz

The first equation of (1) is a linearized statement of incompressibility, while the
second ensures conservation of mass for an incompressible fluid. The last three
equations are linearized momentum equations in the horizontal (x-z) plane and in the
vertical (y) direction. Here, u, v, and w are respectively the x, y, and z components
of the velocity perturbation, p is the density perturbation, and p the nonhydrostatic
pressure perturbation. The time scale is set by the unit height and the requirement
that the gravitational acceleration is unity in the scaled variables. The density perturba-
tion is normalized so that it is a small fraction of the ambient floor density while the
velocity perturbations are correspondingly scaled with respect to the ratio of length
to time scales. The pressure perturbation is small compared with the product of the
ambient floor density and the square of the velocity scale.

The boundary conditions appropriate to the system (1) are that the normal
component of the perturbation velocity u vanishes at the enclosure walls. Two types
of initial disturbances are of interest, vertical displacements and velocities. Let
st(x, y, z, t) be the vertical displacement of a fluid element. Within the linear approxima-

y,j,q,v

z,k,s,w

FIG 1. An enclosure of unit height and rectangular planform 0 <- x <= l, 0 <- z <= d. The fluid in the room
is stably stratified vertically with density Po(Y). The velocity components of the internal waves are u, v and w;
the modal wavenumbers are r, s and q; and the integer discretization variables are i, j and k where <- <-_ N,

<= j <= M and <-_ k <- L in the x-, y- and z-directions respectively.
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tion ff is related to the vertical velocity by

(2)
ot

From the first equation of (1),

dpo
(3) Sr-d--y +p O.

Thus, specifying the vertical displacement field initially is equivalent to prescribing the
initial density perturbations. Alternatively, the velocity disturbance could be pre-
scribed initially. This choice is not entirely arbitrary, however. The initial velocity field
must be divergence free and satisfy the boundary conditions.

The pressure perturbation p cannot be prescribed arbitrarily initially. An equation
for p can be obtained by dividing the momentum equations by /90 and taking the
divergence of the resulting system to obtain

(4) V. Vp -yy
Boundary conditions appropriate to (4) can be obtained from the momentum equations
and the velocity boundary conditions. Let n be the unit outward normal to the enclosure
and the unit vector in the vertical direction. Then, at any point on the surface:

aP+n.jp =0.(5) an

Equations (4) and (5) show that the pressure at any instant of time is determined by
the density distribution at that instant. In particular, if p is initially zero, so is the
pressure.

The system of homogeneous equations and boundary conditions can be reduced
to an eigenvalue problem. Since the solution to any initial value problem of interest
can be represented as a sum of eigenmodes, the degree of accuracy to which any
numerical method represents the continuous solution is determined by the ability of
the method to compute individual eigenmodes. In the following sections of the paper,
the eigenmodes of the continuous problem are first displayed and the chief features
noted. Next, several candidate difference schemes are proposed and the corresponding
solutions to the difference equations are obtained analytically. These solutions are then
used to evaluate the stability and accuracy of the difference schemes.

3. The continuous solutions. Each eigenmode is constrained by (1) and the
boundary conditions to have the form

(6)

u {a cos (o’t) b sin (rt)} sin (rrx/l) cos (szrz/d)U(y),

v={a cos (trt)- b sin (trt)} cos (rzrx/l) cos (srz/d) V(y),

w={a cos (trt)- b sin (trt)} cos (rzrx/l) sin (sTrz/d) W(y),

p {a sin (trt) + b cos (trt)} cos (rzrx/l) cos (srz/d)P(y),

p ={a sin (rt) + b cos (trt)} cos (rTrx/l)cos (sTrz/d)R(y).
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Substitution of above forms into (1) yields a system of ordinary differential equations
which can be manipulated into the following eigenvalue problem for V(y).

dVa2v
N2(y)__dy_2[l_N2/tr2]V=Ody2

dpoN2(y) =-(po)-1

--}y,
(7)

2 (rr/ l) + sTr/ a),
v(o) v( o.

The eigenvalue to be determined in (7) is the angular frequency tr of the mode under
consideration. The coefficients a and b in (6) are the amplitudes of the initial velocity
and displacement disturbances respectively. The quantity N(y) is the buoyancy (Brunt-
Vaisala) frequency. The y dependence of the mode shape is determined by the ambient
stratification po(Y)"

(8) po(Y) e-r.
The form yields the simplest solutions describing internal waves in an enclosure"

(9a) V(y) =exp (cy/2) sin (qry),

a2

(9b) tr
2

(ae/4) + (qTr) + "
The flow pattern generated by the solution given in (9) is illustrated in two dimensions
by Prandtl [7]. The results are repeated in Turner [11 ], who gives numerous references
to other studies of internal waves. There are two points worth noting for later reference.
First, the motion is cellular, each mode containing cells with mode numbers srq. The
"resolving power" of any finite difference grid can then be discussed in terms of the
number of cells that the grid can approximate to a given accuracy. Second, the
eigenvalue tr represents the frequency of oscillation of the mode. Since the frequency
is different for each mode, it is necessary to avoid computational procedures which
introduce substantial phase shift. Such phase shifts will inevitably throw the modes
out of synchronization, leading to meaningless results. This can occur even if the spatial
resolution of each mode is calculated with great accuracy.

The solution given above represents the standard against which those produced
by the finite difference computations must be tested. We now turn to the finite difference
formulation of the problem.

4. Discrete equations. In this section several finite difference approximations are
presented for linear equations (1) and boundary conditions of no outflow at the
boundaries. The difference approximations are either first-order or second-order
accurate in time and are second-order accurate in space. Two spatial discretizations
are considered for the flux term in the first equation of (1), a central difference and
a conservation form; all other spatial derivatives are approximated by their natural
second-order differences. The difference equations are written on a "staggered mesh"
in the style of [2].

For the finite difference scheme, the enclosure is overlaid with a uniform mesh"
in general there are N mesh cells in the x-direction, M mesh cells and the y-direction
and L mesh cells in the z-direction. In Fig. 2 a typical mesh cell is shown, illustrating
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FIG. 2. A typical mesh cell illustrating where all dependent variables in the finite difference scheme are

defined.

where all of the dependent variables in the finite difference scheme are defined relative
to the cell.

The following discretely evaluated functions will denote approximations to the
corresponding analytical solutions to (1)"

Furthermore,

Uqk u(ih, (j- 1/2)hr, (k- 1/2)hz, t), etc.

represents approximating functions which are discretely evaluated in space but con-
tinuous in time.

Here hx l/N, hr 1/M and hz d/L are the mesh cell sizes in the x-, y- and
z-directions respectively and 8 is the time-step size so that n8 t.

With this notation (1) are approximated in the following manner. At first we
consider discretization in space, the approximations remaining continuous in time. As
noted above, all spatial derivatives, except the flux term in the first of (1), are
approximated by a difference that is second-order accurate. Therefore, for example
Ou/Ox, which is to be evaluated at the center of a mesh cell, is approximated naturally
as

( OX) uijk Ui- ’jk

ijk hx
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Then (1) are approximated by the discrete-continuous equations

Ot ijk

blijk Ui- ,jk ._ )ijk i,j- ,k + Wijk Wij,k- O,
hx hy hz
OUqk+ Pi+ 1,jk Pijk 0(10) Po(j) 0- hx

1 + +-( Pi,j+l,k + toijk) 0,_[po(j)+po(j+ l)]OVqk Pi,+l,k--Pqk 1
Ot hy 2

Po(j)
0 Wqk Pq,k+ Pqk-t- -0o
Ot hz

Boundary conditions are

Uo,jk UNjk --O,

(11) Vi,o,k Vi,M,k O,

Wij,o WiLL 0,

I<__j<__M,I<-k<-L

l <__i<_N, l <_k<_L

I<__i<__N,I<__j<_M.

The flux term (v dpo/dy)qk is evaluated at the center of a cell, and two difference
approximations are used.

(i) Central differences:

(12) V + ,k)
ijk

"( l)iyk Vi’j-1

(ii) Conservative differences:

Po( j + 1) Po( J 1)

(13) (yO)V 1[ po(j+l)-po(j)+ po(j)-po(]-l)]
ijk - l)ijk hy l)i’j-l’k hy

The last difference approximation is called a conservation form because it can be
derived by subtracting the difference form of the zero-divergence relation for the
velocity (incompressibility condition) from a difference form of the continuity equation
in conservation form. In particular, this scheme conserves the total mass in the
enclosure.

Solutions with three forms of behavior with time are found. First, solutions are
found which depend on time as a continuous variable, namely solutions of (10) with
either (12) or (13). Then solutions are found when the dependent variables are
completely discretized using approximations to the time derivatives which are either
first-order or second-order accurate. When first-order approximations are used, the
time differences in (10) are replaced by differences in the following manner:

n+ldpij, P ijk ijk

dt 6

and all other variables are evaluated at time level n except for the buoyancy term
(the last term) in the fourth of (10) which is evaluated at n + 1 so that the difference
approximation is stable (as will be shown in the next section). When second-order
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approximations, leap-frog, are used, all time derivatives are approximated as follows:

and the buoyancy term is now evaluated at time level n.
For both first-order and second-order time differencing, the flux term is given by

(12) or (13) with the vertical velocities evaluated at time level n. The boundary
conditions are (11) approximated at time level n.

5. Solutions to the finite difference equations. In this section solutions will be
derived to the difference equations presented in the last section. The combinations of
spatial and temporal difference schemes considered are listed in Table 1. These
equations are linear and separable. They have coefficients which depend only on/" so
that the dependence of each solution on i, k and (or n) is simple.

TABLE
Table of methods.

Spatial

Temporal
difference

difference
Second-order Second-order
conservative central

A B
Continuous (38a) and (40) (38a) and (39)

First-order semi-implicit
C D

(38b) and (40) (38b) and (39)

E F
Second-order leap-frog (38c) and (40) (38c) and (39)

For (10) with either (12) or (13), the following form of solution can be assumed

v   -cos cos

(14) wu =cos (i-1/2) sin

pq cos 1 / 2) cos k 1/ 2) Pgp(t),

cos (i cos

This solution form has been assumed because it satisfies the first and last boundary
conditions (11) on uq and wq. The form of the dependence upon and k of the
remaining variables follows from the equations. As in the case of the continuous
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problem, the solution represents a (discretized approximation to a) wave mode which
is an eigenmode with r half-wavelengths in the/-direction and s half-wavelengths in
the k-direction of the problem. The frequency of oscillation r will appear as the
eigenvalue.

Substitution of (14) into (10) yields the following reduced equations:

R+Ff(t) O,

(15)

h--sin - U+-(V-V_l)+zSin W=0,

Po(j) U --, sin Pgp( t) O,

1 -t 1
P)gp(t)+(1/2)(R+x+R)g.(t) =0,-[po(j)+po(j+ 1)]V +-(P+,-

Po(j) W -- sin - Pjgp(t) O,

where the flux term F.
(i) for the centered difference scheme is

1 [po(j+l)-po(j-1)](16a) F. [V+ V_,] 2hy

(ii) for the conservative difference scheme is

1
(16b) F v{V[po(+ 1)- po()]+ V-l[po()- po(- 1)]}.

Now consider the time dependence f(t) and g(t) and note that these two functions

will be related exactly as in the continuous solution, (6). Hence, take

f(t) Arqs cos (r,,t) B,q sin (t),
(17)

g,(t)=gp(t)=A,q sin (t)+Brq cos (%t)

where Aq and B,qs are two arbitrary constants representing the internal-wave mode

amplitude for the mode (r, q, s). % represents either a or n, the eigenfrequency
for the mode (r, q, s) (see Table 1). The frequency A corresponds to the choice of

the centered difference scheme used for the flux equation (16a), and is this frequency
when the conservative difference scheme is used, (16b). When equations (17) are

substituted into (15), these equations become:

R%+=0,

sin sin +(- _,) 0,

(18) -Oo(])-sin P=O,
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At this point, we note that the time dependences for the totally discretized systems
can be obtained simply by the following observations. When the system of equations
is totally discretized, the solution has the same form as (14) with f(t) replaced by
go(t) replaced by g and gp(t) replaced by g. When this form is substituted into (10)
with the time derivatives replaced by the first-order differences, a semi-implicit system
of equations arises. The semi-implicit nature of these equations shows up because of
the buoyancy term in the vertical momentum equation where go is found. If this

n+lterm were taken to be g, rather than g, so that the scheme is completely explicit,
hen, as Will be seen below, the difference scheme is unstable. Similarly, if .assumed
forms (14) with f(t)-f, g,(t)- g and gp(t)- g, are substituted into the leap-frog
scheme, the equations which result are the same as (15), but all time derivatives are
replaced by leap-frog time differences, namely

ag, g+ g-
dt 2

and in the last term of the fourth equation in (15), gp--> g.
With these identifications, the first-order, semi-implicit method has the following

dependences upon discretized time n6"

f" Arqs cos [tr,6(n 1/2)]- Brqs sin (tr,6n),

(19) g arqs sin [o’,6(n- 1)]+ Brq cos [o’6(n- 1/2)],

g, Arq sin (tr,6n) + Brq cos [tr,6(n + 1/2)].

As before, Arq and Brqs are arbitrary constants and tr represents either trc, the
eigenfrequency for the conservative difference form for the flux term or tro, the central
difference form for the flux.

Similarly for the leap-frog, the dependences upon discretized time can be shown
to be

(20)

cos ntr,6 Brqs sin (ntr,6) + (- 1 "Crqs cos ntr,6 (- 1 )"Drqs sin no-,6

g, g, Arq sin (no’,6) + Brqs cos (ntr,6) + (- 1 "+1Crqs sin (ntr6)

+ (-1)"+lDrqs cos (mr,6).

Here Arq, Brq, Crq and Drqs are all arbitrary constants. Since the leap-frog is a three
level scheme, there are four independent solutions to the homogeneous equations and
hence four arbitrary constants. The two solutions multiplied by (-1)" are parasitic
solutions to the difference equations which do not approximate the solutions to the
differential equations. They are solely due to the fact that the leap-frog difference
scheme is of higher order than the original continuous system. In choosing initial
conditions, we desire to make Crqs and Drq small to suppress these parasitic solutions.
As before r represents either re (the conservative scheme) or rv (the central
difference scheme).

Substitution of (19) into the first-order discretized equations in time yields (18)
with r replaced by (2/6) sin (r6/2). Similarly, substitution of the time dependences
given in (20) into the version of (15) corresponding to a leap-frog discretization in
time also yields (18) with r now replaced by (1/6)sin (r,6). Therefore, the eigen-
frequency r in (18) will be determined when a A or B and all other eigenvalues,
for a C, D, E and F, can be determined from these values by simple operations.
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Determination of the ] dependence of the dependent variables and of the eigen-
requencies tG depends upon the form considered for F. Therefore, the two solutions
will be treated separately; but first, note that for either form, the continuity equation
and the two horizontal momentum equations (the second, third and fifth of (18)) can
be used to eliminate U. and V, yielding

x +1(21) -po(j)o.,Pi hr(V- V_)=O
where

(22) Az=4 xSin] + -sin-
First, the central difference approximation for the flux, (16a), is considered. Then, the
first and fourth equations of (18) and (21) are three relations for V, P and R:

1 1
R+(+ -a)[po(j+ 1)- po(j- 1)]=0,

1 1 +(23) [po(j)+po(j+l)].+(P+l-ei) 2(R+I+R)=0,

APi
po(j)

Both R and P can be eliminated using these relations to obtain a single equation for

For a simple, exponential ambient stratification

(24)

and a change of variables

(25)

this equation becomes

(26)

Po(j) exp (-ahy(j-1/2)}

V exp
2

The nonvanishing solution to this equation which satisfies the boundary conditions
that V 0 for j 0, M is

(27) =sin ()
where q is an integer, the mode number or number of half wave-lengths that fit between
the bottom and top of the enclosure. The relationship that remains when (25) and
(27) are substituted into (26) is a quadratic equation for the eigenvalue

Hence

(28) 2 A 2 hy sinh (hy)[COS (qzr/M)+cosh (ahy/2)]
2 (2+h2yA2) cosh (ohy/2)-2cos(qvr/M)
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2When hy-->0, 0-a becomes equal to 0"2, the eigenfrequency in the continuous case,
which is given in (9).

A similar procedure is used when the conservative difference approximation for
the flux, (16b), is considered. The simple exponential stratification, (24), for Po(])
again, is used. The equation for the vertical velocity V, is such that we can change
variables as follows:

(29) V exp (flhy]) V
and choose/3 so that the coecients of +1 and -1 are equal. Then

({ l+(h/)2[exp(hy)-l]/4hy l/2(30) exp (flhy)=exp
1 + (h/)211- exp (-hy)]/4hyJ

and the equation for becomes

(++ -1) 4by(1 -exp (-hy)) +(exp (ahy)- 1)

(31)
1 1-{[+(.hyA,2]2 cosh()-sinh ()} =0.

Again, the solution of (31) satisfying boundary conditions 0 at ] 0, M is

and the eigenvalue relationship, (31), is

’] +(l_exp(_ahy),]l/2[(2 1 1/2

k/ +(exp (ahy)- 1)]
(33)

[ 1
1 + (hyA)2 cosh -sinh

2Real solutions to this equation require > 0. Squaring and rearranging gives a
2quadratic equation for , and this equation has the solution

2 1
(34) ={b+b2-4ac}
where

(35)

a [2 + (hyA)2]2 cosh2 (-2h) 4 cos2 (),
b

sinh (ahy))2[ )2
hy

(hyA 2 + (hyA + 2 cos2

c=(h,A)
4sinh2(thy/2) (-)h’ sin2

and where the + sign has been chosen by noting that the continuous limit is recovered
when hy, hx, hz- O.

The results for all six cases, A-F, can be summarized as follows. In (14) the
solutions for all dependent variables are given with the dependences on and k given
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explicitly. The ] dependences are

(36)

U=--Tsin - hy

2 (srr) l V-V_
W=-zzSin - hr

V exp (]flhy) sin (),
F V V_

P,=-Po(j) hr

For cases A, C and E

1
(37a) Rj

2hyF
{ V[po(j+ 1)- po(j)]+ Vj-I[PO(j)-po(j- 1)1}

and for cases B, D and F

(37b) Rj
4Fhy

Vj-t-- Vj_l)[po(j- 1)- po(j- 1)]

where

(37c)

For cases A and B,

(38a) F2
0"2,

for cases C and D,

}- sin2

and for cases E and F

(38c) [,2 sin2 (t,,8)

The expressions for F and/3 are for cases B, D and F

(39a) 1_,2 A2 hy sinh (,ahy){cos (q’a’/M)+cosh (ah,/2)}
2 (2+h}aE) cosh (ahy/2)-2cos(qrr/M)

(39b) fl a/ 2,
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and for cases A, C and E

F2 a b +x/b2- 4ac),

a [2 + (hyA)2]2 cosh2 (-)-
(40a) b

(hyA)2 [ ()hy
sinh(ahy) 2+2cos2

c=(hyA)4sinh2(ahy/2)h2y sin2 ()
+ (hrA)2],

(40b) { 1 + (h,;t)2[exp (h)- 1]/(4h,F2]
log

1 i-iTi-;--h2(4--yF2) J"

6. Discussion. The set of partial differential equations (1) and associated initial
and boundary conditions represent a mixed hyperbolic and elliptic system. Such mixed
initial, boundary value problems are of general interest, and linear systems such as
this are often used as models to analyze the properties of difference approximations
for numerical integration of the systems [3], [10]. The exact solutions presented in the
previous section provide the opportunity to examine the stability and accuracy of
several difference schemes for approximating linearized differential equations rep-
resenting a physical problem of interest, internal waves in an enclosure. The solutions
also provide an excellent comparison for results obtained using direct numerical
integration using one of these difference schemes [1], [8], [9].

Difference approximations to (1) introduce spatial and temporal discretization
errors into the description of the solution, and these will generally be of two types,
dissipative and dispersive. The difference schemes discussed here are not dissipative,
but are dispersive [10]. The solutions found in the last section allow us to determine
the magnitude of the dispersion introduced by the difference approximation as a
function of the parameters of the continuous problem and the number of discretization
points.

As noted above, for internal waves in an enclosure, there are four parameters
which specify completely these waves" x/-, the Brunt-Vaisala frequency; rTr/l, the
x-direction wavenumber; sr/d; the z-direction wavenumber; and 7rq, the wavenumber
in the vertical direction. The solutions for the difference equations approximating these
internal waves become more complicated because there are additional parameters
required to describe the solution in the discretized problem: hx, hy, and hz, the mesh
cell dimensions in the x-, y- and z-directions respectively; and, when the equations
are also discretized with respect to time, 6, the time step size.

The solutions presented in 4 show that the parameters are found in certain
groupings which can easily be interpreted. For example, the spatial dependences in
the horizontal directions are determined by two parameters N/rTr and L/sTr, which
represent respectively the number of mesh points per half-wavelength in the x- and
z-directions. Noting the hx 1/N and hz d/L, the reciprocals of these parameters
can also be written rTrh,,/l and sTrhz/d, and can be interpreted, therefore, as the ratios
of the mesh size to the half-wavelengths in the x- and z-directions. As is expected,
the accuracy with which the discretized solutions represent the solution to the partial
differential equation depends upon rTr/N- rTrhx/l and sTr/L sTrhz/d being small. It
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should be noted, however, that these two parameters do not appear independently,
but only in the combination A defined in (22), which represents the horizontal wavenum-
ber in the discretized scheme.

In the vertical direction there are two length scales which are relevant: as in the
horizontal direction, there is the internal-wave modal half-wavelength l!qTr, but also,
because the density decreases exponentially, there is the stratification length scale 1/a.
Therefore, there are two parameters qTrhy qr/M and ahy /M which represent
the ratio of the mesh size to the vertical half-wavelength and the ratio of the mesh
size to the statification length respectively. Again, for accuracy, these ratios must be
small.

Finally, there are the ratios of the mesh sizes in the various directions hx/hr and
hz/hy. The solutions presented in the last section to the equations discretized in space
depend upon these six parameters, rTr/N, sTr/L, qTr/M, ahr, hx/ hr and hz/hr. When
the equations are discretized also with respect to time, they also depend upon a seventh
parameter 8/-, the ratio of the time step size 8 to the natural period of oscillation
1IN 1/x/-. The stability and accuracy of the solutions to the discretized equations
are determined by the values of these parameters.

Stability. Once the forms of the solutions are known, it is instructive to derive
the differential equations for the time dependences f(t), gp(t) and go(t) in (14). This
is accomplished by substituting the known dependences on all discrete variables, i, k
and j into (10) and determining the relations for these functions of time. The determina-
tion of the stability of the temporal discretization schemes becomes trivial then. In
this subsection we determine the stability characteristics of the difference schemes by
this means.

To determine the time dependences either for the central difference scheme or
for the conservative scheme, we substitute assumed forms (14) into (10) with either
(12) or (13) just as was done in 4. Substitution of assumed forms (36) and (37) for
the j dependences then results in the following equations for f(t), go(t) and gp(t).

From either the third or fifth of equation (15), we obtain

(41a) 1__ df+ gp(t) =O
tr dt

where r has been used to denote the frequency in the continuous case. Because of
the assumed forms, the second of (15) is identically satisfied. From the first of (15)
and either the central difference or conservative difference scheme (and the correspond-
ing solution form), we obtain

(41b)
1 dgo f(t)=O.

tr,, dt

Finally, from the fourth of (15) and the assumed ] dependences, we obtain, for either
central or conservative differences, a linear relationship between df/dr, go(t) and gp(t).
When this latter relationship is combined with (41a) and the assumed solutions (36)
are used, it can be shown that

(41c) gp(t)= go(t)

(if cr is to be the oscillation frequency of the system).
Equations (41) are three equations for the time dependences f(t), gp(t) and go(t).

Combining these equations, we find

(42) d2f t- r2f 0
dt2
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representing simple harmonic motion, as expected and as assumed in (17) of the
previous section.

The interesting feature of the exercise outlined above is that the stability properties
of the first-order and second-order time differencing schemes now become simple to
understand. Replacing the time derivatives by a first-order explicit Euler method leads
to a situation in which the solutions for the amplification factors in a stability analysis
have magnitudes greater than one; hence the scheme is unstable:

fo --trgp,dt
(43)

dgp g+l_ -g,
=/.dt

in (41a) and (41b) and gp= g, in (41c); we find solutions

f f0". g g0, g o",
where fl =-1 i so that both values of fl have Ifll > 1.

Choosing a first-order Euler method for the time derivatives, but making the
scheme semi-implicit, as discussed in the last section, will remove this instability and
make the difference scheme nondissipative. In this case, the equations (43) are still
used to approximate (41a) and (41b), but now the semi-implicit scheme requires that

_n+lgp gp and the corresponding amplification factors fl are given by solutions to the
equation

2 2)2-(2- +1=0.

Hence, for both values of fl, I1 1, provided only that < 2. Therefore, stability
is guaranteed or this first-order, semi-implicit method when

(44) <2
where is given by (28) for the central difference scheme and by (34) for the
conservative scheme.

When the leap-frog method is used for the time differencing,

f.+1_-1a. _g.
dt 2

_n+l n--1

45) dg,.g, -g, =,
dt 2

g=g,.
The scheme is stable provided only that

(46) ,8 < 2.

The analyses outlined above have determined the same conditions for stability which
are not very restrictive for representing the internal waves; accuracy of the nite
difference solutions is much more restrictive.

Accuracy. A convenient dependent variable with which to make comparisons
between the solutions to the continous problem and the discretized problem is the
vertical displacement of a fluid element at any specified point; is determined in
terms o the density perturbation and the background density gradient in (3):
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where the density perturbation for the continuous solution or for any of the discretized
solutions can be evaluated using expressions given in 3 and 5. As with all dependent
variables, the vertical displacement undergoes sinusoidal oscillations with respect to
time, and the accuracy with which these oscillations will be reproduced depends upon
the parameters discussed earlier, namely the Brunt-Vaisala frequency and the
wavenumbers in the horizontal and vertical directions plus the parameters required
to define the discretization, the mesh cell dimensions and the time step size.

A sample calculation comparing the time dependences of the vertical displacement
in the continuous and two discretized cases has been performed. The sample calculation
is for a two-dimensional case" there is no dependence of any variables upon z and the
z-component of velocity, w, is zero (formally, d, Lo with hz held fixed). The
two-dimensional rectangular enclosure is one unit high and one unit wide (l 1) and
is covered by a mesh composed of 31 increments in the horizontal or x-direction and
30 in the vertical or y-direction (hx , hy 0). The stratification parameter a 1
so that the Brunt-Vaisala frequency is unity and the integers r and q defining the
horizontal and vertical wavenumbers are 5 and 2 respectively. Finally, the centered
difference, (16a) is used for the flux term and the time step size 0.5.

In Fig. 3 the variation with time in the vertical displacement at a fixed location
x 0.21 and y 0.15 is shown. The solid line is the solution to the continuous problem.
The circled points represent results obtained by the first-order method, and the points
enclosed in triangles results obtained by the second-order method. The discrepancy
between the continuous solution and that obtained by the first-order method is a result
of a small phase shift introduced at the start of the calculation. The phase shift is
proportional to the time step size and can therefore be reduced by taking smaller time
steps in the computation. Ignoring this phase shift, the solution follows rather faithfully
the exact solution. For the time step selected, the second-order solution reproduced

VERTICAL DISPLACEMENT AT X=0.21, Y=O.15

0.1

810. 9.0 ILO

-0.1 F CONTINUINJS PflOBLEM

FIRST-OIIOER METINIO

SECOND-ORDER METIN)O

FIG. 3. Comparison of the time dependences of the vertical displacement in the continuous and two

discretized cases. The sample calculation is for a two-dimensional configuration in which the Brunt-Vaisala
frequency is unity. (See the text ]:or other conditions defining the calculations.)
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the exact one very well. Again, smaller time steps would produce still better agreement.
The values of tr listed on this figure are the eigenvalues for the mode, in the continuous
and each discrete case, and represent the frequency of each oscillation. Similar results
are found when the conservative difference approximation is used for the flux term.

The magnitude of the dispersion introduced by a difference scheme for a particular
mode is determined by the variation of the eigenvalue for the scheme from the
eigenvalue r for the continuous problem: tile closer the eigenvalues are, the less
numerical dispersion for a particular mode and the more faithful the representation
of the true solution by the difference approximation.

In Figs. 4 through 6 plots are given of the eigenfrequencies for the continuous
problem, as given by (9b), and or two completely discretized problems, one with
conservative differences for the flux term and leap-frog in time (trE as given by (38c)
and (40)), and the other with central differences for the flux term and leap-frog in
time (trF as given by (38c) and (39)). For all three plots, r is shown as a solid line
while the approximation for trE is given by a dotted line and trF is given by a dashed
line. In each of these plots a parameter increases along the abscissa while all other
parameters are fixed. The parameters chosen for the figures are inversely proportional
to a length scale in each case and have been selected to demonstrate the magnitude
of the dispersion introduced by the difference approximations as the number of mesh
points relative to a length scale is decreased.

In any computation the "resolving power" of the numerical scheme will be limited
for practical purposes by the maximum number of mesh points which can be utilized:

EIGENtFREQUENCIES

0.85

0.75

0.70

0.65

0.55

SOLID LINE CONTINUOUS

DOTTED LNIE CONSERVATIVE

DASHED LINE CENTRAL

0.40
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

NUMBER OF MO0S HORIZONTAL

FIG. 4. Eigenfrequencies for the continuous internal wave solution and for two completely discretized
solutions, one with conservative differences for the flux term and leap-frog in time (trE as given by (38c) and
(40)) and the other with central differences for the flux term and leap-frog (trF as given by (38c) and (39)).
(See text for other conditions defining the calculations.) Eigenfrequencies plotted as functions of horizontal
mode number
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EIGENFREQUENCIES
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0.8

DOTTED LINE CONSERVATIVE

0.6
0.0 5.0 10.0 15.0 20.0 25.0 30.0

STRATIFICATION PARAMETER

FIG. 5. Eigenfrequencies for continuous and two discretized internal wave solutions (same as in Fig. 4)
as functions of the stratification parameter
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FIG 6. Eigenfrequencies ]’or the continuous and two discretized internal wave solutions (same as in Fig.
4) as functions of the vertical mode number
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the length scales which can be resolved by the computation will be those described by
at least a few mesh points. The number of mesh points in each direction is 30 for the
sample calculations shown. In all three figures, the dispersion is expected to be better
for small values of the parameters (large values of the corresponding length scales)
and to exhibit increased dispersion due to the difference approximations for larger
values of the parameters.

In Fig. 4 the eigenfrequencies are plotted as unctions of the mode number, in
(9) or A in (37c) in the horizontal direction. Clearly, both approximations behave
qualitatively the same as the eigenfrequency for the continuous problem, that for the
conservative difference scheme being indistinguishable from this frequency while that
for the central difference scheme is only a few percent below.

In Fig. 5 the eigenfrequencies are plotted as functions of the stratification parameter
c. The-greater the stratification, the smaller the length scale over which the density
decreases by a factor 1-1. The two difference approximations determine eigenfrequen-
cies which behave qualitatively the same as the exact eigenffequency; however, the
conservative scheme is quantitatively better over the range of the stratification param-
eter shown.

In Fig. 6 the eigenrequencies are plotted as functions o the vertical mode number
q. Both approximated eigenffequencies are indistinguishable from each other until
q= 15, which is a mode number equal to half the number of mesh points. These
approximations diverge from the correct value with increasing vertical mode number
until they are about twenty percent below the continuous eigenfrequency at q 15.
Beyond this value of the vertical mode number the central difference scheme is
qualitatively correct but quite inaccurate Whereas the conservative scheme is not
qualitatively correct.

7. Concluding remarks. The analysis of difference equations describing linear
internal waves presented in this paper has been used as a guide in the selection of a
finite difference Scheme to numerically integrate nonlinear partial differential equations
describing buoyant convection [1], [8] and [9]. This analysis has provided a basis for
estimating the stability and accuracy for such a scheme. In the two-dimensional case,
it has also been used to provide a detailed check on the numerical method of solution
of the linearized finite difference equations and the implementation of the solution.

The numerical method of solving the linear difference equations is composed of
a time marching portion and a linear algebraic (or elliptic) portion. The time marching
difference equations represented by the temporally and spatially differenced versions
of (10) (the first, third, fourth and fifth equations) are solved by explicit calculation
of the dependent variable (density and the three components of velocity) at a new
time level, given the dependent variables at the preceding two time levels. The pressure
must be determined from a matrix equation obtained by applying the second of (10) to
the remaining time marching equations. This matrix equation arises as a discretization
of an elliptic equation for the pressure and must be solved iteratively in the nonlinear
case [5]. Details of the algorithm to solve the linear, inhomogeneous problem in two
dimensions are presented in [8] and to solve the nonlinear, inhomogeneous problem
are presented in [1].

In two dimensions, the homogeneous, initial value problem for an arbitrary
eigenmode, the internal waves, was solved for one discretization by direct numerical
integration using the algorithm described above. The results of this computation for
a few of the lower eigenmodes (Fig. 3 is a plot prepared from these computations)
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were compared with the analytical results determined in this paper. The agreement
between the numerical and analytical results was exceedingly good, this agreement
being limited only by the accuracy specified by the iterative solution to the matrix
equation for the pressure. We have specified regularly a tolerance of 10-6 (limited by
the computer word length) for the tolerance of the solution to the matrix equation on
a UNIVAC 1108 or 1100/82 and obtained agreement after a few time steps between
the analytical and the numerical solution to the difference equations of a few parts in
the sixth significant figure. This agreement is to be contrasted with that obtained
between the solution to the discretized equations and the solution to the continuous
problem which, as shown earlier, is a few percent for a mesh of 30 grid points in each
direction.
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Abstract. Incomplete methods are considered for the solution of ATAx b. One possibility is to construct
the product ATA and proceed with an ICCG solution. However, it is also possible to utilize incomplete
orthogonal decompositions of A obtained by modifying either the Gram-Schmidt or the Givens rotation
method. These three methods are applied to four small structural analyses and the numerical efficiencies
are compared.

Key words, simultaneous equations, least squares, incomplete factorization, conjugate gradient method,
symmetric positive definite matrices

1. Introduction. Equations of the form

(1.1) ArAx b

where A is of order m n (rn -> n) may be obtained in the analysis of any conservative
system although in many formulations the coefficient matrix ArA is constructed directly.
For instance, in the solution of linear elastic structural problems [ ], [2], [3] the stillness
method gives equations which can be written in the form

(1.2) fi,T.,X b.

Here K is a block diagonal matri of the member stiffnesses eprssed in terms of"
member oordinates, A is a transformation matri which defines flaese member oordi-
nares in terms of" the global displacement oordinates x (normally joint displacements).
The vector b represents the fores applied at the nodes. It" K is nonsingulaL it may
be factorized into the form

(1.3) / EU
where /7, is a Choleski matrix of diagonal block form. If
which would otherwise be null may be omitted yielding a rectangular matrix. In either
case equations of the form of (1.1) may be obtained by multiplying

(1.4) a T.
It is also possible to obtain finite element and some finite difference formulations of
conservative systems in the form of (1.1). If an ovcrdetcrmincd set of linear equations
is written in the form

(1.5) x=
where is of order rn n (rn >_- n),/ is of order rn and e is an error vector, the normal
equations for a least squares fit is given by the solution of

(1.6) rW,x

where W is a diagonal matrix of weighting factors. This also reduces to the form of
(1. l) with

(l.7a) A WI/,
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and

(1.7b) b ,Tw.
Hence it is not only possible, but in many cases may be more convenient to express
an analysis in the form of (1.1).

In cases where the resulting simultaneous equations have a sparse coefficient
matrix, the matrix A will have an even lower density of nonzero elements. For instance
a set of five-point Laplacean finite difference equations for a rectangular mesh with
rectangular boundaries may be generated using an A matrix containing no more than
two nonzero elements/row and the analysis of a plane pin-jointed structural frame
may be formulated by using an A matrix containing no more than four nonzero
elements/row. The work reported here is part of an investigation directed towards
finding efficient methods of solving large order structural analyses where the equations
are generally of such large bandwidth that factorization techniques require a prohibitive
amount of store and computing time and yet where classical iterative techniques
converge too slowly to provide a satisfactory alternative.

2. Preconditioning. Most of the classical iterative methods for the solution of
simultaneous equations have convergence rates which are linked in some way or other
to the eigenvalue spectrum of the coefficient matrix [4]. In particular the P-condition
number is important, being the ratio of the largest to the smallest eigenvalue. In general,
the greater the P-condition number, the slower will be the convergence rate. Precon-
ditioning is a process of transforming the equations so that their eigenvalue spectrum
is improved. Equations (1.1) can be preconditioned by introducing a transformation
matrix L giving

(2.1) (L-ATAL-T)(LTx) (L-1 b).

Because ofthe need to carry out forward and back substitutions with L and its transpose,
this matrix is usually triangular. An iterative solution of these equations to determine
the transformed variables (LTx) has (L-lATAL-T) as coeficient matrix and hence the
rate of convergence is related to the eigenvalue spectrum of this matrix. Early methods
for which ATA needs to be constructed were block relaxation, SSOR [5] and Evans’
preconditioning method [6], the latter two having been shown to be equivalent to each
other.

The solutions of sparse linear least squares equations without forming ATA have
received considerable attention in recent years [7], [8]. Two methods of preconditioning
which have been developed are the SSOR method of Bj6rck [9] and the LU factorization
method by Saunders [10]. Of these Saunders claims the LU factorization to be more
effective for equations which are badly conditioned.

3. ICCG methods. From the standpoint of convergence rate, the ideal choice of
transformation matrix L is the Choleski factor of ATA, for then

(3.1) L-1ATAL-r= I

giving a P-condition number of and convergence in one iteration whichever iteration
method is used. The objective ofincomplete Choleski methods is to obtain a transformed
coefficient matrix which is as close to I as possible without invoking the large amounts
of fill-in within L that would be obtained from accurate Choleski factorization. The
conjugate gradient method is the most appropriate iterative method to use with
incomplete Choleski preconditioning because it can be implemented without the
transformed coefficient matrix (which is likely to be fully populated) being fully formed.
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Instead it can be implemented with ArA and L (or A and L) stored in sparse form
[11]. Furthermore the conjugate gradient method is universally convergent for any
symmetric positive definite coefficient matrix and has a rate of convergence which is
generally superior to other classical iterative methods. In particular, when significant
gaps in the eigenvalue spectrum exist, the conjugate gradient method will accelerate
as iteration proceeds [12].

Variations in IGCG methods arise through:
(a) Rejection criteria for omitting off-diagonal elements from the factorization.

In some methods [13] all elements which fill-in are automatically rejected, thus the
storage pattern of LT and the upper triangle of AT"A will be the same. In other methods
elements are rejected if they are weak according to some prescribed criterion.

(b) Diagonal correction. In some methods no modifications of the diagonal
elements are made during incomplete factorization. This is justifiable when the
coefficient matrix is an M-matrix [14]. In other methods diagonal modifications are
made to ensure that the reduced matrix remains positive definite throughout the
incomplete factorization 15].

The method adopted in these tests is that given by Jennings and Malik [16] in
which a rejection criterion based on element size is used and the magnitudes of diagonal
elements are increased when rejections occur. The modifications to the diagonal
elements are made sufficiently large to ensure that the eigenvalues of LLr are at least
as large as the corresponding eigenvalues of ArA. This has the effect of guaranteeing
that the incomplete factorization will not break down due to negative or zero pivots.

Unfortunately there is no known way of predicting the influence of any particular
element in the factorization on the eigenvalue spectrum of the resulting coefficient
matrix without employing extensive computations. Hence elements are rejected if their
magnitude relative to the geometric mean of the relevant current values of the two
diagonal elements is lower than a rejection parameter. Furthermore the diagonal
modifications can be proved to be unnecessary in certain special cases, such as when
the coefficients form an M matrix. Hence it is possible that alternative incomplete
methods could yield more efficient convergence rates. However variation in the rejection
parameter gives more control over the process than is possible with either SSOR or
LU methods in which variations in performance are only possible by conducting row
interchanges.

4. Orthogonal decomposition. Consider the decomposition

(4.1) A= QR

where Q is an rn n matrix comprising orthogonal vectors and R is an upper triangular
matrix with positive diagonal elements. The orthonormal condition

(4.2) QTQ=I
gives

(4.3) ATA R TR.

Hence R is the upper triangular Choleski matrix associated with ATA, and the
orthogonal decomposition gives an alternative way of obtaining it. It is well-known
that this technique will normally involve more computation than will the standard use
of Choleski factorization. However the process is less subject to rounding error effects.

Normal implementation of the above ICCG method generally entails much less
time being spent in the incomplete factorization phase of the algorithm than in the
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iteration phase. It is therefore possible that generation of an incomplete Choleski
matrix by modifying methods of orthogonal decomposition could be advantageous if
the eigenvalue spectrum of the resulting transformed matrix yields a faster convergence
rate for the iteration phase of the solution which more than offsets any possible extra
time taken for the decomposition. Therefore incomplete orthogonal decomposition is
not adopted in order to reduce the effects of rounding error. Whether there would be
any benefits in this respect have not been investigated.

5. Incomplete Gram-Schmidt. In the Gram-Schmidt method matrix A is converted
to Q by a series of vector orthonormalizations. The matrix R represents the coefficients
of the orthonormalization process. A possible algorithm for implementation is

for i= to n do a 1)--- a;
for i= to n do
begin rii Ilal’)ll

q, ali/ rii
forj=i+l to n do

T (i).begin rj q ajai+l)= aJi- rijqi
end;

end;

This may be converted into an incomplete Gram-Schmidt by including immediately
after the formation of ri and within the inner loop the rejection test

if r,s < ,/llal’ll then r0 =0;

where is a rejection parameter similar to that used by Jennings and Malik for
incomplete Choleski factorization [17]. If 0, all nonzero off-diagonal elements in
R are retained, Q is orthogonal and the Gram-Schmidt process is "complete." If
all nonzero off-diagonal elements in R are rejected, thus making R diagonal. Normal
use of the algorithm is therefore with 0 < , < 1.

It is possible to prove that a) cannot be null (and hence incomplete Gram-Schmidt
decomposition cannot break down) as follows:

Consider that r and r22 are nonzero permitting the vector a(33) to be computed
for a case where n 4. It is possible to link vectors available at the time when a33) is
formed by the matrix equation

where R is nonsingular.
Let

(5.2) y =/-l e3

where e3 is the third column of the unit matrix. Since y must be nonnull and ATA is
positive definite,

(5.3) (a(33)) Ta(33) efOTOe3 yrArAy > O.

11 /’12 /’13

(51) a=[ql q2 a3 a4] r22 r23 =(/ (say)
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Similar results hold for j 3, thus permitting the proof to be completed by
induction.

In the case where A is sparse, rejection of small elements in R has the effect of
curtailing fill-in in R. There is a corresponding reduction in the number of vector
orthogonalization operations in the orthogonal decomposition and there is likely to
be a reduction in the number of nonzero elements in Q. This may be illustrated by
considering

0.1 2 0.1

(5.4) A= ArA 0.1 1.01 -1

-1 -1

If > 0.07071, then element rl2 is rejected, which means that column 2 of A is not
orthogonalized with respect to column 1. Hence not only is rl2 =0 but also q and
q3 do not fill-in, although fill-in of q3 still takes place unless p > 0.995, i.e.,

[0"7071 0"0995 0"09901 I1"4142 01(5.5) Q= 0.7071 R= 1.0050 -0.995
0.9950 -0.0099 0.09951

[ 12
/r/ 1.01 -1

-1

After completion of orthogonal decomposition the iterative phase of the algorithm
proceeds as for the incomplete Choleski method.

6. Incomplete Givens rotations. An alternative method of orthogonal decomposi-
tion is to apply successive Givens rotations to A in such a way that all the elements
below the diagonal in A are eliminated. One such rotation can be written in the form

(6.1) Q(k)A(k) A(k+)

where Q() is an m rn matrix specifying the rotation. The decomposition is complete
when

in which case

(6.3) Q(/-l)... Q(2)Q(1)A=[I]"
Hence

(6.4)

which shows that the computed R matrix is identical (except for rounding effects) to
the upper triangular Choleski matrix associated with ATA provided that the angles of
rotation have been chosen such that the diagonal elements of R are positive.

Since the decomposition process involves elimination of individual elements in
A, the most obvious method of converting this into an incomplete method is to avoid
performing the rotation to eliminate any particular element if it is small compared
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with other elements. The criterion that has been chosen is that elimination is not
performed if

(6.5) a (0k) < 4,11aJ)ll
where a)k) is the jth column of A(k) and @ is the rejection parameter. Thus if @ =0,
the decomposition will be of complete Givens form and if b _-> l, all the elements will
be rejected. It is not satisfactory, however, just to ignore ak) if it is to be rejected,
since with @ _-> this would yield a null matrix for R. Instead the element is retained,
but shifted onto a new row which is separate from the other nonzero elements in row
i. By doing this aj is preserved so giving

(6.6) IIr ll Ila ll .
The correction matrix, relating the incomplete Choleski matrix R to the original

matrix A through

(6.7) RrR=ArA+C

must have zero diagonal elements. Hence the sum of its eigenvalues is zero. This is in
contrast to the corresponding correction matrix for the Jennings and Malik ICCG
method where C has diagonal entries sufficient to ensure that it has no negative
eigenvalues.

The matrix (A(k))TA(k) can only be singular if a vector q can be found for which
v A(k)q is null. By examining the conditions under which this may occur for the case
when a row of A(k-l) has been split to form A(k) it can be shown that the split matrix
can only give a null v if A(k-l) can also. Hence by induction the splitting process
cannot cause any modified matrix (A(k))TA(k) to be singular.

It can also be shown that the eigenvalues of (A()) rA() need not be improved by
splitting. An example where it may not be beneficial is

(6.8) A=
2 -2 ArA=[6 -3]-3 6

For if the rejection parameter is chosen so that row 3 is split, the modified matrix is

(6.9) ,= 2-21 ,r=[ 6-4]_46

giving eigenvalues of 2 and 10 as opposed to 3 and 9 for the unsplit matrix. Such a
case is likely, however, to be the exception rather than the rule. For the matrix A in
(5.4), element a is reiected if q > 0.0995 thus giving modified matrices

112 i1(6.10) ,= r= 1.01
-1

0.1
-1

and the R matrix as in (5.5).
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7. Comparison of methods. An algorithm is available for the Jennings and Malik
ICCG method in sparse code 18]. This consists of two phases, the incomplete factoriz-
ation and the CG preconditioned iteration. No sparse matrix implementation for the
complete orthogonal decomposition has been devised. The purpose of the following
tests is to investigate whether the amount of computation in the iterative phase tends
to be sensitive to the way in which R is computett and hence whether it might be
profitable to execute a sparse matrix implementation of one of these methods taking
into account that such an implementation is likely to be more complex than the ICCG
method of Jennings and Malik. Therefore both orthogonal decomposition procedures
were programmed in full matrix code and the resulting R matrices converted to a
sparse store for the CG preconditioned iteration. Because of the storage requirement
for the orthogonal decompositions it was not possible to compare results for large
order problems. However, since most of the nonzero multiplications occur in the
iterative phase of the analysis and the amount of computation in this phase is propor-
tional to the product of the number of iterations multiplied by the total number of
nonzero elements in both ATA and L (or R), and the storage space requirement is
also dependent on the latter, it is useful to see ifthese methods give different convergence
rates for similar numbers of nonzero elements in L or R.

Analyses of the four structures shown in Fig. were taken as test cases. The
number of nonzero elements on each row of A was no more than six for the portal
frames (see Fig. 2) or four for the pin-jointed space frame. In each case analyses were
carried out with different values of ff using ICCG, incomplete Gram-Schmidt and
incomplete Givens. However, since values for the different methods are not directly
comparable, the number of nonzero multiplications for complete solution was com-
pared with the number of nonzero elements in L or R (Fig. 3). The number of
multiplications required to form ATA was not included since this was performed for

(a) (b)

(c) (d)

FG. 1. Structural frames analysed. (a) A 3 bay 2 storey portal frame (n 24). (b) A 5 bay 5 storey
portal frame (n =90). (c) A 6 bay storey portal frame with pitched rooves (n 39). (d) A 3 5 bay double
layer pin-jointed space frame roof structure (n 153).
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FIG. 2. Positions of nonzero elements in A (42 x 24) for example (a).

each of the methods. The right-hand points pertain to ff 0 and so indicate the different
number of nonzero multiplications in the "complete" methods. Here the ICCG method
has a low value because these small examples give a fast solution using complete
Choleski factorization. On the left-hand side ff is large and so, with only a few nonzero
elements in R the performance Of all three methods tends to be similar. For larger values
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portal. (d) 3 5 space frame roof.

of @ the Givens method performs best and is itself most economical at about 0.1.
Since, when is large, the number of nonzero multiplications required for the
decomposition phase is small, the better performance of Givens method is due to
generally better convergence rates (Fig. 4).

For larger problems involving more fill-in the advantage of using direct Choleski
factorization disappears and the efficiency of ICCG is best at intermediate values of

(in the interval 0.02 to 0.2). From the above results (albeit limited in scope) it would
seem that a form of incomplete Givens orthogonal decomposition might be competitive
with ICCG for larger problems provided that suitable software can be developed to
perform the decomposition efficiently in some form of packed store, it is worthy of
note that the standard Givens orthogonal decomposition method has been implemented
in a sparse store by George and Heath [19], so this could form a starting point for
consideration of sparse matrix implementations of incomplete Givens orthogonal
decomposition.

8. Conclusions. Two incomplete orthogonal decomposition methods have been
investigated. As with the Jennings and Malik ICCG method, it can be shown that
neither of the methods can fail due to loss of the positive definite property during the
determination of the incomplete Choleski factor, in view of the different rejection
criteria, some numerical comparisons for simple examples were made by plotting the
numbers of iterations and the numbers of nonzero arithmetic operations for each of
the methods against the numbers of nonzero elements in the incomplete Choleski
matrix. From this limited number of comparisons it can be deduced that the Givens
method is worthy of further consideration if an efficient sparse incomplete factorization
can be devised. It would be useful to make comparisons with the LU decomposition
method of Saunders.
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Abstract. The problem of computing the minimum-norm solution to a sparse, underdetermined system
of linear equations is considered. An algorithm is developed which is based on orthogonal factorization.
The algorithm is generalized to cope with systems which are rank deficient, inconsistent, or require column
updating.
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1. Introduction.
of the form

This paper is concerned with solving systems of linear equations

Ax--b, (1.1)

where A is an m x n matrix, b is a known vector of dimension m, and x is the desired
solution vector of dimension n. Our particular interest is in problems which are
underdetermined (m<n), and for which the matrix A is large and sparse. If an
underdetermined system is consistent, then it has infinitely many solutions. In this
case we seek the solution x having minimum Euclidean norm. If the system is incon-
sistent, which can happen only if rank(A)<m, we seek the vector x of minimum
norm which minimizes the residual norm

A survey of methods for solving consistent underdetermined systems is given in [2].
In the present paper we adapt one of those methods, LQ factorization, to solve sparse
problems and generalize it to include problems which may not be consistent.

In a series of papers ([4], [6], [1]) a collection of algorithms is developed for
solving sparse linear least squares problems by QR factorization using Givens rota-
tions. The basic algorithm of [4] is intended for overdetermined problems (m>n)
having full column rank, which is the most commonly occurring case in practice. Sub-
sequent generalizations ([6], [1]) extend this basic technique to solve more compli-
cated problems having rank degeneracy, equality constraints, or updating (modifying a
previous solution to incorporate new information). Due to the particular nature of the
underlying sparse technique, these generalizations are of more than academic interest,
even for problems that at first do not appear to require the extended capabilities. In
particular, since the factorization scheme is based on the nonzero structure of A rA, it
is essential to sparsity preservation that any relatively dense rows of the input matrix
be withheld from the sparse orthogonal factorization and their effect be subsequently
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incorporated into the solution by updating. This in turn means that even if a problem
has full rank, the sparse and dense portions, when treated separately, may not have.

Because of their ability to solve least squares problems of arbitrary rank, the
QR-based algorithms of [6] and [1] can also solve underdetermined linear systems.
The two factorizations LQ and QR lead to significantly different algorithms, however.
We will discuss the relative merits of the two approaches after details of the LQ-based
algorithm have been given. The sparse LQ factorization is obtained, in effect, by
applying the QR factorization algorithm of [4] to A r. Thus it is now dense columns
of A which must be withheld from the factorization process and subsequently consid-
ered as updates. In summary, an underdetermined sparse system having a few dense
rows can be solved by LQ without updating or by QR with row updating. An under-
determined sparse system having a few dense columns can be solved by QR without
updating or by LQ with column updating. If both dense rows and dense columns are
present, then either method will require updating.

Although the basic factorization algorithm of [4] produces a sparse triangular
factor L or R, the orthogonal factor Q is in general not particularly sparse and is
therefore not stored. Instead, the Givens rotations which triangularize A are simply
discarded as they are used. This presents no problem in solving (1.1) by the QR
approach, since the right-hand side vector b can be processed by the Givens rotations
simultaneously with A, and Q is not needed subsequently in computing the final solu-
tion. In the standard, full rank implementation of LQ (see [2]), where

A =It., O]t2

with L a nonsingular, lower triangular matrix of order rn and

an orthogonal matrix of order n partitioned conformally, the minimum-norm solution
to (1.1) is given by

x =?r-lb.
Gill and Murray [5] and Saunders [9] have observed that this apparent need for Q
can be circumvented by computing instead

x=ArL-rL-b, (1.2)

in effect re-creating the necessary part of Q by taking

Q1 =L-IA,
with surprisingly good numerical results. Paige [8] has analyzed and explained this
good numerical behavior. The approach represented by (1.2) is a natural one for the
problems in which we are interested, since we cannot retain Q. Thus, the algorithms
developed in the present paper can be regarded as generalizations of (1.2) to solve
sparse underdetermined systems of linear equations which may not be consistent and
which may require column updating.

2. Algorithms. First we establish some more detailed notation with which to
describe our algorithms. Since we wish to segregate the sparse and dense columns, we
will take A in (1.1) to be rn (n +p), partitioned as
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A--[B C], (2.1)

where B is m xn and sparse, while C is m xp and p is assumed to be small relative
tom andn. Ifp>0and

x= }p
is partitioned conformally with (2.1), then (1.1) becomes

Bu+Cv=b. (2.2)

Applying the algorithm of [4] to the sparse matrix Br yields a factorization of the
form

B--[L O]Q, (2.3)

where L is a lower triangular matrix of order m and Q is an orthogonal matrix of
order n. If B does not have full row rank, say rank(B)=m--k, then the factoriza-
tion (2.3) takes the form

e=M Q’

where L is now a lower triangular matrix of order m-k. (In arriving at (2.4) a
numerical rank decision must be made, and row and column permutations may be
required, but these permutations can be handled implicitly: see [6].) Again we assume
that the rank deficiency k is small relative to m and n. Whatever the rank, we parti-
tion Q as

Q= Q. }n-m+k
and use the change of variable

so that

U

u Qy +Qz.

If

B= }k
is permuted and partitioned conformally with (2.4), then

Q--L-B,
and this fact will be used to avoid storing Q. When k>0 we will also partition the
right-hand side vector as

The complexity of solving a linear system of the form (2.2) is characterized by
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the number p of dense columns, the rank deficiency k of B, and whether the system
is consistent. A completely general algorithm for solving the most complex case- a
rank-deficient, inconsistent problem which requires updating is rather complicated
and somewhat difficult to follow. We will therefore present a sequence of algorithms
covering various cases, beginning with the most simple and leading up to the most
complex. In this way the justification for each aspect of the final algorithm should
become clear.

Case 1. p 0, k 0, consistent. Under the factorization (2.3), system (2.2)
becomes

Now y is completely determined by the nonsingular triangular system Ly=b, and
thus, since the orthogonal matrix Q does not change the norm, the minimum-norm
solution occurs when z =0. Therefore the minimum-norm solution is given by

Hence we have the following algorithm for case 1:

ALGORITHM 1.

1. Factor B as in (2.3).
2. Solve Ly --b.
3. Solve Lrt=y.
4. x=u=Brt.

Case 2. p 0, k > 0, consistent. The factorization of B now has the form of
(2.4), and the system (2.2) becomes

ol l zl
Again z=0, and consistency implies that if Ly=c, then My=d. Therefore the
minimum-norm solution is given by

x =Qy =BL-TL-’c.
Hence we have the following algorithm for case 2:

ALGORITHM 2.

1. Factor B as in (2.4).
2. Solve Ly c.
3. Solve Lrt=y.
4. x=u=B(t.

Case 3.
now becomes

p > 0, k 0, consistent. Under the factorization (2.3), system (2.2)
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Once again minimizing the norm requires that z =0, so that we may write (2.5) as

Ly+Cv=b. (2.6)

Since L is nonsingular, y is completely determined by (2.6) if v is known. In particu-
lar,

y =w--Ev, (2.7)

where E is an m xp matrix satisfying LE=C, and w is a vector satisfying Lw=b.
Thus, minimizing IlyllEq-IlVll 2 subject to (2.7) is equivalent to the least squares prob-
lem

min v
v 2

By our assumption that p is relatively small, (2.8) can be solved by methods appropri-
ate for small dense least squares problems (e.g., [3], [7]). In particular, if we use the
factorization

with U an orthogonal matrix of order m +p and R an upper triangular matrix of
order p and partition U conformally as

Ull U21

U=IUI2 U22
with UII p xp, then the solution v is given by the nonsingular triangular linear
system Rv =UlW and the part of the residual in which we are interested is given by
the projection y =UEEU2w. Hence we have the following algorithm for case 3"

ALGORITHM 3.

1. Factor B as in (2.3).
2. Solve LE C.
3. Solve Lw b.
4. Compute the factorization (2.9).
5. Solve Rv Ulw.
6. Y=U22U2w.
7. Solve L r y
8. u=Brt.

Case 4.
now becomes

p > 0, k > 0, consistent. Under the factorization (2.4), system (2.2)

where we have partitioned C conformally with (2.4). Again we have z=0, and con-
sistency implies that if Ly+Clv=c, then My+C2v=d. Thus the algorithm for this

case is very similar to Algorithm 3.
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ALGORITHM 4.

1. Factor B as in (2.4).
2. Solve LE C1.
3. SolveLw=c.
4. Compute the factorization (2.9).
5. Solve Rv UlW.

6. y U22U2W.
7. Solve L r y.
8. u=Bt.

Case 5. p 0, k > 0, inconsistent. Define the residual vector

r=Ax-b.

Since we are no longer assuming r=0, we now seek the vector x of minimum norm
which minimizes Ilrll. Under the factorization (2.4), the residual vector becomes

(2.10)

where we have partitioned r conformally with (2.4). It is clear that z=0, and from
the top equation of (2.10) we can solve for y in terms of r by using the system

Ly=cd-rl

Thus, if we let H be a kx(m-k) matrix satisfying LrHr=Mr and define the vec-
tor e =d--Hc, then we have from the bottom equation of (2.10)

rl] (2.11)
[H --l]

rE
=e.

Since we want to minimize I}rl[ subject to the constraint (2.11), we have reduced the
original large sparse rank deficient problem to the solution of a much smaller (k xm)
full-rank minimum-norm problem which can be solved by methods appropriate for
small dense underdetermined systems (see, e.g., [2]). One such method is to use the
factorization

VI] (2.12)
[/ -t]=[r O]V=[r O] V

where T is a lower triangular matrix of order k and V is an orthogonal matrix of
order m partitioned conformally, so that

r= VT-le.
(Note that although V is a large matrix, we need only the much smaller k xm portion
Vl; moreover, we can always avoid retaining V by using the same technique employed
in (1.2).) Hence we have the following algorithm for case 5:
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ALGORITHM 5.

1. Factor B as in (2.4).
2. Solve LrHr=Mr.
3. e=d-Hc.
4. Compute the factorization (2.12).
5. Solve Ts e.
6. r=Vrs.
7. q=c+r.
8. Solve Ly=q.
9. Solve L r y.
O. x=u=Brt.

Case 6. p > 0, k > 0, inconsistent. The residual vector now has the form

lz’ l=l  ll zl +  ’ lv-lzl.
Once again z =0 and from the top equation of (2.13) we can solve for y in terms of r
and v by using the system

Ly=c-Jr-rl--Clv. (2.14)

If we let H and e be defined as in case 5 and in addition define the matrix
F C2--HC1, then the bottom equation of (2.13) becomes

[ri] (2.15)
[H --I]

r2
=e--Fv.

Once again we have a small, full-rank, minimum-norm problem for r in (2.15), but
we do not yet know v. If we apply the orthogonal transformation (2.12), however,
(2.15) becomes

[I O] =f-Gv,

where s Vr, and f and G satisfy Tf=e and TG=F, respectively. It is now obvi-
ous from (2.16) that Ilsll, and hence, since the orthogonal transformation V does not
change the norm, lit is minimized when v is chosen to minimize the residual

min Ilf-- Gv 2. (2.17)

Since G is kp, (2.17) is a very small least squares problem. Although (2.17) deter-
mines s (and hence r) uniquely, it does not determine a unique value for v unless G
has full column rank. If the latter is not the case, then we must choose v among all
solutions of (2.17) so as to minimize Ily z/ v 2 in (2.14).

Any solution of (2.17) can be expressed in the form v=V+Z, where -is a par-
ticular solution to (2.17), Z is a matrix whose columns form a basis for the null space
of G, and /3 is a vector of appropriate dimension. (Of course, if G has full column
rank, then Z is not present, and v =-.) Suitable - and Z can be conveniently com-
puted by means of the singular value decomposition of G (see, e.g., [3] or [7]). To
determine/3 we formally substitute v=+Z3 into (2.14). The resulting least squares
problem analogous to (2.8) is
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(2.18)

where E and w are given by the linear systems LE=C and Lw=c+r. The full-
rank least squares problem (2.18) can be solved by an orthogonal-triangular factoriza-
tion analogous to (2.9), with the (m+p)x(m+p) orthogonal matrix U partitioned
similarly. The part of the residual in which we are interested is then given by the pro-
jection

y U9_2[ Ur2 U21 w --E

Hence we have the following algorithm for case 6:

ALGORITHM 6.

2.
3.
4.
5.
6.
7.
8.

10.
11.
12.

(2.19)

Factor B as in (2.4).
Solve LrHr Mr.
e =d--Hc.
Compute the factorization (2.12).
F=C2--HC.
Solve TG F.
Solve Tf e.
Compute a particular solution P-to (2.17), along with the residual vector s
and, if G does not have full column rank, the null-space basis matrix Z.
r Vs 1.

Solve LE --Cl.
Solve Lw c + r 1.

If G has full column rank, set U-I, the identity matrix of order m-l-p;
otherwise, let U be the orthogonal matrix which triangularizes the matrix of
(2.18).
Compute y as in (2.19).
Solve L r y

3. Concluding remarks. We have developed an algorithm based on LQ factoriza-
tion for computing the minimum-norm solution to a sparse underdetermined system of
linear equations. We now compare this approach with another orthogonalization
method, that based on QR factorization. Using the sparse Givens approach of [4], the
nonzero structure of the triangular factor resulting from QR or LQ factorization is
determined by the nonzero structure of A rA or AA r, respectively. Thus either fac-
torization may suffer more fill than the other, depending on the problem, and hence
require more storage or computation. Generally speaking, however, the two factoriza-
tions should be about equal in cost for square or nearly square systems, but for more
strongly underdetermined systems (m<<n), LQ factorization should require more
computation because a larger proportion of the input matrix A is annihilated (Fig. 1).

Unfortunately, in order to compute the minimum-norm solution to an underdeter-
mined problem of rank m by the algorithm of [6], the sparse QR factorization is fol-
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LQ QR

FIG. 1. Triangular forms resultingfrom orthogonal factorization.

lowed by solving a subsequent (generally dense) least squares problem of size
n (n-m). Thus, although the basic sparse factorization may be cheaper, the QR
approach is impractical unless n-m is relatively small. (In fairness it should be
pointed out that for cases in which any particular solution of (1.1) will suffice, the QR
algorithm does not suffer from this heavy restriction (see [6]).) The possibility of row
or column updating further complicates any comparison of methods. Nevertheless, it
seems apparent that the LQ-based algorithm is the method of choice for a broad range
of underdetermined systems.

This conclusion is supported by the numerical results reported in Table 1. Three
underdetermined test problems were generated by transposing three overdetermined
problems from the Harwell sparse matrix test set and by letting the right hand side
vectors have as components 1, 2, m. All three problems are of full rank and
require no updating. The times reported are in seconds on an IBM 4341 using the VS
Fortran compiler and single precision floating point arithmetic. The storage reported
is in words and includes storage for all pointers and other overhead required to solve
the problem. As expected for problems having many more columns than rows, the
time and storage required for computing the minimum-norm solution using the QR
factorization are huge. Therefore, for a more direct comparison of the sparse orthogo-
nal factorizations, we have also reported the time and storage required for computing
a basic solution using the QR factorization. These figures show that for these three
problems the QR factorization is somewhat faster than the LQ factorization, but
requires significantly more storage. As for accuracy, the minimum-norm solutions
computed by the two algorithms agree very well for the first two problems but differ
appreciably for the third problem, which is more ill conditioned.

TAnLE

Numerical test results

Problem

rows
columns
nonzeros

LQ (min. sol.)

QR (bas. sol.)

QR min. sol.)

ASH219

85
219
438

ASH331 ABB313

1642 1.96

5944 1.26

34920 24.79

2261 3.57

10688 1.73

store time store time store time

6821 4.03

15310 3.13

50728 40.17

104
331
662

85705 94.79

176
313
1557
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